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Simple Summary: Cancer is the deadliest disease affecting humans, with more than 14 million cases and
8 million deaths. A successful therapeutic interception of cancer is urgently required. We have reviewed the
immunologic involvement of various types of cancers that are well substantiated in the existing literature.
Interestingly, multiple signalling pathways of the immune system could be modulated with miRNAs
(noncoding RNAs of 22 nucleotides), such as miR-19a-3p, which induces macrophage polarization and
the amelioration of cancer progression and metastasis. Developing a specific profile of miRNA within
immune cells could also help in diagnosis and treatment. miRNA-based immune therapeutics that help to
reduce cancer immune escape hold possibilities for developing cancer chemotherapy.

Abstract: In the last few decades, carcinogenesis has been extensively explored and substantial research
has identified immunogenic involvement in various types of cancers. As a result, immune checkpoint
blockers and other immune-based therapies were developed as novel immunotherapeutic strategies.
However, despite being a promising therapeutic option, immunotherapy has significant constraints such
as a high cost of treatment, unpredictable toxicity, and clinical outcomes. miRNAs are non-coding, small
RNAs actively involved in modulating the immune system’s multiple signalling pathways by binding
to the 3′-UTR of target genes. miRNAs possess a unique advantage in modulating multiple targets
of either the same or different signalling pathways. Therefore, miRNA follows a ‘one drug multiple
target’ hypothesis. Attempts are made to explore the therapeutic promise of miRNAs in cancer so that
it can be transported from bench to bedside for successful immunotherapeutic results. Therefore, in the
current manuscript, we discussed, in detail, the mechanism and role of miRNAs in different types of
cancers relating to the immune system, its diagnostic and therapeutic aspect, the effect on immune escape,
immune-checkpoint molecules, and the tumour microenvironment. We have also discussed the existing
limitations, clinical success and the prospective use of miRNAs in cancer.

Keywords: miRNA mimetics; immune escape; microRNAs; immunotherapy; cancer; immune escape;
immune-checkpoint molecules; tumour microenvironment
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1. Introduction

According to the World Cancer report 2020, Cancer is the 1st –2nd cause of premature
death in 134 out of 183 countries and ranks as the 3rd–4th cause in 45 of the remaining
countries. (WHO World cancer report 2020). It has been estimated that by 2030, cancer
prevalence might increase to around 26 million and will lead to 17 million deaths [1].
Around 1.9 million people were diagnosed with cancers in the USA alone, which were
statistically expected to lead to 0.61M deaths in 2021 [2,3]. The disease presents serious
threats and challenges due to its ability to cause tissue damage and difficulties in diagnosis
and prospective treatment [4–6]. Cancer leads to a devasting effect on patients’ quality
of life and leads to a devasting effect on patients’ quality of life and imposes a serious
economic burden on nations [1]. Considering the aetiology of tumorigenesis, a successive
mutation in response to internal as well as external stimuli in genes or DNA leads to
abnormal changes in the cell functions and gradually causes an imbalance between cell
division and apoptosis, leading to the initiation and progression of tumorigenesis. Various
factors such as smoking (carcinogen), environmentally hazardous chemicals, genetic factors,
viruses, bacteria, and radiation influence the cytoplasm and nucleus, ultimately causing
genetic disorders and gene mutations, leading to cancer [7–10].

Currently, cancer treatment relies on various factors such as phenotype, tumour size,
tumor volume, localization, stage of spread, mutagenic analysis, coexisting disease con-
dition, the physical status of patients and any possible side of anti-cancer drugs. It also
depends on treatment approaches of combining two or more therapies such as chemother-
apy, radiotherapy, hormone therapy, etc. However, these approaches are not sufficient
to treat cancer in the advanced stage, ultimately leading to metastasis and death [11].
The available therapeutic regimen leads to serious adverse effects with economic burden
and poor patients’ quality of life. Studies have shown the involvement of various altered
signalling molecules and pathways in the pathogenesis of tumors. In the past, several
significant achievements in the field of research and development of anti-cancer drugs and
their derivatives have been made, especially in treatment and diagnosis [12–15]. Apart
from the role of drugs in the treatment of cancer, a timely diagnosis also plays a pivotal
role in the management of various types of tumours. With the advancement in techniques,
various cellular and molecular diagnostic markers have been developed, but cancer’s com-
plexity presents a significant challenge in determining the accurate diagnosis [16,17]. The
“omics” revolution has highlighted the complex nature of cancer signalling pathways, types
of molecules, and cancer alterations, due to the greater capacity of noncoding MicroRNAs
(miRNAs) to alter expression. Various studies have reported miRNAs’ ability to express
themselves differentially in multiple types of cancer [18–20].

The modulation of miRNA expression is reported to be related to oncogenic miRNA
inhibition and the substitution of tumour-suppressive miRNAs and, hence, have been
found to be a perfect tool for cancer therapy improvement. The association of miRNA ex-
pressions with cancer and other problems has attracted interest in developing a biomarker
for diagnosis, detection, and treatment [21–23]. miRNAs have been reported to play a pro-
tective role as well as a pathogenic role in carcinogenesis. Therefore, it becomes important
to selectively identify the exact role of miRNA and, accordingly, miRNA-based therapeutics
can be designed and developed. Research is currently underway concerning the develop-
ment of miRNA-based diagnostic and therapeutic tools for the timely management and
treatment of cancer. Thus, the present review mainly focuses on extracellular miRNA’s
biogenesis, functions, and role as a biomarker in diagnosing and treating various cancers.

