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Simple Summary: Epidemiological and experimental studies have demonstrated that aspirin (acetyl-
salicylic acid) may prevent the incidence of some types of human cancer, including colorectal cancer
and hepatocellular carcinoma (HCC). In addition, preclinical studies indicate that aspirin in combina-
tion with other treatments may achieve a more significant anti-cancer effect for established tumors.
This study aims to improve the anti-cancer effect of aspirin by targeting signaling pathways related
to aspirin and its targets. We find that aspirin may induce cAMP–PKA–CREB/ATF1 signaling in
HCC via AMPK and its downstream target carbamoyl-phosphate synthase 1 (CPS1). Blockade of
PKA–CREB/ATF1 signaling by the natural agent berbamine could sensitize HCC to aspirin. This
research indicates that the combination of two inexpensive drugs, aspirin and berbamine, holds
promise in preventing and treating HCC.

Abstract: Aspirin can prevent or inhibit inflammation-related cancers, such as colorectal cancer and
hepatocellular carcinoma (HCC). However, the effectiveness of chemotherapy may be compromised
by activating oncogenic pathways in cancer cells. Elucidation of such chemoresistance mechanisms
is crucial to developing novel strategies to maximize the anti-cancer effects of aspirin. Here, we
report that aspirin markedly induces CREB/ATF1 phosphorylation in HCC cells, which compro-
mises aspirin’s anti-HCC effect. Inhibition of AMP-activated protein kinase (AMPK) abrogates
the induction of CREB/ATF1 phosphorylation by aspirin. Mechanistically, activation of AMPK by
aspirin results in decreased expression of the urea cycle enzyme carbamoyl-phosphate synthase 1
(CPS1) in HCC cells and xenografts. Treatment with aspirin or CPS1 knockdown stimulates soluble
adenylyl cyclase expression, thereby increasing cyclic AMP (cAMP) synthesis and stimulating PKA–
CREB/ATF1 signaling. Importantly, abrogation of aspirin-induced CREB/ATF1 phosphorylation
could sensitize HCC to aspirin. The bis-benzylisoquinoline alkaloid berbamine suppresses the ex-
pression of cancerous inhibitor of protein phosphatase 2A (CIP2A), leading to protein phosphatase
2A-mediated downregulation of CREB/ATF1 phosphorylation. The combination of berbamine and
aspirin significantly inhibits HCC in vitro and in vivo. These data demonstrate that the regulation
of cAMP-PKA-CREB/ATF1 signaling represents a noncanonical function of CPS1. Targeting the
PKA–CREB/ATF1 axis may be a strategy to improve the therapeutic effects of aspirin on HCC.

Keywords: acetylsalicylic acid; aspirin; AMPK; CREB; drug–drug synergism; liver cancer

1. Introduction

Epidemiological and experimental studies have demonstrated that the nonsteroidal
anti-inflammatory agent aspirin (acetylsalicylic acid) may prevent the incidence of human
cancer, such as colorectal cancer and hepatocellular carcinoma (HCC) [1–3]. Aspirin use
not only reduces the risk for liver fibrosis, an established premalignant disease [4], but
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also reduces the risk for HCC in hepatitis B/C virus carriers [5,6]. In addition, preclinical
studies indicate that aspirin, especially in combination with sorafenib, can suppress HCC
growth and metastasis [7–10]. The mechanisms underpinning the anti-cancer effects of
aspirin are complex. Inhibition of platelet activation may contribute, in part, to the chemo-
preventive and antimetastatic properties of aspirin [11]. While cyclooxygenases (COX) and
NFkB are well-known targets of aspirin for its platelet-suppressive and cancer-preventive
effects, aspirin also regulates the activity of AMP-activated protein kinase (AMPK) and
PFKFB3 [7,9,12–14]. Moreover, the acetyl group of aspirin may be transferred to proteins,
such as COX1/2 and histone, leading to protein acetylation and changed activity [15,16].
In contrast, aspirin may inhibit the acetylation of some proteins by suppressing the acetyl-
transferase EP300 [17].

