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Simple Summary: Both of tumor-infiltrating immune cells and the RNA-binding proteins (RBPs) that
are able to mediate immune infiltration contribute to the prognosis of patients with glioma. However,
immune-associated RBPs in glioma remain unexplored. In this study, we developed a method to
identify RBPs associated with immune infiltration in glioma and 216 RBPs were defined as immune-
associated RBPs. Among them, eight RBPs were selected to construct a risk signature that proved to
be a novel and independent prognostic factor. Higher risk scores meant worse overall survival and
higher expression of human leukocyte antigen and immune checkpoints. Additionally, analyses of
pathway enrichment, somatic mutation, copy number variations, and immuno-/chemotherapeutic
response prediction were performed to evaluate the differences between high- and low-risk groups.
Generally, we demonstrated an eight immune-associated RBPs prognostic signature that was valuable
in predicting the survival of glioma patients and directing immunotherapy and chemotherapy.

Abstract: The prognosis of patients with glioma is largely related to both the tumor-infiltrating
immune cells and the expression of RNA-binding proteins (RBPs) that are able to regulate various
pro-inflammatory and oncogenic mediators. However, immune-associated RBPs in glioma remain
unexplored. In this study, we captured patient data from The Cancer Genome Atlas (TCGA) and
divided them into two immune subtype groups according to the difference in infiltration of immune
cells. After differential expression and co-expression analysis, we identified 216 RBPs defined as
immune-associated RBPs. After narrowing down processes, eight RBPs were selected out to construct
a risk signature that proven to be a novel and independent prognostic factor. The patients were
divided into high- and low-risk groups on the basis of risk score. Higher risk scores meant worse
overall survival and higher expression of human leukocyte antigen and immune checkpoints such
as PD1 and CTLA4. In addition, analyses of pathway enrichment, somatic mutation, copy number
variations and immuno-/chemotherapeutic response prediction were performed in high- and low-
risk groups and compared with each other. For the first time, we demonstrated a novel signature
composed of eight immune-associated RBPs that was valuable in predicting the survival of glioma
patients and directing immunotherapy and chemotherapy.

Keywords: glioma; RNA-binding protein; immune microenvironment; tumor-infiltrating immune
cells; risk score; prognostic model; immunotherapy; chemotherapy

1. Introduction

Glioma is regarded as the most common and lethal type of primary brain tumor
with an extremely poor prognosis, accounting for about 30 percent of all central nervous
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system (CNS) tumors and 80 percent of all primary malignant brain tumors [1]. According
to the World Health Organization (WHO) classification of CNS tumors, malignant adult
diffused gliomas are classified into grades II to IV based on histologic features. In the 2016
edition, isocitrate dehydrogenase (IDH) mutation and chromosomal co-deletion 1p/19q are
integrated into the traditional glioma classification [2]. But even if gliomas are subdivided
into more subtypes based on molecular and histological features, these indicators remain
very limited on prognosis assessment and optimization of therapy regimen. Therefore, a
novel method to identify the risk of glioma patients and who is most likely to benefit from
adjuvant therapy will bring immense value for personalized cancer care.

The unique immunological status in the CNS contributes to the particular glioma
tumor microenvironment. A variety of immune cells including brain resident microglia
and peripheral immune cells are present in glioma microenvironment [3]. Tumor-derived
cytokines and chemokines are able to reprogram those immune cells into tumor-associated
phenotypes which therefore have profound effects on progression and therapeutic re-
sistance by inducing inflammatory or anti-inflammatory responses [4]. The multiple
therapeutic antibodies that block immune checkpoints, such as cytotoxic programmed cell
death protein 1 (PD1, PDCD1) and T lymphocyte associated antigen 4 (CTLA4), showed
great effects in treating non-small-cell lung cancer, kidney cancer, and melanoma [5]. Yet the
clinical application of checkpoint inhibitors in glioma is up against tremendous challenges
because of the “cold phenotype” of glioma characterized by a paucity of T-cell infiltration
but robust macrophage infiltration [4,6,7]. Therefore, the role of immune cells and the
factors that regulate the infiltration of immune cells need to be studied urgently.

As trans-acting factors, RNA-binding proteins (RBPs) largely contribute to the super-
vision of gene expression by interacting with target RNAs [8], which participate in the
initiation and progression of glioma [9–12]. Specifically, RBPs regulate almost all aspects
of RNA life, including pre-mRNA processing, modification, localization, RNA stability,
and translation [13]. Post-transcriptional regulation of inflammatory mRNAs, mediated by
a set of RBPs including Tristetraprolin, Roquin and Regnase-1, and RNA methylases, is
increasingly understood to rapidly respond to inflammatory mediators and orchestrate
the inflammatory response by modulating mRNA pools in both immune and nonimmune
cells [14,15]. Considering that RBPs can largely regulate the RNA pool related to inflam-
mation and the infiltration degree as well as specific function of immune cells depend on
tumor-derived cytokines and chemokines, whether there are immune-associated RBPs that
can be used to accurately evaluate the tumor progression and prognosis of glioma patients
has not yet been considered.

In this study, we captured data from The Cancer Genome Atlas (TCGA) and then
divided glioma patients into two immune subtype groups based on single sample Gene
Set Enrichment Analysis (ssGSEA) score of 24 types of immune cells. Next, differentially
expressed RBPs between two immune subtype groups correlated with at least one type of
immune cell were defined as immune-associated RBPs for further analysis. Univariate Cox
regression analysis, least absolute shrinkage and selection operator (LASSO) regression
analysis, and multivariate Cox regression analysis were used to construct a prognostic
signature. Glioma patients from TCGA and the Chinese Glioma Genome Atlas (CGGA)
were separately classified into low- and high-risk groups in the light of risk scores based
on the prognostic signature. Analyses of pathway enrichment, somatic mutation and copy
number variations (CNVs), and immuno-/chemotherapeutic response prediction were
performed in the two risk groups.