2. miRNAs—Biogenesis, Biochemistry and Functions

It has been reported that DNA acts as an immediate precursor to miRNAs. Initially,
miRNAs (pri-miRNAs) are primary are produced and later converted into precursor miR-
NAs (pre-miRNAs) then mature miRNAs [17,24]. This process begins with the biogenesis
of canonical miRNAs in the nucleus due to the activation of polymerase II, leading to
primary miRNA transcript (pri-miRNAs) formation outside of the genome non-coding
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fraction. These primary miRNAs are trims that are processed by a microprocessor with
an endonuclease III enzyme and binding protein (DiGeorge syndrome), liberating pre-
miRNAs hairpin-like structure [25–27]. Within pri-miRNA, DGCR8 binds to pri-miRNA at
N6- methyladenylated GGAC and other motifs, whereas Drosha cleaves to the pri-miRNA
duplex at the base of the hairpin structure of pri-miRNA to produce precursor miRNA
(pre-miRNA). These generated pre-miRNAs are carried to the cytoplasm by Exportin 5
and Ran GTPase complex and then processed by RNase III endonuclease. The direction
of the miRNA strand determines the name of the miRNA. Like 5P from the 5′ end of and
3p from the 3′ end of the pre-miRNA hairpin [28–30]. In the maturation stage, Enzyme
RNase III endonuclease in the cytoplasm, combined with TRBP and PACT proteins, break
it to produce a mature miRNA duplex. Then, the mature single-stranded miRNA (gener-
ally lower 5′ stability), along with protein (Argonaute family) Ago, are loaded together
with RNA, inducing a silencing complex after which it binds to 3′ UTRs (mRNA targets),
causing decapping and deadenylation of the mRNA transcript, thus inhibiting various
physiological functions. The unloaded miRNA strand is unwound from the guide strand,
referred to as the passenger strand [31,32]. After coupling RISC with miRNA, it silences
the posttranscriptional modification by tethering to become partially compatible with
mRNA within the 3’untranslated region found in the UTR. Binding at seed sites or at
the non-canonical seedless site of the miRNA-mRNA linkage network is complex as one
miRNA affects multiple genes. One mRNA might be targeted by numerous related or
unrelated miRNAs [33,34]. It has been reported that one miRNA complex can target almost
two hundred genes of variable functions [35]. About 60% of human genes can be targeted
by these miRNAs, once their corresponding mRNAs targets are regulated by miRNA,
influencing various pathways, including cancer [36,37].

Since the identification of tumour-suppressive miRNA gene miR-15a/miR-16-1, the
functional significance of miRNAs has been realized, and nearly 2500 miRNAs are recorded
in the database of miRBase [38]. These miRNAs are small, non-coding RNA molecules of
22nt (average) in size and are responsible for gene regulation [39], for various biological
processes and carcinogenesis [11,40]. miRNAs act as central regulators of gene expression
by acting on mRNA or its translation. They are crucial in remedying various human
ailments and cancer [41].

Several researchers have reported the location of most miRNAs’ genes at cancer-
related genomic regions known as fragile sites. The expression data of cancer cells shows
that these miRNAs are expressed by rule rather than the exception [42,43]. miRNAs play
an important role and have been reported to be involved in lung, colon, breast, and other
cancers. Most researchers have reported that miRNAs exhibit biochemical and molecular
effects by targeting multiple mRNAs, and a few of these mRNAs are present in the cellular
pathway. A few studies have reported that these mRNA were redundant and repressed the
same mRNA target. In the animal model, the link between miRNA and cancer is detected
by overexpressing miRNA features [43,44].

mRNAs functions have been categorized as homeostatic regulation of gene expression
and cellular responses robustness. These two factors play important functions by fine-
tuning translation and cell-fate decisions through complex reciprocal negative-feedback
loops. Stress requires a robust response from miRNA, which may act as switches and
help adapt to microenvironment changes [11,45]. This function can be best observed in
glioblastoma, where glucose level reduction causes a reduction of miR-451 levels. When
sufficient energy is available, the elevated level of miR-451 suppresses the cell signalling
pathway and stimulates the activation of the mammalian target of rapamycin and cell
proliferation [46,47]. Every tumour has its own miRNA sign, which can be helpful in
differentiating these from other healthy tissues and in identifying the different types
of cancer. Based on these miRNA signs, most cancers can be divided into prognostic
groups. The functions of amplification or deletion, methylation, and transcription factors
are responsible for altering the MicroRNA expression [47,48].
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2.1. Oncogenic miRNAs

Many miRNAs have been reported to be involved in various biological functions,
including gene regulation. Variations in the expression of these miRNAs were found to
be responsible for causing different diseases, including cancer. Specifically, changes in
miRNA levels with oncogenic or cancer suppression properties are related to carcinogenesis,
metastasis, and the anticancer responses to drugs and therapies. Intergenic regions between
genes possess several miRNA sequences. In some cases, miRNAs that are located close to
each other are controlled by the same promoter and play an important role in more than
one cancer by acting through various pathways. Their expression results in the formation
of a multiple–looped polycistronic sequence from which multiple mature miRNA are
synthesized [49–52]. These miRNAs are termed as “oncomirs” or “oncomiR” and regulate
the progression of the tumour (Table 1). For example, miR-21 acts as an oncogene and
suppresses TPM1 and PDCD4 (tumor genes) by downregulation in high proliferated
breast cancer [49,53,54]. Cancer is caused due to imbalances in the cell cycle. Different
mechanisms such as cell cycle regulation, detection, and damage repair control these
imbalances in regulatory pathways. Cyclins and cyclin-dependent kinases (CDKs) are
regulatory proteins and are responsible for cell progression in the cell cycle [24,53].

Several studies support the function of miRNA as tumour suppressors [55], e.g., miR-
34 represses tumour progression through epithelial-mesenchymal transition (EMT) via
EMT-transcription factors when dysregulated via the synergistic effect of the p53 tumor
suppressor gene and some important signal pathways. Several invitro studies on various
cancer cell lines found that through different signalling pathways downregulation of
the family of miR-34 can lead to colon, prostate, lung, osteosarcoma, and other types of
cancers [54–59]. Similarly, Pichiorri et al. found the overexpression of miR-106b∼25 cluster,
miR-181a and b and miR-21 in MM cell lines leading to the tumour compared to normal cell
controls thus acting as an oncogene when two miRNA cluster. In contrast, miRNA-106b,
miRNA-181a and b were found to be deregulated, thus acting as tumour suppressors [58].

