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Simple Summary: Various immune cells are involved in host immune responses to cancer. T-
helper (Th) 1 cells, cytotoxic CD8+ T cells, and natural killer cells are the major effector cells in
anti-tumor immunity, whereas cells such as regulatory T cells and myeloid-derived suppressor cells
are negatively involved in anti-tumor immunity. Th2 cells and Th17 cells have been shown to have
both pro-tumor and anti-tumor activities. The migratory properties of various immune cells are
essential for their function and critically regulated by the chemokine superfamily. In this review, we
summarize the roles of various immune cells in tumor immunity and their migratory regulation by
the chemokine superfamily. We also assess the therapeutic possibilities of targeting chemokines and
chemokine receptors in cancer immunotherapy.

Abstract: Various immune cells are involved in host tumor immune responses. In particular, there
are many T cell subsets with different roles in tumor immunity. T-helper (Th) 1 cells are involved
in cellular immunity and thus play the major role in host anti-tumor immunity by inducing and
activating cytotoxic T lymphocytes (CTLs). On the other hand, Th2 cells are involved in humoral
immunity and suppressive to Th1 responses. Regulatory T (Treg) cells negatively regulate immune
responses and contribute to immune evasion of tumor cells. Th17 cells are involved in inflammatory
responses and may play a role in tumor progression. However, recent studies have also shown
that Th17 cells are capable of directly inducting CTLs and thus may promote anti-tumor immunity.
Besides these T cell subsets, there are many other innate immune cells such as dendritic cells (DCs),
natural killer (NK) cells, and myeloid-derived suppressor cells (MDSCs) that are involved in host
immune responses to cancer. The migratory properties of various immune cells are critical for their
functions and largely regulated by the chemokine superfamily. Thus, chemokines and chemokine
receptors play vital roles in the orchestration of host immune responses to cancer. In this review,
we overview the various immune cells involved in host responses to cancer and their migratory
properties regulated by the chemokine superfamily. Understanding the roles of chemokines and
chemokine receptors in host immune responses to cancer may provide new therapeutic opportunities
for cancer immunotherapy.

Keywords: chemokine; chemokine receptor; Th1; Th2; Th17; regulatory T; dendritic cell; macrophage;
neutrophil; tumor microenvironment

1. Introduction

Tumor immunity is initiated by the recognition of tumor antigens by the immune
system [1]. Antigen priming and effector cell differentiation are regulated by complex
processes involving various cell populations, cytokines, and chemokines [1–3]. While CD4+

helper T cells are known to orchestrate immune responses, CD4+ T cells are heterogenous
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and composed of various functional subsets including T-helper (Th) 1 cells, Th2 cells,
Th17 cells, and regulatory T (Treg) cells [4,5]. These T cell subsets are characterized by
the secretion of signature cytokines and differentially involved in tumor immunity [4,5].
Furthermore, CD8+ cytotoxic lymphocytes (CTLs) and natural killer (NK) cells play di-
rect roles in the elimination of tumor cells. Tumor tissues are also highly enriched with
innate immune cells such as myeloid-derived suppressor cells (MDSCs), tumor-associated
macrophages (TAMs), and tumor-associated neutrophils (TANs) [6,7]. These various im-
mune cells are known to express characteristic chemokine receptors and are elaborately
regulated in their migration and tissue localization by respective chemokine ligands [8–10].
Accordingly, some chemokines and their receptors may be involved in the elimination of
tumor cells by recruiting anti-tumor effector cells, whereas others may promote tumor
progression by attracting immunosuppressive cells. In addition, some chemokines and
their receptors are known to play critical roles in the interactions of dendric cells (DCs)
and T cells [11–14]. Thus, the chemokine superfamily has a multifaceted role in host tumor
immunity. In this review, we overview the roles of various immune cells and the chemokine
superfamily in host immune responses to tumor cells in order to assess the possibility of
targeting chemokines and chemokine receptors for cancer immunotherapy.

2. Induction of Tumor-Specific T Cell Responses

T cell-mediated anti-tumor immunity is thought to be achieved by a multistep process
called the cancer-immunity cycle [1]. It includes the following seven steps: (1) release of
cancer antigens, (2) cancer antigen presentation, (3) priming and activation, (4) trafficking
of T cells to tumors, (5) infiltration of T cells into tumors, (6) recognition of cancer cells by
T cells, and (7) killing of cancer cells. Thus, the cycle is initiated by the uptake of tumor
antigens, including tumor-associated antigens and neoantigens, by DCs, the professional
antigen-presenting cells. Tumor antigen-captured DCs then migrate into the draining
lymph nodes where recirculating naïve T cells and memory T cells scan antigenic peptides
presented by DCs in association with class I and class II major histocompatibility complex
(MHC) molecules (Figure 1). The CCL19/CCL21-CCR7 axis is known to play a pivotal role
in the migratory activities of DCs and recirculating T cells [1,15]. While immature DCs in
peripheral tissues dominantly express CCR6, the surface expression of CCR7 is upregulated
upon antigen-loading and DC maturation [1,15]. Since CCL21 is abundantly produced
by lymphatic vessels, CCR7-expressing DCs initiate trans-lymphatic migration and home
into T cell areas of the draining lymph nodes where matured DCs start producing CCL19
(Figure 1) [3,16,17]. The lymph nodes also have unique vascular structures called high
endothelial venules (HEVs), which produce CCL21 and function as the gateways for recir-
culating naïve T cells and memory T cells that commonly express CCR7 (Figure 1) [18,19].
In addition, although CCL19 is not produced by HEVs, it is displayed on the luminal
surfaces of HEVs by transcytosis [20]. After homing into the lymph nodes, naïve T cells
and memory T cells further migrate toward CCL19-producing mature DCs localized in the
T cell areas [1,15]. Upon encounter with cognate antigenic peptides presented by mature
DCs, antigen-specific naïve T cells proliferate and differentiate into various effector T cell
subsets in accordance with the local cytokine milieu, whereas memory T cells start rapid
expansions for recall immune responses [21]. Furthermore, conventional DCs have two
subtypes known as type 1 (cDC1s) and type 2 (cDC2s) [22]. It is now known that cDC1s
preferentially induce the differentiation of naïve CD4+ T cells and CD8+ T cells into Th1
cells and CTLs, respectively [3,16,17], whereas cDC2s preferentially induce the differentia-
tion of naïve CD4+ T cells into Th2 cells and Th17 cells (Figure 1) [3,16,17]. Importantly,
cDC1s selectively express XCR1 and are the most efficient DCs in the cross-presentation of
exogenous antigens to CD8+ T cells [22]. Of note, while cDC1s activate CCR7-expressing
naïve CD8+ T cells [22], activated CD8+ T cells in turn produce XCL1, the ligand of XCR1
(Figure 1) [22]. This further promotes the interactions of CD8+ T cells and cDC1s, leading to
full differentiation of effector CTLs [22]. In secondary immune responses, mature DCs also
produce CCL3, CCL4, CCL5, CCL17, CCL22, CXCL9, CXCL10, and CXCL11 [22]. Since
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Th1 cells express CCR5 and CXCR3, while Th2 cells, Th17 cells, and Treg cells express
CCR4 [22], these chemokine–chemokine receptor axes contribute to the rapid expansion of
effector T cells (Figure 1).
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Figure 1. Chemokine-mediated T cell immune responses in the lymph node. In primary immune
responses, antigen-captured DCs migrate into the draining lymph nodes via afferent lymphatics
using the CCL19/CCL21-CCR7 axis. In the lymph nodes, mature DCs produce CCL19 and interact
with recirculating CCR7-expressing naïve CD4+ T cells that home into the lymph nodes via the high
endothelial venules (HEVs). If stimulated by cognate antigenic peptides presented by mature DCs,
naïve T cells differentiate into Th1 cells, Th2 cells, Th17 cells, and Treg cells according to the local
cytokine milieu.