2. Materials and Methods
2.1. Data Acquisition

The transcriptome data and corresponding clinical parameters were downloaded
from TCGA database (https://portal.gdc.cancer.gov Assessed on 19 July 2019) and CGGA
database (http://www.cgga.org.cn/ Assessed on 21 December 2020). A total of 1709
glioma patients were included in this analysis (TCGA: 691 patients; CGGA: 1018 patients.).

https://portal.gdc.cancer.gov
http://www.cgga.org.cn/
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Somatic mutation and CNVs data of glioma patients were also obtained from TCGA
database. Somatic mutation data were analyzed using “maftools” package, and significant
amplifications or deletions of copy number were detected using GISTIC 2.0. The list of
RNA-binding proteins was acquired through a previously published article [16].

2.2. Identification of Glioma Immune Subtypes Based on ssGSEA Score

With the aim of exploring the infiltration level of different immune cell populations,
a set of marker genes defining various types of immune cell was first obtained from the
work of Gabriela Bindea et al. [17]. The ssGSEA algorithm is a rank-based method that
defines a score representing the degree of absolute enrichment of a particular gene set
in each sample [18]. To calculate ssGSEA scores, we used the GSEA program to obtain
the absolute enrichment scores of gene signature of immune cells according to previous
studies [19–21]. In brief, the infiltration levels of immune cells were quantified by ssGSEA
in “Gene Set Variation Analysis (GSVA)” package using default parameters [22]. The
“ConsensusClusterPlus” package was used for consensus clustering and distinguishing
different immune subtypes based on ssGSEA scores [23]. The consistent matrix (CM)
plots were illustrated based on k-value. The empirical cumulative distribution function
(CDF) plots revealed the consensus distributions for each k [24]. The purpose of the CDF
plot is to find the k at which the distribution reaches an approximate maximum, which
indicates a maximum stability and after which divisions are equivalent to random picks
rather than true cluster structure [23]. According to the results of K-means clustering,
samples of glioma patients in the TCGA database were classified into two immune subtype
(Sub) groups: Sub1 group and Sub2 group. The Tumor Purity, ESTIMATE Score, Immune
Score, and Stromal Score were analyzed by ESTIMATE algorithm [25]. The CIBERSORT
deconvolution algorithm (https://cibersort.stanford.edu/ Assessed on 28 December 2020)
was used to verify that the infiltration of immune cells from these two Sub groups was
different [26].

2.3. Identification of Immune-Associated RBPs in Glioma

Given the differences in immune cell infiltration between Sub1 and Sub2 groups,
“limma” package was conducted for seeking differentially expressed RBPs. The thresholds
were set as/log2 fold change (FC)/ > 1 and adjusted p value < 0.05. Correlation analysis
was further performed between differential expression RBPs and ssGSEA scores of 24 types
of immune cells. An RNA-binding protein whose expression value was correlated with at
least one immune cell (|Pearson R| > 0.6 and adjusted p value < 0.05) was defined as the
immune-associated RBP.

2.4. Risk-Based Modeling

First, univariate Cox regression analysis was conducted to evaluate the relevance
between the patient’s overall survival and their transcriptome data of immune-associated
RBPs in TCGA database with p value < 0.001 as the criteria. Then, LASSO regression
analysis was performed and 10-round cross-validation was used to prevent overfitting.
Finally, multivariate Cox analysis was used to work out the coefficients and construct
a prognostic signature. The risk score formula is as follows: risk score = ΣCoefficient
(RBPi) × Expression (RBPi). According to the median of risk score, glioma patients were
divided into low- and high-risk group. The Kaplan–Meier curve was used to assess the
differences of overall survival between low- and high-risk group by “survminer” package.
The time-dependent receiver operating characteristic (ROC) curve was performed and the
area under the ROC curve (AUC) was also calculated by “pROC” package. Univariate and
multivariate Cox regression analysis was used to evaluate the independence of prognostic
gene signature and other clinical parameters (age, sex, grade, ATRX, status, IDH status,
MGMT promoter, and immune subtypes). We combined the clinical parameters with the
eight immune-associated RBPs signature to construct a nomogram using “rms” package.

https://cibersort.stanford.edu/
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The C-index was used to evaluate the discriminative power of the nomogram and draw a
calibration chart to evaluate the accuracy of the nomogram.

2.5. Pathway Enrichment Analysis

We applied DAVID database (https://david.ncifcrf.gov/ Assessed on 20 January 2021)
to complete the Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis. GO or KEGG pathways with adjusted p value < 0.05
were considered statistically significant. GSVA (http://www.bioconductor.org/packages/
release/bioc/html/GSVA.html Assessed on 30 January 2021) and Gene set enrichment anal-
ysis (GSEA) (http://www.broadinstitute.org/gsea/index.jsp Assessed on 30 January 2021)
was performed to detect a significant difference in the set of genes expressed between the
low- and high-risk groups [22,27]. The thresholds were as follows: GSVA, the p value < 0.05
and the t value > 2; GSEA, p value < 0.05 and false discovery rate (FDR) < 0.25.