Table 1. Examples of oncogenic miRNAs.

S. No. Type of Cancer miRNAs Involved References

1 Acute Myeloid Leukemia miR-196b; miR-126;
miR-9; miR-17-92 Oncogenic [59]

2 Gastric miR-421; miR-196a Oncogenic [56,57]

3 Breast miR-181a/b, miR-21
miR-34, miR-34 b/c

Oncogenic
Tumor Suppressor [60,61]

4 Non-Small Cell Lung Cancer miR-27a Oncogenic [62]

5 Renal Cell Carcinomas miR-30a/c Oncogenic [63,64]

6 Colorectal miR-34a, miR-34b, miR34b/c Tumor suppressor [65–67]

7 Prostate miR-34a, miR-34b, miR34b/c Tumor suppressor [68,69]

8 Lung miR-34a, miR-34b, miR34b/c Tumor Suppressor [70–72]

9 Liver miR-34b Tumor Suppressor [73]

10 Ostosarcoma miR-34a, miR34b, miR-192 Tumor Suppressor [74–76]

11 haematological neoplasms miR-34a, miR-34b-5p, miR-34c,
miR-34b/c Tumor Suppressor [77–79]

12 Lymphophytic leukemia miR-15/16 Tumor Suppressor [80]

2.2. miRNAs as Biomarkers

miRNAs can function as biomarkers to identify various diseases, be found in plasma,
serum, semen, and other biological fluids, and even be stable in degrading conditions [81–83].
There are two clusters or populations of circulating miRNAs, one cluster is present in vesicles
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and the other is linked with proteins. Their association with these two locations has been
contradicted by researchers who hypothesize that most circulating miRNAs are exosome
miRNAs [41,84,85].

The ceramide-dependent pathway is involved in the release of exosomal miRNAs in
response to injury or even the cell’s death. It thereby produces regulatory effects in target
cells [86]. Interleukin-4 and docosahexaenoic acid regulate the secretion of miRNAs via
exosomes. In breast cancer, interleukin-4 activation leads to the secretion of oncogenic
miRNAs. It stimulates cancer cell invasiveness whereas, docosahexaenoic acid exhibits
anticancer effects by stimulating the exosomal miRNA secretion, thereby producing tumour
angiogenesis [83,87,88]. Recent studies have reported exosome miRNAs’, such as miR-105,
role in the metastatic breast cancer cell, miR-21-3p from umbilical cord blood, in destructing
the barrier function, metastasis and the migration of fibroblasts, leading to the angiogenic
action by endothelial cells. miRNAs such as miR-342–3p and miR-1246 from oral cancer are
reported to be responsible for inducing metastasis in metastatic cancer cell line [83,89–91].

The identification of serum levels of cancer patients was performed using seven
miRNAs and found a significant reduction in serum levels of advanced stage astrocytoma’s
patients and helps in precisely distinguishing between normal and cancer patients [92,93].
Thus, circulating miRNAs possess a differential expression ability and can act as a potential
tool for screening cancer patients without harm. During the early stage, progression and
even after the metastasis stage, there abnormal changes in miRNAs levels occur. Therefore,
these miRNAs may act as potential biomarkers to differentiate tumours, formulating
treatment strategy and prove helpful in the outcomes of the treatment [94–96]. miRNAs
produce pleiotropic effects and are helpful in the diagnosis and prognosis of patient
evaluations (Table 2). Therefore, these miRNAs are recognized as chemical messenger and
regulate cellular communications [97–99].

In various published reports, a correlation between types of breast cancer was identi-
fied relating to the overexpression of miR-21, miR-155 and miR-106a and under-expression
of miR-335, miR-126 & miR-199a with the non-tumour samples [83,100,101]. Studies have
shown that miR-21 expression is not only able to distinguish between a normal and breast
cancer but can also help to differentiate a metastatic patient from a patient with locore-
gional reoccurrence [102]. A similar study reported the overexpression of miR-21, miR-155,
miR-10b in plasma samples in breast cancer patients as compared to normal control. Ad-
ditionally, the level of the miRNA mentioned above complex was reduced after different
treatment approaches [103,104].

Multiple myeloma is a cancer of the bone marrow, affecting various parts of the
body. Several studies reported that the association of the disease progression or stages
involves circulating miRNA [58], e.g., the combination of miRNA-720 and -1308 can be
helpful in distinguishing a Healthy Donor from Multiple myeloma patients. Moreover, the
association of miRNA-1246 and MiRNA-1308 can be helpful in determining monoclonal
gammopathy of undetermined significance (MGUS) from the MM condition [105]. Xu et al.
performed a meta-analysis of the 15 publications and found 7 miRNAs related to MM
patients’ survival and prognosis. The results of the study revealed that reduced miR-744,
miR-16, miR-15a, miR-25 and let-7e expression causes minimal overall survival in MM
patients while the downregulation of miR-15a, miR-25 and miR-16, and upregulation of
miR-92a were associated with shorter progression-free survival [106].
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Table 2. miRNAs biomarkers and their role in various types of cancer [11,95,99,107].