3. Th1 Cell, CTL, and NK Cell

Th1 cells are involved in cellular immunity by secreting Th1-type cytokines such as
interferon (IFN)-γ, Interleukin (IL)-2 and tumor necrosis factor (TNF)-α [23,24]. Th1-type
cytokines promote the differentiation of naïve CD8+ T cells into CTLs [23,24] and also
enhance the cytotoxic activity of CD8+ T cells and NK cells [25,26]. CD8+ T cells and NK
cells are able to directly eliminate tumor cells by secreting cytotoxic molecules such as
perforin and granzyme. NK cells are also able to induce apoptosis in tumor cells via TNF
family molecules such as FAS ligand (FASL) and TNF-related apoptosis-inducing ligand
(TRAIL) [27]. Thus, Th1 cells, CD8+ T cells, and NK cells are the major effector cells in anti-
tumor immunity. Indeed, infiltration of CD8+ T cells and NK cells correlates with better
clinical outcomes and therapeutic responses in various types of cancer [28,29]. In addition,
recent studies have revealed the existence of CD8+ T cell subsets such as IFN-γ-expressing
Tc1 cells, IL-4-expressing Tc2 cells, IL-9-expressing Tc9 cells, IL-17-expressing Tc17 cells,
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and IL-22-expressing Tc22 cells [30–34]. Tc1, Tc2, and Tc22 cells produce high levels of
perforin and granzyme and have high cytotoxic activity, while Tc9 and Tc17 produce low
levels of cytotoxic molecules and have poor cytotoxic activity [35,36]. The respective roles
of these various Tc subsets in tumor immunity remain to be seen.

Th1 cells, CD8+ T cells, and NK cells commonly express CXCR3 [37–39]. Accordingly,
these effector cells are recruited into tumor tissues by the CXCR3 ligands, CXCL9, CXCL10,
and CXCL11 [25,26]. Previous studies have shown that intra-tumoral injection of CXCL9,
CXCL10, CXCL11, or their fusion proteins efficiently induces the recruitment of CD8+ T
cells and NK cells via CXCR3 and suppresses tumor growth in various murine cancer
models such as lung cancer, colon cancer, kidney cancer, melanoma, and glioma [40,41]. It
has also been reported that the expression of CXCL9, CXCL10, and CXCL11 is upregulated
in the tumor tissues of patients with colon cancer, esophageal cancer, lung cancer, and
ovarian cancer, and correlates with better clinical outcomes (Table 1) [42–45]. While CXCL9,
CXCL10, and CXCL11 are weakly expressed by many types of cells including epithelial
cells, endothelial cells, fibroblasts, and monocytes under physiological conditions, their
expressions are strongly upregulated by IFN-γ and TNF-α [46–48]. CXCL9 is also known
to be secreted by cDC1s and promotes the interactions of cDC1s with CXCR3-expressing
CD8+ T cells, resulting in cluster formation and expansion of CD8+ T cells in the lymph
nodes [11,49]. It has been further reported that T cell immunoglobulin and mucin domain
containing-3 (TIM-3), a negative regulator of T cell responses, is highly expressed by
myeloid cells including cDC1s in the tumor microenvironment, and treatment with anti-
TIM-3 monoclonal antibody upregulates the production of CXCL9 by cDC1s, resulting
in CD8+ T cell expansion and suppression of tumor growth in a murine breast cancer
model [50]. Th1 cells, CD8+ T cells, and NK cells are also the major sources of IFN-γ, which
induces the production of CXCL9 and CXCL10 by DCs and other tissue cells in the tumor
microenvironment. This further attracts CXCR3-expressing Th1 cells, CD8+ T cells, and
NK cells into tumor tissues by a positive feedback mechanism. Collectively, the CXCR3
axis plays vital roles in anti-tumor immunity through expansion and recruitment of Th1
cells, CD8+ T cells, and NK cells.

Table 1. Expression of chemokines and their roles in the tumor microenvironment.

Chemokine Receptor Target Cell Tumor Type Function Status Ref

CCL1 CCR8 Treg breast cancer Immune
suppression Pro-tumor [51]

CCL2 CCR2 MDSC
TAM

pancreatic ductal
adenocarcinoma, breast

cancer, lung cancer, renal
cell carcinoma,

endometrial cancer

Immune
suppression

Angiogenesis
Pro-tumor [52–54]

CCL5 CCR5
CD8+ T cell thyroid cancer, lung cancer,

ovarian cancer, melanoma
Cytotoxic
activity Anti-tumor [55,56]

MDSC
TAM

breast cancer, pancreatic
cancer, renal cancer, glioma

Immune
suppression Pro-tumor [57–60]

CCL17
CCL22 CCR4 Treg

gastric cancer, breast
cancer, oral tongue

squamous carcinoma

Immune
suppression Pro-tumor [61–63]

CCL20 CCR6 Treg

colorectal cancer,
non-small cell lung cancer,

oral squamous cell
carcinoma, esophageal

squamous cell carcinoma

Immune
suppression Pro-tumor [64–67]
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Table 1. Cont.