As one of the targets of aspirin, AMPK is an evolutionarily conserved energy sensor
and a signal transducer that regulates energy homeostasis, autophagy and redox balance
in diverse organisms [18]. Hence, AMPK is an attractive therapeutic target for metabolic
diseases and cancer [19]. However, accumulating evidence indicates that AMPK has multi-
ple substrates in diverse processes [20] and plays tumor-suppressive or tumor-promoting
roles in a context-dependent manner [21]. AMPK can inhibit mTOR and protein synthesis
by phosphorylating tuberous sclerosis complex 2 (TSC2) and raptor, which may contribute
to aspirin’s anti-cancer effects [13,14,22,23]. In addition, AMPK promotes CDKN1A/B and
p53 phosphorylation, thereby inducing cell cycle arrest [24]. On the other hand, AMPK
may inhibit stresses-induced cell death. For example, AMPK can relieve oxidative stress by
inhibiting fatty acid synthesis [25]. The growth of Kras-mutated lung cancer is promoted
by AMPK through activating the TFE3 transcription factor, thereby stimulating lysosome
biogenesis [26]. Given that AMPK has both tumor-suppressive and tumor-promoting
effects, blockade of the unwanted tumor-promoting effects of AMPK may potentiate the
anti-cancer effects of aspirin.

A previous study demonstrates that AMPK downregulates carbamoyl phosphate
synthase 1 (CPS1) in Kras-mutated non-small-cell lung cancer (NSCLC) cells [27]. CPS1, or-
nithine transcarbamylase, argininosuccinate synthase, argininosuccinate lyase and arginase
drive the urea cycle, a major metabolic pathway to prevent ammonia toxicity [28]. Ex-
cept for the disposal of excess nitrogen, multiple metabolic intermediates are produced
in the urea cycle to enhance polyamines and pyrimidine synthesis and stimulate cancer
cell proliferation. Although ammonia is a highly toxic metabolic product [29], it is an
important nitrogen source of tumor cells that are recycled and incorporated into glutamate
to support the synthesis of lipids, amino acids, nucleotides and antioxidants [30]. CPS1 is
only expressed in the liver but not other healthy tissues. However, CPS1 is overexpressed
in a subset of non-small cell lung cancer (NSCLC), colon cancer, glioblastoma and cholan-
giocarcinoma, in which it is associated with poor prognosis [27,31]. In contrast, CPS1
expression is downregulated in HCC [32]. The detrimental effects of CPS1 loss on HCC
remain to be characterized.

Thus far, it is unclear whether AMPK regulates CPS1 in HCC. In addition, the effect of
aspirin on CPS1 remains elusive. Here, we report that aspirin inhibits CPS1 expression in
HCC through activating AMPK. Importantly, downregulation of CPS1 leads to an increase
in the levels of cyclic AMP (cAMP) and activation of protein kinase A (PKA)-cAMP
response element-binding protein (CREB)/ATF1 axis, which compromises the anti-cancer
effects of aspirin. Previous studies have demonstrated that cAMP–PKA–CREB signaling
has important roles in various human cancers [33]. Moreover, PKA activation is regulated
by other oncogenic protein kinases, such as insulin-like growth factor receptors [34]. Our
current study demonstrates that the regulation of cAMP/PKA/CREB signaling represents
a noncanonical function of CPS1. In addition, abrogation of aspirin-induced CREB/ATF1
phosphorylation can sensitize HCC to aspirin. Berbamine, a kind of bis-benzylisoquinoline
alkaloid [35], can suppress CREB/ATF1 phosphorylation and synergize with aspirin to
inhibit HCC.
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2. Materials and Methods