Sl. No. Type of Cancer
miRNAs Biomarkers

Predictive Prognostic Diagnostic

1 Prostate cancer miR-21 miR-20a; miR -21; miR-141 miR-141, -375; let-7c, -7e
miR-141

2 Lung cancer miR-128b miR-221; let-7a, -137; miR-372;
miR -182; miR-15b, -16

miR-16, miR-17, -19b,
miR-200 family; miR-29c,

-30c

3 Breast cancer miR-125b miR-210; miR-10b miR-21, -30a; miR-141, -145;
miR- 801

4 Ovarian cancer miR-181a,b, -213; miR-23a,
-27a; let-7g, 3p miR-200 family; miR-410, -645 miR-126, -127; miR-200 &

let-7 family; miR-21, -29a

5 Liver cancer miR-21, -200b miR-200 family; miR-21, -22, -26 miR-200c, -203, -224;
miR-222, -223

3. Innate and Adaptive Immunity

The immune system refers to various biochemical processes that protect multiple
organs from pathogenic infections, toxins, and cancerous cells [108]. Apart from the
presence of different immune organs such as the thymus and spleen, the immune system is
broadly studied under the heading: innate and adaptive immunity, where innate immunity
offers the first line of defence [109]. Innate immunity is considered antigen-independent,
affording protection within a short period but devoid of immunogenic memory [110].
However, adaptive immunity is antigen-dependent and, therefore, takes time to exert a
protective effect [111]. Additionally, adaptive immunity involves immunogenic memory
and therefore, upon the repeated exposure of the antigen, a more efficient and rapid
immunogenic response is observed [112]. Hence, innate and adaptive immunity are
complementary immunogenic mechanisms whereby a defect in one system affects the other.

Innate immunity primarily functions to recruit various immune cells (phagocytes
such as neutrophils and macrophages, natural killer cells (NK cells), dendritic cells, ba-
sophils, eosinophils, and mast cells) at the site of infection via the production of various
cytokines and chemokines [111]. Tumour Necrosis Factor-alpha (TNF-α), interleukin-6
(IL-6), interleukin-1 (IL-1), etc., are some of the commonly observed cytokines that help in
clearing the pathogens, but their dysregulated production results in inflammation [113].
Furthermore, the immune system also activates the adaptive immunogenic response via a
regulation of antigen-presenting cells (APCs). Phagocytes (neutrophils and macrophages)
exhibit bactericidal properties whereby neutrophils are short-lived, whereas macrophages
are long-lived and, along with dendritic cells (DCs), additionally assist in the presentation
of antigen to the T-cells [112]. Natural killer cells are an important component of innate
immunity and are actively involved in the anti-cancer effect by killing tumour cells [114].
NK cells release perforin granzymes and release interferon-gamma (INF-y) that induces
apoptosis, leads to the mobilization of APCs, and exhibit the anti-tumour effect [115].

Adaptive immunity works alongside innate immunity, and its function becomes im-
portant when innate immunity is ineffective or dysfunctional [111]. Antigen-specific T-cells
are the primary component of adaptive immunity that become activated and proliferated
in response to APCs and B cells. T cells are the derivative of hematopoietic stem cells
(HPSc) and become matured in the thymus. T-cells possess T-cell receptors (TCRs) that can
bind with the antigens in response to the signals from APCs, DCs, macrophages or B cells
and eliminate them. APCs are immune cells that have a portentous component known as
major histocompatibility complex I or II (MHC-I or II) on its surface [112]. APCs digest the
antigens and display appropriate protein fragments bounded to the MHC, identified by
the T-cells and activated. Activated T cells further regulate the production of cytotoxic T
cells, i.e., CD8+ cells or T-helper cells (Th cells), i.e., CD4+ cells.
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On the one hand, CD8+ cells destroy the infected cells or tumour cells. On the
other hand, CD4+ cells are devoid of a direct cytotoxic effect but release certain cytokines
that regulate the immunogenic response [112]. Additionally, Th1, Th2 and Th3 are some
of the common Th cells, and Th1 regulates the production of INF-y and modulates the
differentiation of B cells to produce antibodies; Th2 cells regulate the release of IL-4, IL-5,
IL-13 and regulate immunoglobulin E development, whereas Th-17 regulates the formation
of the IL-17 family [116]. In addition to the subtypes of T helper cells, T regulatory (T reg)
cells (a subset of T-helper cells) are also an important component of adaptive immunity
and ideally act as immunosuppressors and thus, control the hyperimmune responses and
play an important role in killing cancerous cells [116].

4. Cancer Immune Escape

As is well known, the immune response in the anticancer effect is complex and consists
of multiple immunogenic events whereby the production and release of cancer-associated
antigens (CAAs), the processing of APCs, priming, the activation of T-cells and the cytotoxic
effect of effectors are important steps [117]. Apart from this, CD8+ cytotoxic T cells (CTL)
and CD4+ helper T (Th)1 cells have been reported to curb tumour progression via the release
of cytotoxins and production of INF-γ [118]. These findings unequivocally demonstrated
that immune editing could be used to manage and treat various types of cancers [117].
Therefore, attempts have been made to stimulate immune editing whereby the innate or
adaptive immune system recognizes the tumour or presence of tumour antigens cells and
destroys them. Thus, an appropriate balance between immune-inhibitory and immune-
stimulatory factors is pivotal for different immune-pharmacotherapeutics’ significant anti-
cancer effect. However, while using immunoediting, cancer immune evasion was found to
be a major challenge for oncologists as it restricts the favourable clinical outcome. The role
of regulatory immune cells, alteration in APCs, immune inhibitory cytokines and immune
checkpoints are considered major contributors to the cancer-immune escape [119]. Treg
are important immunosuppressive CD+ T cells, and the hyperactivation of Treg has been
reported to mitigate the anti-tumour effect of effector cells via the production of TGF-β
and IL-10 [120]. Much of the published evidence has shown that Tregs, derived from
tumour cells, exhibit an increased tumour evasion effect as compared to naturally existing
Tregs [121]. Additionally, Treg downregulates the level of IL-2 and upregulates the level of
programmed death-1 (PD-L1), T-cell immunoglobulin mucin-3 (TIM-3), and cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) etc. and stimulates cancer immune escape [122].
As it is well documented, the cytotoxic potential of effector cells depends on antigens’
expression on cancer cells. However, cancer cells cause alterations in the antigen processing
machinery, resulting in the loss of these tumour-associated antigens (TAAs) and cause
cancer immune escape [123]. Further, alterations in the major histocompatibility complex-1
and transporters of antigens processing mutation restrict the identification of cancer cells
and, thus, promote cancer immune escape [124]. Apart from the factors mentioned above
that are responsible for cancer immune escape, the role of inhibitory cytokines and immune
checkpoints cannot be ignored. Numerous published studies have confirmed the role of
Transforming growth factor-beta (TGF-β) in altering the TME. TGF-β, IL-8, TNF-α and
IL-6, Colony-stimulating factor (CSF)-1, IFNs cause an alteration in Treg cell diffraction
and stimulate a Treg-mediated increased expression of PD-L-1, inhibiting the anti-tumour
effect of cancer-effector cells and promoting cancer immune escape [125]. Nevertheless, the
overexpression of immune checkpoints and their ligand, such as PD-L1, plays a critical role
in tumor immune evasion by stimulating the production of defective tumour-infiltrating
lymphocytes that eventually become devoid of tumour-killing properties [126] (Table 3).
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Table 3. Role of miRNAs in Cancer immune escape [127].