Chemokine Receptor Target Cell Tumor Type Function Status Ref

CCL28 CCR10 Treg ovarian cancer, liver cancer Angiogenesis Pro-tumor [68,69]

CXCL8 CXCR2 TAN colorectal cancer Immune
suppression Pro-tumor [70]

CXCL9
CXCL10
CXCL11

CXCR3
Th1 cell

CD8+ T cell
NK cell

colon cancer, esophageal
cancer, lung cancer,

ovarian cancer

Cytotoxic
activity Anti-tumor [42–45]

CXCL12 CXCR4 TAM lung cancer, glioma Immune
suppression Pro-tumor [52]

CX3CL1 CX3CR1
CD8+ T cell

NK cell
colon cancer, breast cancer,

lung cancer
Cytotoxic
activity Anti-tumor [71–73]

Macrophage
breast cancer,

hepatocellular carcinoma,
lung cancer, melanoma

Angiogenesis Pro-tumor [74,75]

XCL1 XCR1 cDC1
melanoma, breast cancer,

lung cancer, head and neck
squamous cell carcinoma

CD8+ T
induction Anti-tumor [76–78]

Th1 cells, CD8+ T cells, and NK cells also express CCR5 [37–39]. Its ligands CCL3,
CCL4, and CCL5 are broadly expressed by a variety of normal cells and tumor cells, and
frequently upregulated in tumor tissues of various types of cancer [55,56]. In particular,
the increased expression of CCL5 has been shown to correlate with better clinical outcomes
in several cancers including thyroid cancer, lung cancer, ovarian cancer, and melanoma
(Table 1) [55,56]. Consistently, CCL5-overexpressing murine ovarian cancer and hepato-
cellular carcinoma showed reduced tumor growth by recruiting CCR5-expressing CD8+ T
cells [57,58]. However, the increased expression of CCL5 has also been shown to correlate
with poor clinical outcomes in breast cancer, pancreatic cancer, renal cancer, and glioma
(Table 1) [57,58]. Accordingly, CCL5 is now considered as a marker for poor prognosis for
breast cancer [59,60]. In this context, CCR5 is also expressed by immunosuppressive cells
such as MDSCs and TAMs [52,79]. Indeed, CCL5-deficiency or CCR5 antagonist treatment
suppressed tumor growth by reducing the recruitment of immunosuppressive MDSCs and
TAMs into the tumor microenvironment in murine breast cancer models [80,81]. Thus, the
CCL5-CCR5 axis may have both anti-tumor and pro-tumor activities depending on the
types of responding cells.

CX3CR1 is also known to be selectively expressed by cytotoxic effector cells such as
CD8+ T cells and NK cells [82,83]. Its ligand CX3CL1 is mainly expressed by epithelial cells,
endothelial cells, DCs, and neurons, and upregulated by IFN-γ, TNF-α, and IL-1β [82–84].
CX3CL1 is a membrane-bound molecule and its soluble chemotactic form is produced
by the cleavage in the membrane proximal region [46,85]. The production of soluble
CX3CL1 by metalloproteinases such as ADAM10, ADAM17, and MMP-2 is enhanced
under inflammatory conditions including cancer [84,86–88]. It has been reported that the
increased expression of CX3CL1 correlates with the infiltration of CD8+ T cells and NK cells
and better clinical outcomes in colon cancer, breast cancer, and lung cancer (Table 1) [71–73].
However, CX3CL1 has also been shown to promote angiogenesis through the recruitment
of CX3CR1-expressing macrophages that secrete angiogenic factors in murine breast cancer,
hepatocellular carcinoma, lung cancer, and melanoma models [74,75]. The expression levels
of CX3CL1 have been shown to correlate with vascular density in the bone marrow of
multiple myeloma patients [74]. Furthermore, CX3CL1 has been demonstrated to directly
promote cell growth in gastric and pancreatic cancer cell lines via CX3CR1, although the
detailed mechanism is unknown [89,90]. Thus, the CX3CL1-CX3CR1 axis may also have
both anti-tumor and pro-tumor activities depending on the types of responding cells.
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In addition, it has recently been reported that activated CD8+ T cells and NK cells
secrete XCL1 and attract XCR1-expressing cDC1s to the tumor microenvironment [76,77].
Recruited cDC1s further activate CD8+ T cells and NK cells by producing IL-12 [76–78].
Currently, the XCL1-XCR1 axis has been attracting much attention for its role in induction
and activation of antigen-specific CTLs and activation of NK cells [22].

4. Th2 Cell

Th2 cells are involved in humoral immunity by secreting Th2-type cytokines, such as
IL-4, IL-5, IL-10, and IL-13 [91,92]. Th2 cells are shown to express CCR4, CCR8, and, to a
lesser extent, CCR3 [46,85,93]. It has been reported that the expression levels of respective
chemokine ligands are upregulated in some types of cancer, and Th2 cells are increased in
tumor tissues and the draining lymph nodes [94]. Th2 cytokines inhibit the differentiation
and function of Th1 cells, while Th1 cytokines inhibit the differentiation and function of
Th2 cells [95]. Thus, Th2 cells may indirectly suppress anti-tumor immunity by negatively
regulating Th1 responses. In particular, IL-10 is known to suppress Th1-mediated immune
responses [96]. IL-4 has also been reported to enhance tumor growth by inhibiting apoptosis
in a murine fibrosarcoma model [97]. On the other hand, it has also been demonstrated
that adoptive transfer of tumor-specific Th2 cells protected mice against lethal challenge
of murine myeloma and lymphoma through the induction of Th2-type inflammation in
tumor tissues. However, Th2-mediated anti-tumor effects did not require B cells, NKT cells
or CD8+ T cells and the mechanism was unknown [98]. Of note, Th2 cells are also known
to secrete IL-31 [99]. Recently, it has been reported that IL-31-overexpressing murine breast
carcinoma shows reduced tumor growth by inhibiting the activity of immunosuppressive
cells such as Treg cells, MDSCs, and M2-type macrophages [100]. Collectively, Th2 cells are
generally considered to have pro-tumor effects but may also have some anti-tumor activity.