The effects of aspirin on AMPK and CREB/ATF1 phosphorylation, CPS1 and sAC
expression in HCC cells were detected by Western blotting. The effects of aspirin on CREB
activity were detected by CREB luciferase reporter assay. In addition, we took advantage
of RNA interference to detect the involvement of AMPK in aspirin-induced CREB/ATF1
phosphorylation, c-Jun transcription, CPS1 and sAC expression, and increase in intracellu-
lar cAMP levels. Quantitative reverse transcription-PCR was used to detect aspirin’s effects
on c-Jun, c-Fos, CPS1 and sAC transcription. In addition, the effect of aspirin or CPS1
knockdown on PKA activity was detected by a non-radioactive cAMP-dependent protein
kinase assay. The effect of aspirin or CPS1 knockdown on intracellular cAMP concentration
was detected by ELISA. CCK-8, EdU and colony formation assays were used to detect
the effects of aspirin and berbamine on HCC cell viability and proliferation. The effect
of aspirin and berbamine on HCC growth in vivo was determined in a xenograft mouse
model. Finally, the effects of aspirin and berbamine on tumor cell proliferation, CPS1
expression and CREB/ATF1 phosphorylation were detected by immunohistochemical
analysis of xenograft tumors.

2.1. Cell Culture

HepG2 (RRID:CVCL_0027) and Hep3B (RRID:CVCL_0326) cell lines were obtained
from Cell Lines Bank, Chinese Academy of Science (Shanghai, China). The cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% FBS, 100 mg/mL
penicillin G, and 50 g/mL streptomycin at 37 ◦C in a humidified atmosphere containing
5% CO2. Experiments were performed within 20 passages after cell thawing.

2.2. Reagents and Antibodies

Details are presented in Tables S1 and S2.

2.3. RNA Interference

All siRNAs were purchased from GenePharma (Shanghai, China). Proliferating
cells were incubated with 50 nM siRNA in serum-free DMEM containing lipofectamine
2000. 4–6 h later, cells were incubated in complete DMEM for 48 h, followed by further
experiments. The siRNA sequences are shown in Table S3.

2.4. Quantitative Real-Time PCR Analysis

A cell total RNA isolation kit (Foregene, Chengdu, China) was utilized to extract
total RNAs from cultured cells. Subsequently, RNA was reversely transcribed into cDNAs
using oligo dT primers and the HiScript Q RT SuperMix (Vazyme, Nanjing, China). The
quantitative real-time PCR assay was carried out using the SYBR master mix (Vazyme).
The mRNA levels of GAPDH were detected as an internal control. All primer sequences
are shown in Table S4.

2.5. Western Blotting

Total protein was extracted using RIPA buffer supplemented with protease inhibitors
and a phosphatase inhibitor cocktail. About 30 µg of proteins were subjected to SDS–PAGE,
followed by transferring to PVDF membrane and incubating with primary or secondary
antibodies as previously described [9]. Detection was performed with BeyoECL Plus
(Beyotime, Shanghai, China). Images were taken by Fusion Fx (Vilber Lourmat, France)
imaging system. The blots were quantified by Image J software. File S1 shows the original
Western blots used for this manuscript.

2.6. CREB Luciferase Reporter Assay

Cells were seeded in 24-well plates and then transfected with the CREB luciferase
reporter plasmid that contains multiple CREB-binding sites, while other potential transcrip-
tion factors-binding sites were mutated (Genomeditech, Shanghai, China). As an internal
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control, the renilla luciferase plasmid (pRL-TK) was co-transfected. The cells were treated
with or without 5 mM aspirin for 24 h. The luciferase activities were measured using a
dual-luciferase reporter assay kit (Vazyme, Nanjing, China). The relative CREB reporter
activities were normalized by the renilla luciferase values.