miRNA Effect/Mechanism Cancer Types

miR-24-3p
Increased T reg cells activity and reduced
Th17 proliferation via targeting fibroblast

growth factor 11
Nasopharyngeal cancer

miR-183 Reduced the activity of NK cells

Lung cancer
miR-23a

Reduced activity of CD8+ cells via acting
on B lymphocyte-induced maturation

protein-1

miR-155 Reduced activity of MDSCs via acing on
hypoxia inducing factor-α

pancreatic cancer
miR-212-3p

Increased immune response of DC via
acting on Regulatory Factor X Associated

Protein

miR-92a-3p Increased tumor-associated macrophages
and IL-6 level

Liposarcoma
miR-25-3p Increased tumor-associated macrophages

and IL-6 level

miR-155 Reduced activity of MDSCs via acing on
hypoxia inducing factor-α

Skin cancer
miR-210 Reduced activity of MDSCs via acing on

C-X-C motif chemokine 12 and IL-16

miR-34a Reduced recruitment of T reg cells via
acting on C-X-C motif chemokine 12 Hepatic cancer

miR-20a and
miR-17-5p

Reduced activity of MDSCs via acing on
Reduced activity of MDSCs via acing on

C-X-C motif chemokine 12 and IL-16
Colon cancer

miR-494 Reduced activity of MDSCs via acing on
Phosphatase and tensin homolog Breast cancer

miR-222-3p
Increased polarization of M2 macrophage

via acting on suppressor of cytokine
signaling 3

Ovarian cancer

5. Immuno-miRNAs: Central Regulators of Immunity

In recent years, various miRNAs have been explored for their pivotal role in reg-
ulating innate and adaptive immunity’s immunogenic key processes related to cancer.
These miRNAs and miRNA clusters were crystallized, and attempts were made to under-
stand the signalling pathway and the modulation of various genes related to the immune
system [84,128]. Among the various signalling pathways, the nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-kB) was found to be a major player in the immune
system (innate and adaptive immunity) during tumorigenesis (Figure 1). Under normal
physiological conditions, NF-kB remains in the cytoplasm in association with its negative
regulator, ikB, which in turn is regulated by the IκB kinase (IKK) complex [129]. In response
to the oncogenic stimulus, the level of IKK reduces, leading to the phosphorylation of
iKB and the activation of NF-kB, thus triggering its nuclear translocation and macrophage
activation, which ultimately results in an inflammatory state [130]. Furthermore, MiR-223
is reported to increase the level of IKK, which in turn suppresses the ikB and keeps the
NF-kB sequestered in the cytoplasm, leading to the mitigation of inflammation [131]. Apart
from miR-223, various other miRNAs play a critical role in regulating NF-kB mediated
immunogenic status (Figure 1). Moreover, miR-23-27-24 clusters have been reported to
regulate the immunogenic status. The positive transcription of this cluster is induced
by the myeloid transcription factor (MTF) known as PU.1. In contrast, it is negatively
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regulated by the lymphoid transcription factor (LTF) such as paired Box 5 (PAX5), Early
B-cell Factor-1 (EBF1) and E2A [132]. This miR cluster has been reported to alter lym-
phoid cells’ differentiation and promote the lineage commitment of myeloid lineage [133].
Additionally, these clusters negatively impact T cells and repress the Th2 immunity via
interaction with the IL-4 signalling pathway [134]. Apart from the negative regulation of
Th2, miR-24 has been reported to promote the differentiation of Th1, T reg cells and Th17
whereas miR-23 and 27 restrained the functions of Th1 and Treg/Th17 differentiation [134].
Studies have also shown the involvement of these clusters in the suppression of CD8+

and the stimulation of forkhead box P3 (FoxP3) via the inhibition of NF-kB under the
influence of TGF-β as well as via TGF-β mediated cMyc expression [135]. Furthermore,
miR17-92 clusters are also important miRs, present on chromosome 13 and accountable
for the transcription of six polycistronic miRNAs, i.e., miR-17, miR-92, miR-19b, miR-81a,
miR-19a, miR-20a and [136]. This cluster of miRs is pro-inflammatory and plays a pivotal
role in T-cell mediated inflammation. The activation of NF-kB is one such cause, which in
turn regulates the Janus kinase signal transducer and activator of transcription (JAK-STAT)
signalling pathway and stimulates the Th1-mediated INFγ response [127]. Furthermore,
miR17-92 clusters amplify the production of IL-4, IL-5, IL-13, and the development of B
cells and modulation of the Inducible T-cell costimulator-phosphatidylinositol-3-kinase
(ICOS-PI3K) pathway [39]. Recently emerged evidence has shown that miR17-92 clusters
cause macrophage differentiation suppression, by targeting hypoxia-inducible factor-alpha
(HIF-α) [137]. Other important miRs include MiR-146a and 155, which are found in abun-
dance in innate and adaptive immunogenic cells [138]. Interestingly, miR-146a exerts an
anti-inflammatory effect, whereas miR-155 exhibits a pro-inflammatory effect. The pro-
inflammatory effect of miR-146a is exhibited by targeting interleukin-1 receptor-associated
kinase 1 or 2 (IRAKI 1 or 2), myeloid differentiation primary response 88 (Myd88), tumour
necrosis factor receptor (TNFR)-associated factor6 (TRAF6), Toll-like receptors (TLRs) and
NOTCH1. The anti-inflammatory effect in the innate immune cells is exhibited by targeting
TNF-α and IL-6, whereas in the adaptive immunogenic cells, it is caused via Th1 differ-
entiation [139]. Furthermore, the anti-inflammatory effect of miR-146a is strengthened by
findings where miR-146a deficient mice showed hyper inflammation and the activation
of CD8+ and CD4+ cells [140]. MiR-155, on the other hand, showed a pro-inflammatory
effect via the modulation of INF-γ and production as well as activation of CD8+ and CD4+