2.6. Immuno-/Chemotherapeutic Response Prediction

As reported in the previous articles [28,29], the subclass mapping was used to pre-
dict the clinical response to immune checkpoints inhibitors between the low- and high-
risk group in TCGA database [30]. We also used “Prophetic” package to predict the
chemotherapy response of each sample based on Genomics of Drug Sensitivity in Cancer
(GDSC) (https://www.cancerrxgene.org/ Assessed on 31 January 2021). Nine common
chemotherapeutic agents (Bleomycin, Cisplatin, Cyclopamine, Docetaxel, Doxorubicin,
Etoposide, Gemcitabine, Paclitaxel, and Vinblastine), small molecule inhibitors target-
ing EGFR (Erlotinib and Lapatinib) and targeting VEGFR (Pazopanib and Sunitinib) and
Metformin were selected and kept the default values for all parameters.

2.7. Statistical Analysis

Kaplan–Meier curve and log-rank test were adopted to assess whether there were
differences in overall survival between groups. Statistical analyses involved in this research
were conducted through R software (version 3.6.3, https://www.r-project.org/ Assessed
on 31 January 2021). A χ2 or Fisher’s exact test was performed for categorical data. A
Student’s t-test or Wilcoxon test was performed for continuous data. For all statistical
analyses, p value < 0.05 was considered statistically significant.

3. Results
3.1. Identification of Glioma Immune Subtypes Based on Infiltration of Immune Cells

Given that the unique immunological status of the brain contributes to the particular
tumor microenvironment of glioma, differences in the infiltration of immune cells among
tumor samples and the relevance of the infiltration to prognosis and therapies deserve
our exploration and study. In this article, we retrospectively analyzed the gene expression
profiles and the corresponding genomic data and the patients’ follow-up information
(histology, gender, age, WHO grade and overall survival, etc.,) of diffuse glioma (WHO
grade II/III/IV) patients from TCGA and CGGA databases. First, we captured patient
data from TCGA database and divided them into two immune Sub groups according to
the difference in infiltration of immune cells. After differential expression (|log2 FC| > 1
and adjusted p value < 0.05) and co-expression analysis (|Pearson R| > 0.6 and adjusted p
value < 0.05), 216 RBPs were defined as immune-associated RBPs (Figure 1A). Through
univariate, LASSO, and multivariate Cox regression analyses, we found that the eight
immune-associated RBPs prognostic signature significantly correlated with the overall
survival of glioma patients in TCGA and CGGA database, respectively (Figure 1B,C).
The patients were divided into high- and low-risk groups on the basis of risk score. In
addition, analyses of pathway enrichment, somatic mutation, copy number variations, and
immuno-/chemotherapeutic response prediction were analyzed in different risk groups
(Figure 1D). Article framework and workflow have been shown in Figure 1.

https://david.ncifcrf.gov/
http://www.bioconductor.org/packages/release/bioc/html/GSVA.html
http://www.bioconductor.org/packages/release/bioc/html/GSVA.html
http://www.broadinstitute.org/gsea/index.jsp
https://www.cancerrxgene.org/
https://www.r-project.org/
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Figure 1. Schematic workflow for analyzing immune-associated RBPs in glioma: (A) Two immune subtypes identified
by ssGSEA and “ConsensusClusterPlus” package, and the differentially expressed RBPs singled out by “limma” package
between two subtype groups. Correlation analysis between differentially expressed RBPs and immune cells. (B) A
combination of the LASSO and Cox regression analysis to identify a prognostic signature based on immune-associated RBPs
(im-RBPs: immune-associated RBPs). (C) Identification and assessment of the prognostic signature of immune-associated
RBPs for overall survival of glioma patients in TCGA and CGGA. (D) Comprehensive analyses of tumor-infiltrating immune
cells, responses to immunotherapy, somatic mutations, copy number variations, enriched pathways, and responses to
chemotherapy. *, p < 0.05; **, p < 0.01;***, p < 0.001.
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Considering the richness of multiple immune cell types in glioma, ssGSEA was utilized
to evaluate the infiltration of twenty-four immune-related cells based on gene expression
data from TCGA (Figure 2A). The “ConsensusClusterPlus” package was applied then
to divide all tumor samples into k (k = 2–9) different subtypes according to differences
of infiltration. On the basis of the consensus scores, the CDF curve achieves the best
partition efficiency when k = 2 (Figure S1A–C). Both of the Sub groups are associated with
tumor-infiltrating immune cells. There are 408 cases in Sub1 group and 283 cases in Sub2
group. The difference between them is dominant types of immune cells. Macrophages
and neutrophils are dominant in tumor-infiltrating immune cells in the Sub2 group with
relatively high percentage of immune cell infiltration, while central memory T (Tcm) cells,
effective memory T (Tem) cells, B cells, and follicular helper T cells (TFH) mostly infiltrated
into Sub1 group (Figure 2A and Figure S1D). ESTIMATE algorithm was used to calculate
Tumor Purity, ESTIMATE Score, Immune Score, and Stromal Score of the two Sub groups.
With relatively low tumor purity, Sub2 group gets higher ESTIMATE, immune and stromal
score when compared with Sub1 group, and the opposite results are observed in Sub1
group (Figure 2A,B). The date shown above is consistent with the results observed in
the expression of human leukocyte antigen (HLA) family, which is required to present
endogenous cellular antigens to circulating T cells and regulate immune response to
tumors (Figure 2C). Moreover, we detected the expression of several immune checkpoint
biomarkers such as programmed cell death 1 ligand 1 (PD-L1, CD274), CTLA4, Hepatitis A
virus cellular receptor 2 (HAVCR2), Lymphocyte-activation gene 3 (LAG3), and PDCD1
(PD1). The expression level of these marker genes in Sub2 group was significantly higher
than that in Sub1 group, indicating that more severe immune exhaustion happened in the
tumors of Sub2 group (Figure 2D). In addition, we used the CIBERSORT method to verify
the above results and found that macrophages, especially the immunosuppressive subtype
M2 macrophages, and neutrophils cells infiltrated into Sub2 group, while more naive B
cells and TFH cells remain in Sub1 group (Figure S1E). Consistently, the Kaplan–Meier
curve demonstrated that patients in Sub2 group had more limited overall survival than
Sub1 group (Figure 2E). These findings confirmed that the tumor-infiltrating immune cells
were predominantly risk factors to the overall survival of glioma patients.