2.7. Intracellular cAMP Measurements

HepG2 cells were treated with vehicle or 5 mM aspirin for 1 h prior to measuring
cAMP. For CPS1 knockdown, the cells were treated with siControl or siCPS1 for 48 h
prior to measuring cAMP. For AMPKα1 knockdown, cells were treated with siControl or
siAMPKα1 for 48 h, followed by treatment with or without 5 mM aspirin for 1 h prior to
measuring cAMP. After treatment, intracellular cAMP concentration was detected with
the cyclic AMP ELISA Kit (Cayman Chemical, Ann Arbor, MI, USA) according to the
manufacturer’s protocol. Briefly, cells were washed with PBS and incubated with 0.1 M
HCl at room temperature. Twenty minutes later, the cells were scraped off the plate and
centrifuged at 1000× g to collect the supernatant. The supernatant was diluted with ELISA
buffer for neutralization. Fifty microliters of the supernatant were used for measurement.
The plate was incubated at 4 ◦C for 18 h, followed by developing with Ellman’s Reagent in
the dark for 90 min. Absorbance was detected by a microplate reader at a wavelength of
420 nm. Protein concentrations of cell lysates were measured with BCA Protein Assay. The
cAMP levels were normalized to protein concentrations.

2.8. PKA Activity Assay

HepG2 cells were treated with or without aspirin for 48 h prior to measuring PKA
activity. For CPS1 knockdown, the cells were transfected with siControl or siCPS1 for 48 h.
After treatment, the cells were suspended in a cold PKA extraction buffer and homogenized.
The lysate was centrifuged at 14,000× g for 5 min at 4 ◦C, and the supernatant was saved.
PKA activity was detected by the PepTagR non-radioactive cAMP-dependent protein
kinase assay (Promega, Madison, WI, USA) according to the manufacturer’s protocol.
The phosphorylated and non-phosphorylated dye-labeled kemptide were separated in
a 0.8% agarose gel. The gel was photographed on a UV-illuminator. In addition, the
phosphorylated band in the gel was cut and dissolved in Gel Solubilization Solution and
glacial acetic acid, followed by detecting the fluorescence values at the ex/em wavelength
of 530/590 nm.

2.9. Cell Growth Assay

Cells were seeded in a 96-well plate. After treating with aspirin and/or berbamine,
the cells were washed with PBS, followed by adding CCK8 reagent (Dojindo Laboratory,
Kumamoto, Japan) into the cultures. Two hours later, the absorbance was measured by
a microplate reader at 450 nm wavelength. The IC50 values were calculated using the
GraphPad Prism software. The synergism of aspirin and berbamine in inhibiting HCC
cell growth was determined. The combination index (CI) values were calculated using the
CalcuSyn software. Synergism was indicated by a CI value less than 0.9. The less CI value
indicated a stronger synergism.

2.10. Colony Formation Assay

HepG2 cells were seeded in 6-well plates at 3000 cells per well. The cells were treated
with or without 2.5 mM aspirin and 5 µM berbamine. 48 h later, the cells were incubated in
the absence of drugs and allowed to form colonies for 7 days. The colonies were stained
with 2% crystal violet and then counted. The colony number was analyzed by Image J.

2.11. EdU Assay

Cells seeded in 96-well plates were treated with 5 mM aspirin with or without 35 µM
berbamine for 48 h. After treatment, EdU staining was performed using a Cell-LightTM
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EdU Apollo567 in vitro kit (RiboBio, Guangzhou, China). The percentage of proliferating
cells was quantified by analyzing the images in random fields.

2.12. Xenograft Tumor Growth

HepG2 cells (4 × 106 in 125 µL PBS) were subcutaneously injected into 5-week-old
BALB/c nude mice. About one week later, the mice with tumors were randomly divided
into 4 groups, with 8 mice per group. The mice were orally administrated with aspirin
(100 mg/kg/day), berbamine (50 mg/kg/day) or both as previously described [7–9,13,33].
The control group was treated with a vehicle. Tumor size was measured every 3 days.
Tumor volume (v) was calculated using the formula: v = (length × width2)/2. Twenty-six
days after inoculation of cancer cells, all mice were sacrificed. The tumors were collected
and stored for subsequent analysis. All procedures adhered to the guidelines approved by
the Animal Ethics Committee of the West China Hospital of Sichuan University (approval
No. 2020227A).

2.13. Immunohistochemistry

Immunohistochemistry (IHC) of tumor tissue sections was performed as previously
described [9]. Briefly, histologic sections were mounted on slides and deparaffinized,
followed by rehydration. The slides were incubated with anti-CPS1, anti-PCNA or anti-
p-CREB/ATF1 antibody overnight at 4 ◦C, and then incubated with secondary antibody
at room temperature. The slides were further incubated with streptavidin/horseradish
peroxidase for 15 min, stained with diaminobenzidine chromogen, and counterstained
with hematoxylin.