5. Th17 Cell

Th17 cells secrete the IL-17 family cytokines IL-17A, IL-17F, IL-21, IL-22, and gran-
ulocyte macrophage colony-stimulating factor (GM-CSF). Taken together, they play a
critical role in immune responses against extracellular bacteria and fungi at mucosal
tissues [101,102]. IL-17 is associated with the induction of pro-inflammatory immune
responses by increasing the expression of other pro-inflammatory cytokines, chemokines,
and chemical mediators in various types of cells [103,104]. Accordingly, Th17 cells have
been shown to be involved in chronic inflammatory diseases such as psoriasis, rheumatoid
arthritis, and multiple sclerosis [105,106]. Th17 cells have also been reported to infiltrate
into tumor tissues of various cancers, and the infiltration of Th17 cells is associated with
both better and poor clinical outcomes [107,108]. Thus, Th17 cells are now considered to
have both pro-tumor and anti-tumor activities (Figure 2) [109].
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Figure 2. Roles of Th17 cells in tumor immunity. Th17 cells have both pro-tumor and anti-tumor
activities in tumor immunity. IL-17A induces the production of angiogenic factors such as VEGF,
PGE2, CXCL1, and NO from tumor cells and fibroblasts, leading to increase in angiogenesis. IL-17A
also enhances the infiltration of MDSCs into tumor tissues. On the other hand, Th17 cells can directly
induce tumor-specific CTLs via IL-2 production and MHC class I molecule expression in the lymph
node. IL-17A also induces NK cells to express natural cytotoxicity receptor, perforin, TNF, and
IFN-γ, and macrophages to express IL-1, IL-6, IL-12, and TNF. Furthermore, IL-17A induces the
production of CXCL9 and CXCL10 in tumor cells and CCL20 in macrophages. These chemokines
recruit CXCR3-expressing CTLs and CCR6-expressing immature DCs, respectively. In addition,
IL-17F, IL-21, and IL-22 inhibit angiogenesis.

5.1. Pro-Tumor Activity

A number of studies have shown the involvement of Th17 cells in tumor progres-
sion using several murine cancer models [110–112]. In humans, the infiltration of Th17
cells into tumor tissues correlates with poor clinical outcomes in cancers such as colon
cancer, gastric carcinoma, hepatocellular carcinoma, non-small cell lung cancer, and pan-
creatic cancer [113–117]. While IL-17A-overexpressing murine fibrosarcoma and colon
adenocarcinoma showed enhanced tumor growth with increased vascular density, IL-17A
was shown to induce the production of various angiogenic factors including vascular
endothelial growth factor (VEGF), prostaglandin E2, CXCL1, and nitric oxide by tumor
cells and fibroblasts [118,119]. Consistently, it has been reported that the expression of
IL-17A correlates with vascular density in the tumor tissues of various cancers such as
colon cancer, gastric carcinoma, hepatocellular carcinoma, lung cancer, pancreatic cancer,
and breast cancer [115]. IL-17A has also been shown to enhance the infiltration of MDSCs
into tumor tissues and activate their immunosuppressive activity [120,121]. IL-17 has also
been found to directly activate oncogenic pathways such as mitogen-activated protein
kinase, nuclear factor-κB (NF-κB), and activator protein-1 (AP-1) signals, and to promote
cell growth in gastric cancer and glioblastoma cell lines via IL-17 receptor [122,123]. In
addition, Th17 cells express the cell surface ectonucleotidases CD39 and CD73 that generate
adenosine, a well-known immunosuppressive mediator, from extracellular ATP derived
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from dying cells [124]. Adenosine inhibits proliferation and function of effector T cells via
the adenosine A2A receptor [125].

Th17 cells express CCR4 and CCR6, which are considered to be involved in their
recruitment into the tumor microenvironment [46,93,126,127]. Indeed, it has been re-
ported that the expression levels of CCL17 and CCL22 are elevated in patients with
esophageal squamous cell carcinoma and malignant ascites with increased infiltration
of CCR4-expressing Th17 cells [128,129]. In addition, the expression levels of CCL20 have
also been reported to be frequently elevated in tumor tissues of various types of cancer and
to correlate with Th17 cell infiltration [127].

5.2. Anti-Tumor Activity

Although tumor infiltration of Th17 cells has been shown to correlate with poor
clinical outcomes in some cancers [113–117], their infiltration has also been described to
correlate with better overall survival in various cancers such as breast cancer, cervical
carcinoma, esophageal squamous cell carcinoma, lung cancer, nasopharyngeal carcinoma,
ovarian cancer, prostate cancer, renal cell carcinoma, and small cell lung cancer [130–138].
Conversely, reduced Th17 cells in ascitic fluid have been reported to correlate with poor
clinical outcomes in ovarian cancer [139]. Furthermore, IL-17A-deficient mice exhibited
enhanced tumor growth and lung metastasis in murine colon cancer and melanoma mod-
els [140,141]. Recent studies have further shown that Th17 cells are capable of directly
inducing tumor-specific CTLs via IL-2 production and MHC class I expression in a murine
melanoma model [141,142]. In adoptive transfer experiments, Th17 cells induced tumor-
specific CTLs and suppressed tumor growth more efficiently than Th1 cells in a murine
melanoma model [140,141]. Recent studies have also shown that the anti-tumor effect
of Th17 cells requires IFN-γ-expressing cytotoxic CD8+ T cells in murine colon cancer,
myeloma, and mastocytoma models [140,143]. Thus, Th17 cells may play an important role
in the induction of tumor-specific CTL responses in certain types of cancer.

It has been reported that IL-17 enhances the expression of natural cytotoxicity recep-
tors, perforin, TNF, and IFN-γ in NK cells and enhances the expression of IL-1, IL-6, IL-12,
and TNF in macrophages [144–146]. In patients with ovarian cancer, IL-17 derived from
Th17 cells has been shown to induce the production of CXCL9 and CXCL10 by tumor
cells and tumor infiltrated macrophages, which recruits CXCR3-expressing CTLs and NK
cells into tumor tissues [139]. Furthermore, Th17 cells have been shown to induce the
production of CCL20 in tumor tissues, which recruits CCR6-expressing immature DCs
to tumor tissues in a murine melanoma model. Consequently, tumor antigen-captured
DCs migrate to draining lymph nodes and induce tumor-specific T cell responses [141].
While IL-17A promotes angiogenesis by increasing the production of VEGF, other Th17 cell
derived cytokines such as IL-17F, IL-21, and IL-22 have been shown to have anti-angiogenic
activities [147–149]. It has also been reported that IL-17 activates the caspase-dependent
apoptosis signal in a breast cancer cell line [150].