cells [141]. The pro-inflammatory effect of miR-155 is further strengthened by the findings
where the deficiency of miR-155 causes impairment of Th1 and Th2 activities [142]. Thus,
based on these facts, it can be concluded that miR-146a and 155 form ‘ying-yang’ and
regulate both innate as well as adaptive immunogenic cells. Both MiR-181 and miR-223
are important anti-inflammatory miRs, and miR-223 is considered as one of the classical
innate miRNAs. Earlier, this miR was thought to be myeloid-specific (expressed only in
granulocytes cells), but studies have now demonstrated its expression in monocytes and
as well as in the macrophages [138]. During monocyte and macrophage differentiation,
the level of miR-223 decreases, whereas its level increases that upregulate the activity of
IKK-α. The upregulation of IKK-α prevents the phosphorylation of ikB and its activation
and the nuclear translocation of NF-kB, leading to the amelioration of TNF-α, IL-6, IL-1β
production [143]. However, the activation of the macrophage, which eventually activates
the NF-kB signalling pathway, has been reported to downregulate the expression level
of miR-223. Thus, miR-223 can be considered as multifactorial in the function whereby
it regulates NF-kB, TLRs, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3)
and mitogen-activated protein kinase (MAPKs) signalling pathway and exhibits a potent
anti-inflammatory effect [143]. In addition to miR-223, miR-181 is another potent anti-
inflammatory miR-NA that exhibits an anti-inflammatory effect in innate and adaptive
immunogenic cells. Studies have shown that miR-181 mediates the suppression of tyrosine
as well as extracellular signal-regulated kinase (ERK) phosphatases, Th1 differentiation and
Treg differentiation by targeting the Smad7/TGF-β signalling pathway [144]. Additionally,
direct targeting of miR-181 has been reported to modulate CCAAT/enhancer-binding
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protein alpha (C/EBP-α) and IL-1α in the macrophage and the dendritic cells, respec-
tively [145]. Thus, miR-181 promotes M2 polarization in the macrophage, whereas in the
dendritic cell, it acts on cFOS (pro-inflammatory transcription factors) [146].

Figure 1. Showing the involvement of miRNAs as the central regulator of immunity via NF-kB
pathway. TIRAP, TRAM, TLR4, TNF-R, RIP1, FADD, TRAF-2, TRADD, IRAK, TAB-2, TGF-β-
activated kinase 1/MAP3K7-binding protein 2; TAK, IKK, and CYLD.

6. Immune Cell Pathways Regulated by miRNAs in Cancer

In recent years, numerous published studies have highlighted the relationship between
the immune system and tumorigenesis. In lieu of this, miRNAs have been reported
to play a central role in regulating various immunogenic cells that directly affect the
tumorigenesis event.

6.1. Regulation of Monocytes and Macrophages by miRNA

The direct impact of various monocytes has been reported on the maturation, prolifer-
ation, and differentiation of monocytes. Furthermore, MiR17-5p, miR-106p, and miR-20a
have been reported to involve monocytes’ maturation via the modulation of the expression
level of acute myeloid leukaemia-1 (AML-1), a well-known transcription factor [147]. Over-
expression of this transcription factor in response to the aforementioned miRs stimulates the
M-CSF transcription receptor that eventually causes monocytic differentiation and matura-
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tion [148]. In addition, miR-17-92 and miR-21, miR-424 also modulate monocytes’ differenti-
ation via acting on MAPKs, JAK-STAT and TGF-β signalling pathways [149]. Macrophages
(M1 and M2 exhibit the opposite effect on tumorigenesis, where M1 macrophages are acti-
vated via Toll-like receptors (TLRs) and INF-y leads to the production of pro-inflammatory
cytokines such as TNF-α, IL-6, 1L-12, and IL-23 [150]. M1 macrophage also regulates T
helper cells’ activity and thus is involved in the anti-tumor effect. The M2 macrophage,
on the other hand, is activated in response to IL-4 and IL-13, releases IL-10 and TGF-β
and is involved in tumorigenesis pathways [150]. Both miR-21 and miR-146a have been
reported to attenuate the activation of M1 macrophage via TLR/NF-kB pathways, whereas
miR-155 causes M2 macrophage activation via the regulation of cytokine signalling-1
supression1 [151].

6.2. Regulation of Natural Killer Cells (NK Cells) by miRNA

NK cells are an important component of innate immunity and are directly involved
in the tumour-killing activity and the release of INF-y. Although miR-150 regulates its
maturation, miR-181 regulates its development via CD3+ cells and Nemo-like kinase
signalling molecules, miR-155 stimulates the production of INF-y and miR-29 mitigates its
production [152]. As we have already discussed, NK cells exhibit cytotoxic activity against
tumour cells via perforin and granzyme B and miR-30e, miR-378 have been reported to
stimulate these proteins’ release as mentioned earlier [153].