2.14. Statistical Analysis

One-way analysis of variance with post hoc tests was used in statistical analysis of
mRNA expression, cAMP levels, PKA activity, cell proliferation rate, and colony number.
CREB luciferase reporter activity, tumor volume and weight were statistically analyzed
by unpaired Student’s t-tests (two-tailed). All statistical analyses were conducted using
GraphPad Prism, version 7.0. Differences were considered statistically significant if p < 0.05.

3. Results
3.1. Aspirin Induces CREB/ATF1 Phosphorylation and Activation in HCC Cells through AMPK

The transcription factors CREB and its family member ATF1 may promote tumorigen-
esis and chemoresistance and can be activated by PKA [33]. PKA activity can be promoted
by both COX-prostaglandin E2 (PGE2)-EP2 receptor signaling and AMPK [36,37]. Since
aspirin is a COX inhibitor and an AMPK activator [1,9,12,13], it needs to determine how
aspirin may eventually regulate CREB/ATF1 in HCC cells. To this end, HepG2 cells
were treated with or without aspirin, followed by Western blot analysis of CREB/ATF1
phosphorylation. Aspirin induced the phosphorylation of CREB and ATF1 in a time-
and dose-dependent manner (Figure 1a,b). Similar effects were detected in Hep3B cells
(Figure 1a,b). Treatment of HepG2 cells with the AMPK agonist AICAR also resulted in
CREB/ATF1 phosphorylation (Figure S1). Moreover, AMPKα1 knockdown abrogated
the induction of CREB/ATF1 phosphorylation by aspirin in both HepG2 and Hep3B cells
(Figure 1c). Together, these data demonstrate that aspirin induces CREB/ATF1 phosphory-
lation through AMPK.

Next, we detected the effects of aspirin on CREB activity using a CREB luciferase
reporter that harbors multiple CREB-binding sites. Treatment of HepG2 and Hep3B cells
with aspirin significantly increased the CREB-responsive promoter activity (Figure 1d). In
addition, we detected the effects of aspirin on CREB/ATF1 targets. Treatment of HepG2
and Hep3B cells with aspirin led to a drastic increase in c-Jun transcription and a moderate
increase in c-Fos transcription (Figure 1e). Knockdown of CREB and ATF1 abrogated the
induction of c-Jun transcription by aspirin (Figure 1f). Moreover, AMPKα1 knockdown
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abrogated the induction of c-Jun transcription by aspirin (Figure S2). Together, these data
indicate that aspirin upregulates the transcriptional activity of CREB/ATF1.
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3.2. AMPK-Mediated Increase in cAMP Levels and PKA Activity Contributes to the Induction of
CREB/ATF1 Phosphorylation by Aspirin