As described above, Th17 cells predominantly express CCR4 and CCR6. Previ-
ously, we have shown that DCs in regional lymph nodes produce CCL22 and attract
CCR4-expressing Th17 to enhance DC-Th17 interactions [46,85]. This promotes the expan-
sion of Th17 cells and subsequent induction of CTLs in murine melanoma and psoriasis
models [13,14]. Thus, in certain types of cancer, CCR4 may play a role in anti-tumor immu-
nity not only by recruiting Th17 cells into tumor tissues but also by promoting Th17 cell
expansion in the draining lymph nodes with subsequent Th17-mediated CTL induction.
On the other hand, although CCR6 is a major trafficking receptor for Th17 cells and Treg
cells [46,85], CCR6-deficient mice did not show any abnormalities in Th17 and Treg cell
expansions in the same melanoma model [13]. Thus, CCR6 may be primarily involved in
the recruitment of Th17 cells and Treg cells into tumor tissues.
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6. Treg Cell

Treg cells suppress immune responses under physiological and pathological condi-
tions [151–153]. Numerous studies have shown that Treg cells inhibit the activation and pro-
liferation of effector T cells and DCs, and play the major role in tumor escape from host im-
munosurveillance [151–153]. In the tumor microenvironment, infiltrated Treg cells secrete
several immunosuppressive cytokines such as IL-10, TGF-β, and IL-35, which suppress the
induction and activation of tumor-specific effector T cells (Figure 3) [152,153]. Furthermore,
IL-10 and IL-35 derived from Treg cells promote the exhaustion of CD8+ tumor-infiltrating
lymphocytes [154]. Treg cells also express cytotoxic T-lymphocyte antigen-4 (CTLA-4), a T
cell inhibitory molecule, on their cell surface. CTLA-4 binds to costimulatory molecules
CD80 and CD86 on DCs and thus blocks their binding to CD28 on T cells, resulting in
inhibition of the costimulatory signals necessary for the induction of tumor-specific T
cell responses [155]. Treg cells also express lymphocyte activation gene 3 (LAG-3), which
inhibits the induction of tumor-specific T cell responses by suppressing DC activation via
interaction with MHC class II [156,157]. Recently, cell metabolism has also been reported
to be involved in the immunosuppressive mechanisms of Treg cells. While apoptotic
Treg cells are a major source of ATP in the tumor microenvironment [158], Treg cells also
express CD39 and CD73 and thus generate a large amount of adenosine from ATP in the
tumor microenvironment, which inhibits the function and proliferation of effector T cells
via the adenosine A2A receptor [125]. Treg cells also enhance the differentiation and im-
munosuppressive functions of MDSCs via the production of TGF-β [159]. In turn, MDSCs
enhance the proliferation of Treg cells in the draining lymph nodes via the production of
TGF-β [160].
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tumor cells, and cancer-associated fibroblasts secrete CCL17 and/or CCL22, and recruit CCR4-
expressing Treg cells into tumor tissues. Infiltrated Treg cells secret immunosuppressive cytokines
such as IL-10, TGF-β, and IL-35. These cytokines suppress the activation and induction of tumor-
specific T cell responses and induce T cell exhaustion. TGF-β also enhances the differentiation and
immunosuppressive function of MDSCs. Furthermore, adenosine is generated from ATP derived
from apoptotic Treg cells and inhibits the function and proliferation of effector T cells. Treg cells also
inhibit the costimulatory signals of DCs to induce tumor-specific T cell responses by the CTLA-4-
CD80/CD86 interaction.
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Treg cells are known to express various chemokine receptors, including CCR4, CCR5,
CCR6, CCR8, CCR10, and CXCR3 [46,85,93,161]. Among them, CCR4 is the most well char-
acterized trafficking receptor for Treg recruitment to the tumor microenvironment [3,61,161].
Many studies have shown that CCL17 and CCL22 are highly expressed in various tumor
tissues including lung cancer, colorectal cancer, gastric cancer, breast cancer, and ovar-
ian cancer [61,162,163]. In the tumor tissues, CCL17 and CCL22 are mainly secreted by
macrophages and tumor cells [164–168]. CCL17 is also secreted by immunosuppressive
tumor-associated neutrophils (TANs) and cancer-associated fibroblasts [169–171]. Consis-
tently, it has been reported that the increased expression of CCL17 and CCL22 correlates
with the infiltration of CCR4-expressing Treg cells and poor clinical outcomes in gastric
cancer, breast cancer, and oral tongue squamous cell carcinoma (Table 1) [62,162,172]. In
this regard, mogamulizumab, an anti-CCR4 monoclonal antibody, was recently developed
for the treatment of CCR4-expressing adult T-cell leukemia/lymphoma [93]. The moga-
mulizumab treatment was also shown to efficiently deplete CCR4-expressing Treg cells
and to increase the number of tumor-specific CD8+ T cells in the blood of patients with
adult T-cell leukemia/lymphoma [173,174]. It was further shown that a CCR4 antago-
nist CCR4-351 inhibited Treg cell recruitment into tumor tissues in mice bearing murine
pancreatic and colon cancers, and augmented tumor-specific immune responses [63]. In
addition, the combination treatment of another CCR4 antagonist piperidinyl-azetidines
and immune checkpoint inhibitors, such as anti-PD-L1 and CTLA-4 antibodies, efficiently
augmented tumor-specific immune responses [175]. We have also shown that co-injection
of compound 22, a CCR4 antagonist, with cancer vaccines inhibits Treg cell recruitment
into vaccination sites and Treg-mediated DC suppression, resulting in enhanced induction
of tumor-specific CTLs in a murine melanoma model [176].

Antigen-captured DCs are known to abundantly secrete CCL22 and CCL17. Further-
more, GM-CSF derived from T cells is a potent inducer of CCL22 expression by DCs in the
lymph nodes [177]. Accordingly, the CCR4 axis plays an important role in the expansion
of CCR4-expressing T cells by mediating their interactions with DCs [46,178]. Indeed, it
has been reported that CCL22 secreted from DCs promotes the interactions of DCs and
CCR4-expressing Treg cells, leading to the expansion of Treg cells in the lymph nodes [12].
Thus, the CCR4 axis may be involved in Treg cell expansion in the draining lymph nodes
and Treg-mediated DC suppression in the tumor microenvironment.

CCR6 is broadly expressed on many types of immune cells, including immature DCs,
B cells, effector/memory T cells, NK cells, and NKT cells [46,85]. CCR6 is also highly ex-
pressed by a fraction of Treg cells [179]. Its ligand CCL20 is broadly produced by epithelial
cells, endothelial cells, and several immune cells such as Th17 cells, B cells, NK cells, and
neutrophils [127,180,181]. The expression of CCL20 has been reported to be increased in
tumor tissues of many types of cancer including breast cancer, colon cancer, skin cancer,
oral cancer, and prostate cancer [127,182]. CCL20 is also frequently expressed by various
types of cancer including hepatocellular carcinoma, breast cancer, colon cancer, pancreatic
cancer, prostate cancer, lung cancer, and renal cell carcinoma [127,180,181]. Furthermore,
the infiltration of CCR6-expressing Treg cells is confirmed to correlate with poor clinical
outcomes in colorectal cancer, non-small cell lung cancer, oral squamous cell carcinoma,
and esophageal squamous cell carcinoma (Table 1) [64–67]. Thus, the CCL20-CCR6 axis
may have a pro-tumor activity by recruiting Treg cells to the tumor microenvironment.