3.2. Identification and Functional Enrichment Analysis of Immune-Associated RBPs in Glioma
Patients

To sort out the immune-associated RBPs to evaluate the prognosis of glioma patients
more accurately, the expression matrixes of 4127 RBPs based on website and literature
reported [16] were collected from the TCGA database for further analysis. First, RBPs
with differential expression between Sub1 and Sub2 groups were screened out. According
to the criteria of |log2 FC| > 1 and adjusted p value < 0.05, 357 RBPs were differentially
expressed between Sub1 and Sub2 groups. Among them, the expression of 228 RBPs were
up-regulated and 129 were down-regulated in Sub2 group, respectively (Figure 3A and
Figure S2A). Next, the correlation analysis between the expression of those 357 RBPs and
ssGSEA score of 24 tumor-infiltrating immune cells was performed in all glioma patients.
The RBP that its expression value was correlated with at least one type of immune cells
(|Pearson R| > 0.6 and adjusted p value < 0.05) was defined as an immune-associated RBP.
A total of 216 differentially expressed RBPs were defined as immune-associated RBPs for
subsequent studies (Figure 3B and Figure S1).
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Next, GO and KEGG pathway enrichment analyses were performed to explore the po-
tential functions of these immune-associated RBPs. GO analysis indicated that these RBPs
were categorized into several essential biological processes, including interferon-gamma-
mediated signaling pathway, extracellular matrix organization, type I interferon signaling
pathway, leukocyte migration, and negative regulation of viral genome replication, which
further verified the significant correlation between RBPs and immunoreaction. In terms
of cellular component, the majority of genes were located in extracellular exosome, focal
adhesion, cell surface, cytoplasm, and cytosol. In molecular function enrichment analysis,
these RBPs were enriched in double-stranded RNA binding, poly(A) RNA binding, pro-
tein binding, RNA binding and glycoprotein binding (Figure S2B). Additionally, KEGG
pathway analysis demonstrated that the most significant pathways were ECM-receptor
interaction, focal adhesion, regulation of actin cytoskeleton, leukocyte transendothelial
migration, and proteoglycans in cancer (Figure S2C).

3.3. Identification and Assessment of an Immune-Associated RBPs Prognostic Signature for
Overall Survival in Glioma.

Univariate Cox regression method was applied first to investigate the prognostic
significance of these 216 RBPs, and all of them were verified as prognosis-related RBPs. In
order to avoid the overfitting of prognostic signature, we performed LASSO regression
analysis on these RBPs next by 10-round cross-validation, and found 19 candidates that
were closely associated with the prognosis of glioma patients, including: MSN, STEAP3,
IGF2BP3, NSUN6, CTSC, GNS, HMGN5, RANBP17, SMC4, DUSP9, GLUD1, PTTG1,
MCAM, KHDRBS2, GGH, ST6GALNAC1, TET1, KLB, ZNF483 (Figure 4A,B). Furthermore,
stepwise multiple Cox regression analysis narrowed down the 19 candidates to eight
immune-associated RBPs which were used to establish the predictive model. The risk score
of each patient was calculated based on the coefficients (Exp: Expression) (Figure 4C):

Risk score = 0.09*ExpIGF2BP3 + 0.317*ExpGNS - 0.206*ExpRANBP17 + 0.163*ExpSMC4 + 0.121*ExpPTTG1 - 0.099*ExpST6GALNAC1 - 0.185*ExpTET1 - 0.156*ExpKLB

In TCGA database, the correlation network showed that IGF2BP3, GNS, SMC4, and
PTTG1 were positively correlated with the risk score, while RANBP17, ST6GALNAC1,
TET1, and KLB were negatively correlated with the risk score (Figure 4D). Also, relatively
higher risk scores were observed in the Sub2 group (Figure S3A).

Based on the median of risk score, the glioma patients whose risk scores were higher
than the median were defined as high-risk group and low-risk group was defined in a
similar way in TCGA and CGGA database, respectively (Figure 4E). High expression of
IGF2BP3, GNS, SMC4, and PTTG1 was noticed in high-risk group, while high expression
of RANBP17, ST6GALNAC1, TET1, and KLB in low-risk group (Figure 4E). Meanwhile,
Kaplan–Meier curve indicated that high-risk group conferred worse prognosis (Figure 4F),
which was verified in low grade glioma (LGG) group, glioblastoma multiforme (GBM)
group, TCGA-Sub1, and TCGA-Sub2 (Figure S3B,C). Finally, the time-dependent ROC
presented relatively excellent performance in survival prediction. The AUCs for each ROC
was 0.91 (TCGA, 3 year), 0.88 (TCGA, 5 year), 0.83 (TCGA, 10 year), 0.81 (CGGA, 3 year),
0.83 (CGGA, 5 year), and 0.85 (CGGA, 10 year) (Figure 4G).