The CREB family transcription factors can be activated by multiple kinases, including
Akt, Erk, PKA, p38 and calmodulin kinase (CAMK), some of which may be indirectly
activated by AMPK [37]. To determine the kinases that may be involved in the induction
of CREB/ATF1 phosphorylation by aspirin, HepG2 cells were treated with or without
inhibitors of Akt, MEK, PKA, p38 and CAMK, followed by Western blot analysis of
CREB/ATF1 phosphorylation. Among these kinases inhibitors, the PKA inhibitor H-89
and the p38 inhibitor SB203580 abrogated the induction of CREB/ATF1 phosphorylation
by aspirin (Figure S3). Meanwhile, H-89 abrogated the induction of CREB/ATF1 phospho-
rylation by the AMPK agonist AICAR (Figure S4). These data indicate that PKA may act
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downstream of AMPK to mediate the induction of CREB/ATF1 phosphorylation by aspirin.
Next, we confirmed that the PKA inhibitor H89 abrogated the induction of CREB/ATF1
phosphorylation by aspirin in both HepG2 and Hep3B cells (Figure 2a). To determine
aspirin’s effect on PKA activity, HepG2 cells were treated with or without aspirin, followed
by detection of PKA activity. Aspirin enhanced PKA activity in a dose-dependent manner
(Figure 2b,c). Given that PKA is activated by cAMP, we then detected if aspirin increased
cAMP levels in HCC cells. Indeed, treatment of HepG2 cells with aspirin led to an increase
in cAMP levels (Figure 2d). Knockdown of AMPKα1 abrogated the induction of cAMP by
aspirin (Figure 2d). Collectively, these data indicate that AMPK mediates the induction of
cAMP synthesis and PKA activation by aspirin.
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Figure 2. Aspirin activates the sAC–cAMP–PKA–CREB/ATF1 pathway through AMPK. (a) HepG2
and Hep3B cells were incubated with H-89 and/or aspirin for 32 h, followed by western blot analysis
with indicated antibodies. The relative levels of p-CREB/ATF1 normalized to total CREB/ATF1
were shown. (b) HepG2 cells were treated with aspirin for 48 h, followed by PKA kinase assay. The
phosphorylated and unphosphorylated PKA substrate kemptide were separated in agarose gel. The
positive and negative controls were shown. (c) The phosphorylated band in b was cut and dissolved,
followed by detecting the fluorescence values. The PKA activity in the PKA-positive group was set as
100%. The PKA activity in aspirin-treated and vehicle-treated groups was plotted. Values represent
means ± SD (n = 3). *, p < 0.05. (d) HepG2 cells were transfected with siControl or siAMPKα1 and
treated with or without aspirin for 1 h, followed by cAMP assays. The relative cAMP levels were
plotted. Values represent means ± SD (n = 3). *, p < 0.05. n.s., not significant. (e) HepG2 and Hep3B
cells were treated with aspirin for 48 h, followed by real-time RT–PCR analysis of sAC transcription.
The relative mRNA levels were plotted. Values represent means ± SD (n = 3). *, p < 0.05. (f) HepG2
cells were transfected with siControl or si-sAC and treated with or without aspirin for 32 h, followed
by Western blot analysis with indicated antibodies. The relative levels of p-CREB/ATF1 normalized
to total CREB/ATF1, and relative levels of sAC normalized to β-actin were shown.
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Soluble adenylyl cyclase (sAC) is one of the enzymes that catalyze cAMP synthesis [34].
We then detected whether the induction of CREB/ATF1 phosphorylation by aspirin is
dependent on sAC. Treatment of HepG2 cells with aspirin led to increased sAC expression
in both HepG2 and Hep3B cells (Figure 2e). Furthermore, sAC knockdown compromised
the induction of CREB/ATF1 phosphorylation by aspirin (Figure 2f). Together, these
data indicate that the induction of CREB/ATF1 phosphorylation by aspirin is dependent
on sAC.

3.3. Aspirin Downregulates CPS1 and Increases cAMP Synthesis in HCC Cells

The expression and activation of sAC are regulated by intracellular bicarbonate levels
(HCO3

−) [38]. We found that treatment with lactic acid, the HCO3
− neutralizer, abrogated

the induction of CREB/ATF1 phosphorylation by aspirin in both HepG2 and Hep3B cells
(Figure 3a), suggesting that bicarbonate may mediate the induction of the sAC–cAMP–
CREB axis by aspirin. It is known that carbonic anhydrase (CA) is responsible for the
production of bicarbonate. However, aspirin did not affect the expression of the tumor-
associated CA2, CA9 and CA12 (Figure S5). Of note, the urea cycle enzyme CPS1 catalyzes
the condensation of ammonia with bicarbonate into carbamoyl phosphate. Hence, CPS1
may deplete both ammonia and bicarbonate. We then detected the effect of aspirin on
CPS1. Treatment of HepG2 and Hep3B cells with aspirin led to decreased CPS1 expression
at both mRNA and protein levels (Figure 3b,c). A previous study demonstrated that
AMPK inactivation might lead to an increase in FOXA1-dependent CPS1 transcription
in KRAS/LKB1-mutant NSCLC cells [27]. We then detected the effect of AMPK on CPS1
expression in HCC cells. The AMPK agonist AICAR inhibited CPS1 expression in both
HepG2 and Hep3B cells (Figure 3d). AMPK knockdown abrogated the downregulation
of CPS1 and upregulation of sAC by aspirin (Figure 3e), suggesting that aspirin inhibited
CPS1 expression and promoted sAC expression through AMPK. Except for bicarbonate
accumulation, a rise in intracellular ammonia levels may result from decreased CPS1
expression. Treatment of HepG2 cells with the ammonia donor NH4Cl did not induce
CREB/ATF1 phosphorylation, suggesting that ammonia is not attributable to CREB/ATF1
phosphorylation (Figure S6).