CCR8 is expressed by a fraction of Treg cells, and its ligand CCL1 is capable of inducing
efficient migration of CCR8-expressing Treg cells [183,184]. It was also reported that CCL1
was produced by Treg cells in a murine experimental autoimmune encephalomyelitis
model [185]. Of note, CCL1 was shown to induce the expression of CCR8, Foxp3, CD39,
granzyme B, and IL-10 in Treg cells [185]. Furthermore, the infiltration of CCR8-expressing
Treg cells in the tumor microenvironment correlates with poor clinical outcomes in breast
cancer (Table 1) [51]. Thus, the CCL1-CCR8 axis may recruit Treg cells and also maintain
Treg cell phenotype and function.
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In addition, it has been reported that hypoxia induces the expression of CCL28, a
CCR10 ligand, by tumor cells of ovarian and liver cancers, which recruits CCR10-expressing
Treg cells into tumor tissues [68,69]. Furthermore, CCR10-expressing Treg cells secrete
VEGF and contribute to angiogenesis. In consistence with these findings, the infiltration
of CCR10-expressing Treg cells correlates with poor clinical outcomes in these cancers
(Table 1) [68,69]. Thus, the CCL28-CCR10 axis may have significant pro-tumor activities in
the hypoxic tumor microenvironment by inducing angiogenesis via VEGF and attracting
CCR10-expressing Treg cells.

7. TAM, MDSC, and TAN

TAMs are known to be abundantly present in the tumor microenvironment [6,7].
Many studies have shown that TAMs have a multiple role in tumor progression. TAMs
enhance immunosuppression, tumor cell growth, metastasis, and angiogenesis by inducing
the expression of cytokines, chemokines, and growth factors [186,187]. Consistently, TAM
infiltration into the tumor microenvironment correlates with poor prognosis in most solid
cancers [188,189]. Although TAMs express various chemokine receptors, the CCL2-CCR2
axis plays a dominant role in their recruitment into tumor tissues [10,52]. In addition,
TAMs also utilize CCR5 and CXCR4 for their recruitment in some types of cancer [10,52].
MDSCs are also abundantly present in the tumor microenvironment [6,7]. MDSCs are a
heterogenous population of immune cells and can be broadly divided into two categories:
monocytic-MDSCs and polymorphonuclear-MDSCs [6,7]. Both MDSCs contribute to tumor
progression by enhancing immunosuppression, angiogenesis, and epithelial–mesenchymal
transition [6,7]. Monocytic-MDSCs indirectly and nonspecifically inhibit the activity of
many types of effector cells by producing immunosuppressive mediators such as reactive
nitrogen species, inducible nitric oxide synthase and arginase [190,191]. Furthermore,
infiltrated monocytic-MDSCs have been shown to be able to differentiate into TAMs in
the tumor microenvironment [190,191]. On the other hand, polymorphonuclear-MDSCs
directly interact with CD8+ T cells and inhibit antigen-specific CD8+ T cell responses by pro-
ducing reactive oxygen species in the draining lymph nodes [190,191]. Monocytic-MDSCs
and polymorphonuclear-MDSCs utilize similar chemokine receptors as monocytes and
neutrophils, respectively. Monocytic-MDSCs express CCR2 and CCR1/CCR5, and can be re-
cruited into tumor tissues by CC chemokines such as CCL2 and CCL5, respectively [79,192].
On the other hand, polymorphonuclear-MDSCs express CXCR2 and can be recruited into
tumor tissues by CXC chemokines such as CXCL8 [70,190,193]. MDSCs also express CXCR4
and can be recruited into tumor tissues by CXCL12 [70,190,193]. TANs have the same devel-
opmental origin and similar phenotypical features as polymorphonuclear-MDSCs [194,195].
TANs have pro-tumor activity by producing immunosuppressive soluble mediators such as
TGF-β and arginase [194,195]. Similar to normal neutrophils, TANs utilize the CXCR2 axis
for their recruitment [196]. In addition, TAMs, monocytic-MDSCs, polymorphonuclear-
MDSCs, and TANs can produce the CCR4 ligands CCL17 and CCL22 in tumor tissues,
contributing to tumor progression by recruiting CCR4-expressing Treg cells [3].

8. The Chemokine Superfamily as Therapeutic Targets in Cancer Immunotherapy

Although the chemokine superfamily have long been regarded as highly promising
therapeutic targets for drug development, currently only three drugs are approved: Maravi-
roc, a small-molecule CCR5 antagonist for blocking infection by CCR5-tropic HIV-1; Plerix-
afor, a small-molecule CXCR4 antagonist for the mobilization of hematopoietic stem cells
from the bone marrow for transplantation in patients with non-Hodgkin’s lymphoma and
multiple myeloma; Mogamulizumab, a fully humanized and glyco-engineered monoclonal
anti-CCR4 antibody for patients with aggressive/refractory adult T cell leukemia/lymphoma
(ATLL) and cutaneous T cell lymphomas (CTCLs) [93,173,197]. However, the recent impres-
sive therapeutic success of immune checkpoint inhibitors in cancer immunotherapy have
opened the possibility of clinical application of drugs targeting chemokines and chemokine
receptors as an adjunct therapeutic drug for cancer immunotherapy or chemotherapy. In-
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deed, as summarized in a recent review, a number of preclinical studies have shown signif-
icant therapeutic effects of drugs targeting chemokine receptors in cancer immunotherapy
of various murine cancer models, and some of these approaches are currently being tested
in clinical trials [198,199]. Here, we highlight the recent development in preclinical studies
(Table 2) and clinical studies (Table 3) involving the chemokine superfamily.

Table 2. Therapeutic effects of chemokine receptor inhibitors in preclinical studies.

Target Inhibitor Tumor Type Outcome Reference

CCR2

CCX872 + anti-PD-1 Murine glioma model
Decrease MDSC

Enhance anti-PD-1 effect
Antitumor effect

[200]

RS504393 + anti-PD-1 Murine breast cancer and
melanoma models

Decrease TAM
Antitumor effect [201]

CCR4

Mogamulizumab + Piroxicam Canine bladder cancer
model

Decrease Treg cell
Antitumor effect [202]

CCR4-351 + anti-CTLA-4 or
anti-4-1BB

Murine pancreatic cancer
model

Decrease Treg cell
Antitumor effect [63]

CCR5 mCCR5–Ig fusion antibody Murine melanoma model Decrease MDSC
Antitumor effect [203]

CCR8

JTX-1811 Multiple murine cancer
models

Deplete tumor Treg cell but not
normal tissue Treg cell

Antitumor effect
[204]

SRF114 In vitro study Deplete Treg cell [205]

HBM1022 alone or +
Pembrolizumab

Multiple murine cancer
models

Deplete Treg cell
Antitumor effect [206]

FPA157 Murine colon cancer
models

Deplete Treg cell
Antitumor effect [207]

25B3 Multiple murine cancer
models

Deplete Treg cell
Antitumor effect [208]

CXCR2 SB225002 + Cisplatin Murine lung cancer model

Decrease neutrophil
Enhance anti-tumor CD8+ T cell

activation
Antitumor effect

[196]

Mogamulizumab (anti-CCR4); Pembrolizumab (anti-PD-1).