6.3. Regulation of T Helper Cells and Cytotoxic T Cells by miRNA

T cells are the main component in adaptive immunity and miRs have been reported
to regulate these cells’ activity. Furthermore, miR-155 stimulates the CD+ T cells differen-
tiation towards Th2, whereas miR-17 and miR-19b regulate the activity of Th1 cells and
increases the production of INF-y [136]. Additionally, Th17 is another important subtype of
T helper cells that is responsible for the production of IL-17 [154]. Th17 has been reported to
exhibit an antitumor effect via stimulating the activity of INF-y, CD8+ and NK cells in the
TME [154]. Both miR-326 and miR-181c have been reported to regulate the development of
Th17 by acting on Ets-1 and Smad7, respectively [155]. Furthermore, the increased level
and activity of cytotoxic T cells (CD8+ cells) is responsible for the tumour-killing activity.
It has been reported that miR-17-92 clusters that are present in the CD8+ cells stimulate
the release of INF-y and enhance cytotoxicity towards tumour cells [156]. While miR-155,
miR-21, and miR-30b promote the proliferation and cytotoxic activity of CD8+ cells via
targeting cytokine signalling 1 (SOCS-1) suppression and Dual Specificity Phosphatase-10
(DUSP-10), miR-29 negatively regulates the activity of CD8+ cells and reduce the expression
level of mRNA responsible for producing INF-y [157].

6.4. Regulation of Immune-Checkpoint Molecules by miRNA

Programmed Cell Death Protein 1 (PD-1) and its ligand, which is PD-L1, have been
reported to play a pivotal role in tumorigenesis via T cell activation. PD-1 is extensively
expressed on NK cells, T cells, macrophages, and on the monocytes and thus, inhibits an
innate and adaptive immunogenic response [158]. PD-L-1 on the one hand is extensively
expressed on tumour cell surfaces. When it binds with the PD-1, it activates tumour survival
pathways, contributes to tumour immune escape, and stimulates tumour proliferation [159].
Various miRNAs have been reported to interact and modulate the activity of PD-1 and
PD-L-1. It has been found that miR-155 increases PD-L-1 expression, whereas miR-34a
has been reported to inhibit the expression of PD-L-1 [160]. Similarly, miR 33a, miR-21
and miR-873 have been reported to negatively regulate the expression of PD-L-1, whereas
miR-146a stimulates the expression of PD-L-1 [161] (Table 4).
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Table 4. Showing the modulatory effect of miRNAs via immune cells on tumorigenesis.

miRNA Immune Cells/Cancer
Cells Effect Cancer Types References

miR-19a-3p Macrophages (M2) Polarization of macrophage and amelioration
of cancer progression and metastasis

Breast cancer

[162]

miR-21 T reg cells Reduce the proliferation of T reg cells leading
to reduced survival and proliferation [163]

miR-23a/27a/24-2 Macrophage Polarization of M2 macrophage and promote
tumour growth [164]

miR-126 Cancerous cells Reduced monocyte recruitment and stimulated
metastasis [165]

miR-146a Macrophages Activation of NF-kB and promote tumour cell
invasion [140]

miR-155 Cancerous cells Activation of JAK-STAT pathway and
proliferation of tumor cells. [166]

miR-223 Macrophages (M2) Differentiation of macrophage and stimulate
tumour cells invasion [88]

miR-494 MDSCs MDSCs accumulation stimulate tumor cells
invasion and metastasis [167]

miR-20a Cancerous cells
Suppress NK-mediated antitumor effect and

promote tumour invasion as well as
proliferation

Ovarian cancer

[168]

miR-424 Cancerous cells Activate T cells and stimulate sensitivity of
tucells towards chemotherapy [169]

miR-199a Cancerous cells Production of cytokines and progression of
tumorigenesis [170]

miR-34a/c Cancerous cells
Suppress NK-mediated antitumor effect and

promote tumour invasion as well as
proliferation

Skin cancer

[171]

miR-17 T cells Alters the function of T cells and promote
tumour growth [172]

miR-155 MDSCs Increased HIF-α and promote tumor growth [173]

miR-29 Cancer cells Mitigate the NK cell’s function, T cells and
promote the growth of tumors

Solid tumors
[174]

miR-214 CD4+ and CD25+ T cells Stimulate T reg cells and promote tumour
growth [175]

miR-146a Cancer cells Reduced IL-8, TRAF-6 and exhibit the
antitumor effect

Gastric cancer
[176]

miR-5, 18 and 22 Cancer cells Reduced PD-1 expression 6 and exhibit
antitumor effect [177]

miR-23a T cells Inhibit CD8+ function and promote tumour
growth and TGF-β induced tumour invasion

Lung cancer
[178]

miR-155 Dendritic cell Stimulate dendritic cell maturation and
activation of T cells [179]

miR-124 T cells Inhibit STAT-3 and promote T cell-induced
killing of tumour cells

Glioblastoma

[180]

miR-15a and 16a T cells Reduced PD-1 and increased CD8+ mediated
antitumor effect [181]

miR-28 T cells Enervation of T cells and reduced PD-1 [182]

miR-138 T cells Diminished expression of PD-1 and exhibit the
anti-tumor effect [183]

miR-182 NK cells Stimulate the tumour-killing potential of NK
cells and increase the release of perforin-1 Hepatic cancer [184]
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7. Effect of miRNAs on Cancer Immunotherapy

Initially, miRNAs were used as biomarkers in cancer diagnosis, prognosis, and re-
sponse of pharmacotherapeutics [185]. However, it was later found that these miRNAs
possess intense modulatory properties against tumorigenesis and hence, can be used as
a therapeutic tool as well as a target against various types of cancers [186]. We have also
discussed the way that miRNA modulates immunogenic cells in the microenvironment of
tumours. Therefore, miRNA emerges as a potential future therapeutic tool against cancer
treatment [187]. Currently, two broad categories of microRNA, i.e., miRNA mimics and
miRNA inhibitory therapy, are being explored to determine their role as an immunothera-
peutic agent in managing and treating cancer. More specifically, miRNA mimics functions
to restore or promote the miRNAs that exhibit tumour-suppressing or antitumor effects
whereas miRNA antagonists act against those miRNAs that stimulate tumorigenesis [187].