Cancers 2021, 13, 1730 9 of 21Cancers 2021, 13, x 9 of 21 
 

 

 
Figure 4. Identification and assessment of an immune-associated RBPs prognostic signature for overall survival in glioma: 
(A) Robust prognostic genes identified through LASSO regression algorithm. (B) Distribution of LASSO coefficients for 
216 genes in the 10-fold cross validation. (C) Forest plot of the prognostic ability of the eight immune-related RBPs in-
cluded in the prognostic signature. (D) A correlation network involving the eight immune-associated RBPs and risk score 
in TCGA. (E) Heatmap and clinicopathologic features of high- and low-risk groups based on the eight immune-associated 
RBPs in the TCGA (left, high risk = 345, low risk = 346) and CGGA (right, high risk = 487, low risk = 483) database. (F) 
Kaplan–Meier curves showing different overall survival of patients in low- and high-risk groups. (G) ROC curves of im-
mune-associated RBPs for predicting the 3/5/10-year overall survival in TCGA (left) and CGGA (right) database. 

Based on the median of risk score, the glioma patients whose risk scores were higher 
than the median were defined as high-risk group and low-risk group was defined in a 
similar way in TCGA and CGGA database, respectively (Figure 4E). High expression of 

Figure 4. Identification and assessment of an immune-associated RBPs prognostic signature for overall survival in glioma:
(A) Robust prognostic genes identified through LASSO regression algorithm. (B) Distribution of LASSO coefficients for 216
genes in the 10-fold cross validation. (C) Forest plot of the prognostic ability of the eight immune-related RBPs included in
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RBPs for predicting the 3/5/10-year overall survival in TCGA (left) and CGGA (right) database.



Cancers 2021, 13, 1730 10 of 21

3.4. Construction of Integrated Model to Predict Survival of Glioma Patients

Next, univariate and multivariate Cox regression analyses were performed to evaluate
the prognostic significance of the eight immune-associated RBPs prognostic signature com-
bined with various clinicopathologic parameters in the TCGA database. Univariate analysis
indicated that age, sex, grade, ATRx, IDH, MGMT promoter, TERT, immune subtypes, and
the prognostic signature were significantly associated with overall survival. Subsequent
multivariate analysis uncovered that age, IDH status, and the eight immune-associated
RBPs prognostic signature were notably correlated with overall survival. Therefore, our
prognostic signature based on eight immune-associated RBPs was proven to be an indepen-
dent prognostic indicator for glioma in TCGA database (Table 1), which have been verified
in CGGA database (Table S2).

Table 1. Univariate and multivariate Cox regression analysis of clinical pathologic features in
TCGA database.

Univariate Analysis Multivariate Analysis

HR (95% CI) p Value HR (95% CI) p Value

Age ≥ Median
vs. < Median) 2.891 (2.38–3.511) <0.001 1.818 (1.186–2.788) 0.006

Sex (Male vs. Female) 1.189 (1.001–1.412) 0.049 1.262 (0.917–1.737) 0.154
Grade (WHO IV
vs. WHO II~III) 4.729 (3.913–5.716) <0.001 1.402 (0.904–2.173) 0.131

ATRX.status
(WT vs. Mutant) 1.911 (1.528–2.389) <0.001 1.095 (0.623–1.924) 0.754

IDH.status
(WT vs. Mutant) 5.032 (4.12–6.146) <0.001 2.28 (1.256–4.139) 0.007

MGMT.promoter
(Methylated

vs. Unmethylated)
2.333 (1.924–2.829) <0.001 0.854 (0.573–1.272) 0.436

TERT.promoter
(WT vs. Mutant) 0.588 (0.44–0.785) <0.001 0.948 (0.558–1.612) 0.845

Immune subtype
(Sub2 vs. Sub1) 3.262 (2.708–3.929) <0.001 1.414 (0.912–2.195) 0.122

Risk (High vs. Low) 4.335 (3.468–5.421) <0.001 1.897 (1.147–3.138) 0.013

To construct a glioma prognosis model suitable for clinical use, we established a
prognostic nomogram to predict 3-, 5-, 10-year overall survival based on the stepwise Cox
regression model in TCGA database. Age, IDH status and Risk score had been included in
the prediction model (Figure 5A). The C-index of the nomogram was 0.849 (95% CI, 0.827 to
0.871). Nomogram prediction and actual observation in TCGA database reached an excel-
lent agreement at the 3-, 5-, and 10-year survival probability after calibration (Figure 5B).
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3.5. Estimation of Tumor-Infiltrating Immune Cells and Prediction of Therapeutic Response to
Immune Checkpoint Inhibitors

Considering that the prognostic model was developed based on immune-associated
RBPs, we consequently investigated whether this model was linked to the tumor immune
microenvironment. Through ESTIMATE algorithm, the high-risk group had significantly
lower tumor purity and higher ESTIMATE Score, immune score and stromal score com-
pared to low-risk group (Figure 6A). A detailed Spearman correlation analysis is showed
in Figure 6B. Among these immune cells, a high-risk score was positively associated with
dendritic cells, macrophages, and neutrophils, whereas negatively associated with B cells
and T cells (Figure 6B,C). Additionally, we detected the expression of HLA family and
found they were significantly increased in high-risk group (Figure 6D). Also, we also
investigated the relationship between the risk index and immune checkpoint and then
discovered that risk score was positively correlated with the expression of CD274 (PD-L1),
CTLA4, HAVCR2, LAG3, and PDCD1 (PD1) (Figure 6D). David A Reardon [31] discovered
that combination therapy of anti-CTLA-4 plus anti-PD-1 resulted in changes of immune
landscape that the proportion of activated CD8+ cells as well as natural killer cells increased
and suppressive immune cells decreased in the tumor microenvironment, which achieved
the therapeutic effect and prolonged tumor-free survival in murine glioblastoma model.
Based on the background hereinbefore, we wondered whether there are differences in
response to immunotherapy between low- and high-risk groups. Next, subclass mapping
algorithm was used to predict the possibility of effective responses to immunotherapy.
Comparing the expression profile of low- and high-risk groups with another published
dataset containing 47 patients with melanoma that responded to immunotherapy [32],
we found that high-risk group tended to respond effectively to immunotherapy such as
anti–PD-1 (Bonferroni corrected p = 0.040) and anti-CTLA-4 therapy (p = 0.040) (Figure 6E).
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Figure 6. Estimation of tumor-infiltrating immune cells and prediction of responses to immune checkpoint inhibitors:
(A) Comparison of tumor purity, estimate score, immune score, and stromal score between low-risk group (n = 346) and
high-risk group (n = 345) in TCGA database. (B) Correlation matrix of risk score, eight immune-associated RBPs and 24
types of tumor-infiltrating immune cells. (C) The expression level of HLA family genes in low- and high-risk groups in
TCGA database. (D) The expression level of CD274 (PD-L1), CTLA4, HAVCR2, LAG3, and PDCD1 (PD1) in low- and
high-risk groups in TCGA database. (E) Sensibility of response to PD1 and CTLA4 inhibitors of patients in low- and
high-risk groups. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