Table 3. Therapeutic effects of chemokine receptor inhibitors in clinical trials.

Target Inhibitor Tumor type Outcome Reference

CCR2 PF-04136309 + nab-Paclitaxel +
Gemcitabine

Untreated metastatic
pancreatic ductal
adenocarcinoma

Phase Ib/II
Enhanced pulmonary toxicity

No enhanced antitumor efficacy

[209],
NCT02732938

CCR4

FLX475 + Pembrolizumab Breast cancer Phase I/II NCT03674567

Mogamulizumab +
Utomilumab Advanced solid tumors Phase Ib

Safe and tolerable
[210],

NCT02444793

Mogamulizumab +
Durvalumab or Tremelimumab Advanced solid tumors

Phase I
Depletion of Treg cells

No enhanced antitumor efficacy

[211],
NCT02301130

Mogamulizumab + Nivolumab Advanced or metastatic
solid tumors

Phase I
Acceptable safety profile

Depletion of Treg cells
Increases in CD8+ T

cells;Potentially effective

[212],
NCT02476123
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Table 3. Cont.

Target Inhibitor Tumor type Outcome Reference

CXCR4

AMD3100
Microsatellite stable

pancreatic or colorectal
cancer

Phase I
Immunosuppression

[213],
NCT02179970

BL-8040 + Pembrolizumab +
Chemotherapy

Metastatic pancreatic
ductal adenocarcinoma

Phase II
Depletion of MDSCs and Treg cells
Increases in effector CD8+ T cells
Enhanced effect of chemotherapy

[214],
NCT02826486

Balixafortide + Eribulin Metastatic breast cancer Phase I
Safe and tolerable

[215],
NCT01837095

LY2510924 + Durvalumab Advanced refractory solid
tumor

Phase Ia
Safe and tolerable

[216],
NCT02737072

Pembrolizumab (anti-PD-1); Mogamulizumab (anti-CCR4); Utomilumab (anti-4-1BB); Durvalumab (anti-PD-L1); Tremelimumab (anti-
CTLA-4); Nivolumab (anti-PD-1).

8.1. CXCR3

CXCR3 plays a major role in tissue recruitment of Th1 cells, CTLs, and NK cells.
Accordingly, enhanced production of the CXCR3 ligands in tumor tissues is considered to
be beneficial in cancer patients [25,26]. As described in Section 3, CXCL9 production by
cDC1s is negatively regulated by TIM-3 on their cell surface, and clinical trials are currently
being conducted for several anti-TIM-3 monoclonal antibodies such as cobolimab, MBG453,
LY3321367, and BMS986258, aiming at the upregulation of CXCL9 expression in the tumor
microenvironment [217]. Some clinically available anticancer drugs including ipilimumab
(an anti-CTLA-4), doxorubicin, and dacarbazine have also been shown to upregulate the
expression levels of CXCL9, CXCL10, and CXCL11 in the tumor tissues of patients with
melanoma and breast cancer, possibly contributing to their therapeutic effects [218–220].

8.2. CCR4 and CCR8

CCR4 is the major trafficking receptors for Treg cells and has been implicated in their
recruitment into the tumor microenvironment [164–168]. In this context, several CCR4-
targeted cancer immunotherapies have been performed in both animal and human studies,
aiming at inhibiting Treg cell-mediated immune suppression [174,202,221]. In particular,
mogamulizumab, an anti-CCR4 monoclonal antibody with a potent antibody-dependent
cellular cytotoxicity (ADCC) activity, has been developed and approved for the treatment
of CCR4-expressing T cell malignancies such as ATLL and CTCLs with great success [173].
Of note, mogamulizumab treatment has also shown to efficiently deplete Treg cells in
patients with ATLL and CTCLs [173] and to increase tumor-specific CD8+ T cells in the
blood of patients with ATLL [174,202]. Thus, blocking CCR4 by mogamulizumab has
been regarded as a promising strategy to enhance tumor-specific immune responses by
depleting Treg cells. Accordingly, several clinical trials have been performed to test the
efficacy of combination of mogamulizumab (KW-0761) and one of the immune checkpoint
inhibitors in patients with solid tumors. Although it has been confirmed that Treg cells
in the peripheral blood and tumor tissues are efficiently depleted in patients treated
with mogamulizumab, no synergistic enhancement of the therapeutic effect of immune
checkpoint inhibitors by the combination with mogamulizumab has been observed so
far [173]. Importantly, CCR4 is also expressed by other T cell subsets including Th17
cells. While initial studies have suggested protumor activities of Th17 cells, recent studies
have demonstrated an important role of Th17 in the induction of CTLs [140–143]. Our
previous studies have further shown that CCR4 plays an essential role in Th17 expansion
and subsequent CTL induction by promoting DC-Th17 interactions in the regional lymph
nodes [13,14]. Thus, CCR4 may also substantially contribute to anti-tumor immunity
through the expansion of Th17 cells and subsequent induction of tumor-specific CTLs in
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certain types of cancer. Accordingly, CCR4-targeted cancer immunotherapy aiming at
Treg depletion may also suppress anti-tumor immunity by depleting other T cell subsets
including Th17 cells. Furthermore, patients treated with mogamulizumab often experience
severe adverse events such as skin rashes most probably due to subclinical autoimmune
responses unleashed by Treg depletion and also a profound lymphopenia, often resulting
in opportunistic infections [173]. Thus, although the highly enhanced ADCC activity of
mogamulizumab is valuable for the efficient elimination of CCR4-expressing malignant T
cells, such a potent ADCC activity may not be necessary for the functional depletion of
Treg cells in patients with solid tumors [173]. Thus, it remains to be seen whether other
anti-CCR4 monoclonal antibodies or small molecular CCR4 antagonists may have better
effects on Treg suppression in solid tumors [222].