Additionally, miR-43a acts as an inhibitor of PD-L-1, reduces the expression of PD-L-1
mRNA, exhibits an anti-tumor effect, and mimics MRX34 enters a clinical trial to explore
its antitumor effect [188]. Aside from reducing the expression of PD-L-1MRX34 also
stimulate CD8+ cells tumour infiltration in non-small-cell-lungs carcinoma [188]. Further
studies have shown an enhanced antitumor effect of radiotherapy when combined with
MRX34 [188]. The administration of mimic MiR-124 also possesses an anti-tumour effect,
and hence, miR-124 increases the level of INF-y, IL-2, and TNF-α [180].

Apart from miRNA mimics, miRNA inhibitors have also been explored as potential
immunotherapeutic agents. As we know, miRNAs with pro-oncogenic properties on the
tumour cells and lead to their inhibition present a potential immunotherapeutic approach.
miRNA inhibitors include locked nucleic acid (LNA), anti-sense anti-miRNA oligonu-
cleotides (AMOs), miRNA sponges, anti-miRNAs, miRNAs masks and small molecule
inhibitors of miRNAs as shown in Figure 2. AMOs are single-stranded nucleotides (17–22)
and act as a competitive inhibitor of pro-oncogenic miRNAs [187]. LNA is also a type
of AMOs, but in AMOs, ribose sugar is modified by forming a methyl bridge and this
specific modification results in thermal stability, higher water solubility and stabile in the
metabolic environment characterizing it as an ideal form for delivery [189]. Until now,
LNA-anti-miR-221 has been used in a preclinical xenograft model and showed a significant
antitumor effect [190]. miRNA sponges are enclosed in the vector and, when delivered,
act as a competitor for the binding site of mRNA of pro-oncogenic miRNA [191]. miRNA
sponges have been used to inhibit the progression of metastasis in breasts where the pro-
oncogenic effect of miR-9 is masked via the amelioration of miR-9 binding site’s interaction
with the mRNA. Apart from the aforementioned immuno-therapeutics of miRNA in cancer,
miRNA antagonists are also extensively used, as this class of miRNA antagonizes the
pro-oncogenic effect of miRNA by interacting with the various immunogenic cells.

Furthermore, miRNA-155 is known to increase the expression of PD-L-1 and its
antagonist (MRG105) has been reported to ameliorate tumour growth [192]. In addition
to miR-155, miR-23a, which is released under the influence of TGF-β (secreted from
tumors), has been reported to diminish the cytotoxic potential of CD8+ cells antagonist,
and exhibited a potent antitumor effect against melanoma [178]. Additionally, the use of
miR-17-92 clusters in combination with chimeric antigen cells and in combination with
temozolomide has increased the therapeutic efficacy and survival rate among patients of
glioblastoma [192].
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Figure 2. Showing the immunotherapeutic approach of miRNA in cancer.

8. Conclusions

Based on the discussion, it seems persuasive that miRNA acts as potent modulators
of carcinogenesis. Numerous published studies present concrete evidence for their im-
munotherapeutic implication against various types of cancers [24]. Furthermore, miRNA
is not only implicated in cancer immunotherapy, but it also plays a pivotal role in the
diagnosis and prognosis of cancer [193]. This is achieved by either determining the specific
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profile of miRNA within the immune cells or by analyzing the miRNA derived from the
micro-vesicles of tumour patients [193]. However, further intensive research is needed
to develop a diagnostic approach and to transport such a concept from bench to bedside.
Moreover, some of the shortcomings of miRNA-based therapeutic interventions must be
considered. A high level of inconsistencies in the formulation of miRNA and its delivery
system is observed [85]. We herein speculate that the standard pharmacological prepara-
tions and precise pharmacodynamic–pharmacokinetics will control the toxic effect of these
miRNA-based therapeutics [85]. Furthermore, based on ample published evidence, the
development of miRNA-based immune therapeutics and to reduce immune escape has
been attempted.

Additionally, we also observed that most of the preclinical study was conducted using
an acute dose regimen, and thus, the effects observed via long-term (chronic) study need
to be explored in detail. It is also important to discuss that despite tremendous ongoing
preclinical and clinical work to develop miRNA-based immunotherapy satisfactory clinical
outcome in cancer has not yet been achieved. For example, MRX34 showed a potent
anticancer effect in the preclinical study, but immunogenic severe toxicity was observed
when tested in cancer patients. However, this unexpected outcome confirmed that the
miRNA could cause unwanted non-specific immune-related responses [194,195]. RNA
interference (RNAi) causes TLR signalling pathway activation and interferes with the spec-
ulated therapeutic outcome [196]. To cater to these issues, a strategy such as combinatorial
use of miRNA mimic and siRNA or miRNA along with chemotherapy can be used to
mitigate the immune complication and other toxicities [192,197]. Apart from the combina-
torial approach, various nanoparticle-based miRNA, also known as ‘miRNome’ and novel
drug delivery systems (nanotubes and liposome), have been developed to offer additional
advantages over conventional miRNA of safety, efficacy, and stability [198]. This approach
also possesses benefits and constraints. The benefits include the fact that nanoparticles
can be produced rapidly, drug loading capacity can be modulated, a controlled amount
of miRNA can be delivered, and targeted delivery can be achieved [198]. However, some
of the constraints for using nanoparticles as a carrier of miRNA include a low efficacy in
transfusion, the requirement of multiple administrations, and an increased risk of immuno-
logical toxicity [199]. Therefore, we conclude that miRNA-based immunotherapy is a novel
and emerging therapeutic method for the treatment and management of cancer, but more
extensive studies are required for the safe and effective targeted delivery of miRNA in
cancer patients.
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