3.6. Somatic Mutation and Copy Number Variations in Different Risk Groups

Previous studies have shown that somatic mutations in tumor-associated genes (EGFR,
IDH1, TP53, NF1, and etc.,) and large regions of CNVs were regarded as major roles in
tumorigenesis and the development of glioma [33–35]. Therefore, we analyzed the somatic
mutations and CNVs from TCGA database to explore the genomic alterations in different
risk groups. With the threshold of p value < 0.05 (Fisher’s exact test) and the mutation
frequency exceeding 20 in one cohort, somatic mutations in different genes were detected
in different risk groups. Mutational genes with high frequency were IDH1, CIC, NOTCH1,
FUBP1, and IDH2 in the low-risk group, while EGFR, PTEN, RB1, TTN, and NF1 in the high-
risk group (Figure 7A,B). Furthermore, we investigated the distribution of co-occurrence
and mutually exclusive mutations in groups, and found that a unique ATRX-IDH1 co-
occurrence and the majority of exclusive mutations had been discovered in high-risk group
(Figure 7C) with significantly elevated tumor mutational burden (TMB) (Figure 7D).
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As for copy number variations, we performed the GISTIC2.0. High frequency deletion
of regions on chromosome (Ch) 1, 4, and 19 has been discovered in low-risk group, which
is consistent with the existing analysis of clinical samples that the glioma patients with
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1p/19q co-deletion tend to have better prognosis [36]. In contrast, widely amplified regions
on Ch7 and frequent deletion of regions on Ch10 have been noticed in high-risk group
(Figure 7E). Taken together, more emphasis was given to the genes whose copy number
variation are predominant. EGFR, CDK4, MDM4, PIK3C2B, and MDM2 were widely
amplified, while CDKN2A and CDKN2B were deleted in the high-risk group (Figure 7F).

3.7. GSVA and GSEA for Different Risk Groups

For further investigation into the potential biological pathways and processes in the
two groups with different degrees of risk, we conducted GSVA and GSEA in TCGA and
CGGA database. As for the results of GSVA enrichment (Figure 8A), we found that critical
pathways associated with tumorigenesis including epithelial mesenchymal transition
(EMT), angiogenesis, apoptosis, DNA repair, G2/M checkpoint, and apical junction have
been enriched in high-risk group. The immune-related pathways such as IL2-STAT5
signaling, interferon gamma response, interferon alpha response, and IL6-JAK-STAT3
signaling were also enriched in this group. Moreover, the GSEA revealed parallel results
that tumor-associated pathways and immune-related pathway were extremely enriched
in the high-risk group (Figure 8B). The detail results of GSVA and GSEA can be found in
Tables S3 and S4.

Cancers 2021, 13, x 15 of 21 
 

 

 

Figure 8. The GSVA and the GSEA for different risk groups: (A) The enrichment of GSVA between the low- and high-risk 
group and the significantly differentially expression pathways validated by “limma” analysis. (B) GSEA plot of major 
gene sets coactivated in both TCGA and CGGA. 

Table 1. Univariate and multivariate Cox regression analysis of clinical pathologic features in TCGA database. 

 Univariate Analysis Multivariate Analysis 
 HR (95% CI) p Value HR (95% CI) p Value 

Age ≥ Median vs. < Median) 2.891 (2.38–3.511) <0.001 1.818 (1.186–2.788) 0.006 
Sex (Male vs. Female) 1.189 (1.001–1.412) 0.049 1.262 (0.917–1.737) 0.154 

Grade (WHO IV vs. WHO II~III) 4.729 (3.913–5.716) <0.001 1.402 (0.904–2.173) 0.131 
ATRX.status (WT vs. Mutant) 1.911 (1.528–2.389) <0.001 1.095 (0.623–1.924) 0.754 
IDH.status (WT vs. Mutant) 5.032 (4.12–6.146) <0.001 2.28 (1.256–4.139) 0.007 

MGMT.promoter (Methylated vs. Un-
methylated) 

2.333 (1.924–2.829) <0.001 0.854 (0.573–1.272) 0.436 

TERT.promoter (WT vs. Mutant) 0.588 (0.44–0.785) <0.001 0.948 (0.558–1.612) 0.845 
Immune subtype (Sub2 vs. Sub1) 3.262 (2.708–3.929) <0.001 1.414 (0.912–2.195) 0.122 

Risk (High vs. Low) 4.335 (3.468–5.421) <0.001 1.897 (1.147–3.138) 0.013 

Figure 8. The GSVA and the GSEA for different risk groups: (A) The enrichment of GSVA between the low- and high-risk
group and the significantly differentially expression pathways validated by “limma” analysis. (B) GSEA plot of major gene
sets coactivated in both TCGA and CGGA.