CCR8 is also expressed by Treg cells and its expression is relatively selective for Treg
cells and minimal in other immune cells [183,184]. CCR8-expressing Treg cells are also
considered to have augmented suppressor activity [185,223]. Indeed, CCR8 has been
shown to play a pivotal role in tumor progression by regulating the localization and
function of Treg cells in murine cancer models [185]. Recent preclinical studies have
further demonstrated that anti-CCR8 antibodies efficiently deplete Treg cells and suppress
tumor growth in murine colon cancer and bladder carcinoma models [40,41]. Accordingly,
several anti-CCR8 humanized monoclonal antibodies, such as SRF114, HBM1022, and
FPA157, have been developed and shown to deplete Treg cells by ADCC [183,184]. Thus,
the treatment with anti-CCR8 may provide a new option for Treg depletion in cancer
immunotherapy without major side effects.

8.3. CXCR2 and CXCR4

CXCR2 has been shown to play a major role in tumor progression by recruiting
polymorphonuclear type MDSCs and TANs into the tumor microenvironment in murine
models of cancers such as colon cancer, pancreatic cancer, head and neck cancer, and
melanoma [196,224–226]. A recent study has shown that inhibition of CXCR2 using
SB225002, a CXCR2 inhibitor, significantly decreases infiltration of TANs in tumor tis-
sues and suppresses tumor growth in a murine lung cancer model [196]. However, CXCR2
is a major trafficking receptor for neutrophils and thus blocking CXCR2 may increase
susceptibility to bacterial infection. Regarding this, however, it has been reported that in
humans, AZD5069, another CXCR2 inhibitor, shows little adverse effect on the mobiliza-
tion of neutrophils from the bone marrow or on their phagocytosis and oxidative burst in
response to bacterial pathogens [227]. Thus, blocking infiltration of polymorphonuclear-
MDSCs and TANs in the tumor microenvironment by CXCR2 inhibitors may provide a
safe and promising treatment option in cancer immunotherapy.

CXCR4 is another major trafficking receptor for MDSCs and several clinical trials
of CXCR4 inhibitors have been conducted for the treatment of some cancers [213–216].
In particular, BL-8040, a CXCR4 inhibitor, in combination with anti-PD-1 monoclonal
antibody or chemotherapy has been shown to efficiently decrease MDSCs and increase
CD8+ effector T cells in tumor tissues in patients with pancreatic cancer, resulting in
better clinical outcomes [214]. Although CXCR4 is widely expressed not only by immune
cells but also various tissue cells including tumor cells and stromal cells [46,85], recent
clinical studies have shown that the CXCR4 inhibitors including BL-8040, balixafortide,
and LY2510924 are safe and tolerable in humans [214–216]. Thus, CXCR4 inhibitors may
also provide a promising approach for suppression of MDSCs in cancer immunotherapy.

8.4. CCR2 and CCR5

CCR2 is a major traffic receptor for TAMs. CCR2 blocking has been shown to suppress
tumor growth in murine liver cancer and pancreatic ductal adenocarcinoma models [228].
However, CCR2 is also known to be widely expressed by immune cells and in particular
by monocytes and macrophages [229]. Furthermore, a recent clinical study of PF-04136309,
a CCR2 inhibitor, in combination with nab-paclitaxel and gemcitabine has found severe
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adverse effects by this regimen including pulmonary toxicity in patients with pancreatic
ductal adenocarcinoma [209].

CCR5 is also expressed by TAMs and MDSCs in the tumor microenvironment [52,79].
Since CCR5 inhibitors are clinically used for prevention of HIV-1 infection, the re-tasking of
CCR5 inhibitors for cancer immunotherapy may be an interesting approach [230]. However,
since CCR5 is also expressed by Th1 cells, CTLs, and NK cells, CCR5 blockade may also
suppress anti-tumor immunity mediated by these effector cells.

8.5. XCR1

cDC1s are now known to be the most efficient DC subset for the induction of CTLs not only
to intracellular pathogens but also to extracellular antigens via cross-presentation [3,16,17,19].
Furthermore, cDC1s uniquely express XCR1, while its ligand XCL1 is mainly produced by
activated CD8+ T cells and NK cells [22]. Thus, taking advantage of this highly selective
expression of XCR1 on cDC1s and their well-known ability for cross-presentation, many
research groups have tested target delivery of vaccine antigens by using XCL1-fusion
proteins with substantial success [22]. On the other hand, we considered using XCL1
itself as an adjuvant to attract XCR1-expressing cDC1s into the injection site of cancer
vaccines for efficient antigen delivery to cDC1s. To test this possibility, we first generated
a stabilized form of XCL1 by introducing a second C-C bond, since the natural XCL1 is a
weak chemoattractant because of its unstable structure due to the lack of the second and
forth cysteine residues conserved in other chemokines [231]. We have shown that the stable
form of XCL1 is highly chemotactic and efficiently induces antigen-specific CTL responses
by attracting cDC1s when co-injected with cancer vaccines [232,233]. Thus, the XCL1-XCR1
axis may provide a new opportunity for efficient induction of anti-tumor CTLs by cancer
vaccines [22].

9. Conclusions

As described in this article, a diverse array of immune cells is now known to be
involved in host tumor immunity and infiltrates into tumor tissues, generating a highly
complex cell population in the tumor microenvironment [198]. Immune cells can have
either anti-tumor or pro-tumor activities depending on their effector functions. These
cells also express selective but often overlapping chemokine receptors and infiltrate into
tumor tissues via chemokines produced by cells including tumor cells, infiltrating immune
cells, and stromal cells [198]. To make matters more complex, tumor cells often express
several chemokine receptors, and the corresponding chemokines are potentially involved
in tumor cell functions such as proliferation, metastasis, and stemness [10,234]. Further-
more, it is known that some chemokines are positively and others negatively involved
in angiogenesis [235]. Thus, targeting chemokines or chemokine receptors for cancer im-
munotherapy is an attractive but highly challenging task. However, after the recent success
of immune checkpoint inhibitors in cancer immunotherapy, drugs targeting chemokines or
chemokine receptors may have a new possibility as an adjunct drug for the main cancer
immunotherapy. This is partly because the immune checkpoint inhibitors are beneficial
in only a fraction of patients and one of the mechanisms of such primary resistance is
considered to be the presence of potent immunosuppressive effector cells such as Treg
cells and MDSCs in the tumor microenvironment. Thus, drugs targeting chemokines or
chemokine receptors may provide a new tool to functionally suppress immunosuppressive
cells. Indeed, some recent preclinical (Table 2) and clinical studies (Table 3) with drugs
blocking chemokine receptors, such as CCR4, CCR8, CXCR2, and CXCR4, have shown
some promising results and warrant further studies [196,214]. Collectively, it is hoped that
drugs targeting the members of the chemokine superfamily may have a successful clinical
application in cancer immunotherapy in near future.
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