Cancers 2021, 13, 1730 15 of 21

3.8. The Role of the Eight Immune-Associated RBPs Signature in Predicting the Sensitivity to
Chemotherapeutic Agents

Neurosurgical resection followed by radiotherapy with subsequent chemotherapy is
the standard treatment of glioma so far [37]. Temozolomide has been considered to be the
first-line chemotherapeutic agent in the treatment of glioma. According to the date from
TCGA, glioma patients treated with temozolomide, as a previous study has selected [38],
were divided into effective group (CR: complete response; PR: partial response; SD: stable
disease) and ineffective group (PD: progressive disease). The risk score of each group was
calculated and verified to be statistically significant between two groups (Figure 9A). The
result was that relatively high-risk scores of the temozolomide ineffective group coincided
with the aforementioned research. However, there were still some patients who might
be insensitive to temozolomide or failed temozolomide therapy due to resistance. So, we
used “pRRophetic” package to estimate the chemotherapeutic sensitivity of 138 drugs in
different risk groups [28]. We selected nine chemotherapeutic agents (Bleomycin, Cisplatin,
Cyclopamine, Docetaxel, Doxorubicin, Etoposide, Gemcitabine, Paclitaxel, and Vinblastine)
that might benefit patients in high-risk group and estimated their IC50 values if they were
used to treat patients (Figure 9B). As is known in result 6 (Figure 7) that high frequency
of mutation and amplified copy number variation of EGFR existed and the angiogenesis
pathway was enriched in high-risk group. Small-molecule inhibitors such as Erlotinib and
Lapatinib targeting EGFR as well as Pazopanib and Sunitinib targeting VEGFR were further
screened out, and the estimated IC50 values of these drugs were significantly reduced in
the high-risk group (Figure 9C). Besides, the patients from high-risk group were predicted
to be more sensitive to Metformin (Figure 9D).
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4. Discussion

Glioma derived from neuroepithelium is regarded as the most common and lethal
type of primary brain tumor with an extremely poor prognosis, accounting for about
30 percent of all CNS tumors and 80 percent of all primary malignant brain tumors [1].
GBM accounts for half of glioma cases. Its highly aggressive nature limits the 5-year
survival rate to only 4.7% [39] and the median survival of GBM patients to less than 15
months [40]. According to the WHO classification of tumors of the CNS, malignant adult
diffused gliomas are classified into grades II to IV based on histologic features. In the
2016 edition, IDH mutation and chromosomal co-deletion 1p/19q are integrated into the
traditional glioma [2]. Even though complicated classification criteria are applied for
prognostic evaluation, the prognostic survival boundaries between subtypes are still fuzzy.
At present, an accurate and operable prognostic model is urgently needed in clinic. This
paper timely provides a prognostic signature with high accuracy and great value to clinical
drug application based on TCGA and various algorithms.

Most recently, great breakthroughs have been made by immune checkpoint inhibitors
which dramatically change the treatment landscape for patients with cancer [41]. Yet the
clinical application of checkpoint inhibitors in glioma is up against tremendous challenges
because of the “cold phenotype” of glioma. For finding more effective immunotherapy, a
deeper understanding of the immune characteristics of glioma is particularly important.
A variety of immune cells including macrophages, neutrophils, CD4+ helper T (Th) cells,
regulatory T (T reg) cells, CD8+ cytotoxic T lymphocytes (CTLs), and natural killer (NK)
cells are present in glioma microenvironment [4]. In this study, we retrospectively analyzed
the transcriptome data of glioma patients who were further classified into Sub1 and
Sub2 according to differences in immune cell infiltration. Macrophages, especially M2
macrophages, and neutrophils are dominant in tumor-infiltrating immune cells in the Sub2
with relatively high percentage of immune cell infiltration, while Tcm, Tem, B and TFH
cells mostly infiltrated into Sub1 group. Besides, with relatively low tumor purity, Sub2
gets higher ESTIMATE, immune and stromal score when compared with Sub1, and the
opposite results were observed in Sub1 group.

Tumor-derived cytokines and chemokines are able to reprogram those immune cells
into tumor-associated phenotypes which therefore have profound effects on the progression
and therapeutic resistance. These processes, mediated by multiple RBPs, coordinately
control inflammatory gene expression, providing an efficient way to rapidly respond to
inflammatory mediators and facilitate a coordinated systemic immune and control the
overall status of cells. Given the critical roles of RBPs in immune regulation, potentially
pervasive connections between immune response and RNA regulation are just waiting
for us to discover. Differentially expressed RBP between Sub1 and Sub2 groups were
selected out for further screening, analysis, and construction of a prognostic signature
composed of eight immune-associated RBPs including canonical and non-canonical ones.
Canonical RBPs work by binding to conserved sequence motifs in their target mRNAs
via combinations of structurally well-defined RNA-binding domains (RBDs) [42]. Classic
RBDs include the RNA recognition motif, the K-homology, DEAD/DEAH helicase and
zinc-finger domains [8]. Besides, non-canonical RBPs refers to those proteins which have
not been proved to have classic RBDs or the established domains by direct experimental
evidence but have RNA-binding activity. In our prognostic signature, the IGF2BP3 (insulin
like growth factor 2 mRNA-binding protein 3) and RANBP17(RAN-binding protein-17) are
classic RBPs. IGF2BP3 primarily plays an oncogenic role in various cancers. Over the past
few years, studies have increasingly documented the contribution of IGF2BP3 to tumor
cell proliferation, blocking apoptosis, favoring stemness, promoting migration and drug
resistance, and IGF2BP3 overexpression has been widely associated with adverse patient
outcomes in many different tumors [43]. RANBP17 plays a key role in nuclear localization
signal-dependent protein import. The limited research has shown that high expression of
RANBP17 implied a relatively good prognosis [44].
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Next, according to the risk score of each patient figured out based the prognostic
signature composed of eight immune-associated RBPs, we grouped glioma patients into
two risk (low-risk and high-risk) groups. In TCGA and CGGA databases, we found that the
patients with high risk scores tended to have poor overall survival. In order to explore the
feasibility of the prognostic signature in clinical application, we performed the univariate
and multivariate Cox analyses on the risk score and the clinical indexes of glioma cancer
patients, such as age, sex, grade, and etc. Here, we confirmed that the eight immune-
associated RBPs prognostic signature could be an independent prognostic factor in patients
with glioma. In addition, nomogram including our prognostic signature showed the best
performance in predicting 3-, 5- and 10-year OS, which might help guide the individualized
treatment of glioma patients.

Furthermore, we researched on the relation of the eight immune-associated RBPs prog-
nostic signature to immune microenvironment. The high-risk group had significantly lower
tumor purity and higher ESTIMATE Score, immune score and stromal score compared
to low-risk group. For the type of infiltrating immune cells, high-risk scores were mostly
positively associated with the degree of infiltration of dendritic cells, macrophages, and
neutrophils, whereas negatively associated with B cells and T cells. In the immune microen-
vironment of glioma, tumor-associated macrophages (TAMs) are major tumor-infiltrating
immune cells including marrow-derived macrophages and brain resident microglia [45]. Al-
though macrophages should be able to kill tumor cells, immunosuppressive microenviron-
ment most often polarizes TAMs into tumor-supporting cells (M2-like macrophages) rather
than pro-inflammatory subtypes (M1-like macrophages), which promote immunosuppres-
sion, angiogenesis, and extracellular matrix [46,47]. Contrary to the pro-inflammatory
function during infections, tumor-associated neutrophils (TANs) promotes tumor progres-
sion malignancy by mediating angiogenesis [48]. When it comes to a variety of T cells, as
the key component of the anti-tumor immune response, tumor-infiltrating lymphocytes
represented by CD4+ Th cells and CD8+ CTLs are only present in remarkably low numbers
in the CNS. Moreover, T reg cells in the glioma microenvironment mediate immunosuppres-
sive effects by exhausting CTLs [49]. CD8+ Tcm cells derived from naive T cells stimulated
by antigens are responsible for long-term memory of immune response. When received the
same stimulus, a large number of CD8+ Tem cells against the same antigens can be cloned
from CD8+ Tcm cells and then differentiate into CD8+ effector T cells that are powerful
tumor killers. Klebanoff CA et al. [50] first demonstrated that tumor-reactive CD8+ Tcm
cells have superior anti-tumor ability. Besides, NK cells are usually in a nonfunctional
state due to excessive immunosuppression in glioma [4]. Additionally, we detected the
expression of HLA family and found they were significantly increased in high-risk group.
Also, we also investigated the relationship between the risk score and immune checkpoint
biomarkers and then discovered that the expression of CD274 (PD-L1), CTLA4, HAVCR2,
LAG3, and PDCD1 (PD1) was increased in the high-risk group. The prediction of the
anti-PD-1 and anti-CTLA-4 treatment response showed that the patients in high-risk group
tended to respond effectively to immunotherapy.

Based on the risk score, we further explored TMB, somatic mutation, CNVs, and en-
richment pathway. EGFR was one of the first oncogenes identified in GBM and remains one
of the most attractive therapeutic targets. Genomic alterations in EGFR are present in 57%
of patients and are strikingly diverse, including gene amplification, rearrangements, and
point mutations [51]. In the high-risk group, we found EGFR with high frequency mutation
and wide amplification. In addition, GSVA analyses showed that angiogenesis pathway
was enriched in the high-risk group. In the tumor microenvironment, IL-6/JAK/STAT3
signaling induced the expression of factors that promotes angiogenesis such as VEGF
and invasiveness such as matrix metalloproteinases [52], while strongly suppressing the
antitumor immune response [53]. TAMs have been described as potent EMT inducers in
numerous independent studies. TAMs accordingly produce multiple growth factors (HGF,
EGF, TGF, PDGF, etc.,) and inflammatory cytokines (IL-1β, IL-6, and TNF-α) that each
can induce EMT in cancer cells [54,55]. In predicting the sensitivity to chemotherapeutic
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agents, small-molecule inhibitors such as Erlotinib and Lapatinib targeting EGFR as well
as Pazopanib and Sunitinib targeting VEGFR were further screened out, and the estimated
IC50 values of these drugs were significantly reduced in the high-risk group. Additionally,
the combination of a PD-1 inhibitor and VEGF inhibitor was found to be tolerable and
promising in animal and clinical models [56]. This study demonstrated that a novel signa-
ture constructed by immune-associated RBPs was valuable in predicting the survival of
patients with glioma and might help in directing the selection of chemotherapeutic agents
and distinguishing those who could benefit from anti-tumor immunotherapy.

Our study still has several limitations. First, we only used the CGGA databases to
validated the prognostic risk model and therefore more independent glioma database
should be included to confirm the predictive capacity of our findings. Second, how do the
immune-associated RBPs identified in this study, especially eight RBPs in our prognostic
signature, regulate the infiltration of immune cell should be confirmed by in vitro and
in vivo experiments and deserve further study.

5. Conclusions

In summary, our study provides broad molecular signatures for further functional and
therapeutic investigations of RBPs in glioma microenvironment, and represents a potential
systemic approach to characterize key proteins in glioma pathogenesis and therapeutic
responses.
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