We further determined whether CPS1 regulated the sAC–cAMP–PKA–CREB pathway.
CPS1 knockdown led to an increase in sAC expression and CREB/ATF1 phosphorylation
in both HepG2 and Hep3B cells (Figure 3f). In addition, CPS1 knockdown led to an increase
in the levels of cAMP and PKA activity (Figure 3g,h). These data suggest that CPS1 is a
negative regulator of the cAMP–PKA–CREB/ATF1 signaling axis.
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Figure 3. Aspirin inhibits carbamoyl phosphate synthase 1 (CPS1) expression through AMPK activation, and CPS1
knockdown leads to increased cAMP levels, PKA activity and CREB/ATF1 phosphorylation in hepatocellular carcinoma
(HCC) cells. (a) HepG2 and Hep3B cells were incubated with or without aspirin. Thirty hours later, the cells were treated
with lactic acid for another 2 h, followed by Western blot analysis of indicated proteins. The relative levels of p-CREB/ATF1
normalized to total CREB/ATF1 were shown. (b) HepG2 and Hep3B cells were treated with or without aspirin for 48 h,
followed by real-time RT–PCR analysis of CPS1 transcription. The relative mRNA levels were plotted. Values represent
means ± SD (n = 3). **, p < 0.01, ***, p < 0.001. (c) HepG2 and Hep3B cells were treated with aspirin for indicated hours,
followed by Western blot analysis of CPS1 expression. The relative levels of CPS1 were shown. (d) HepG2 and Hep3B
cells were treated with AICAR for indicated hours, followed by Western blot analysis of indicated proteins. The relative
levels of p-CREB/ATF1 normalized to total CREB/ATF1, and the relative levels of CPS1 normalized to β-actin were shown.
(e) HepG2 and Hep3B cells were transfected with siControl or siAMPKα1 and treated with or without aspirin for 48 h,
followed by Western blot analysis of indicated proteins. The relative levels of CPS1, sAC and AMPKα1 normalized to
β-actin were shown. (f) HepG2 and Hep3B cells were transfected with siControl or two different siRNA duplexes against
CPS1 (siCPS1#1, siCPS1#2) for 48 h, followed by Western blot analysis with indicated antibodies. The relative levels of
p-CREB/ATF1 normalized to total CREB/ATF1, and the relative levels of CPS1, sAC normalized to β-actin were shown. (g)
HepG2 cells were transfected with siControl or siCPS1#1 for 48 h, followed by cAMP assays. The relative cAMP levels were
plotted. Values represent means ± SD (n = 3). **, p < 0.01. (h) HepG2 cells were transfected with siControl or siCPS1#1
for 48 h, followed by PKA kinase assay. PKA-phosphorylated substrate migrated toward the anode (+), whereas the
unphosphorylated substrate migrated toward the cathode (-).

3.4. CREB/ATF1 Knockdown Sensitizes HCC Cells to Aspirin

To determine the effect of CREB/ATF1 on the sensitivity of HCC cells to aspirin,
HepG2 and Hep3B cells were transfected with siControl or siCREB/ATF1, followed by
treatment with or without aspirin. Forty-eight hours later, cell growth was detected by CCK-
8 assays. CREB/ATF1 knockdown sensitized HepG2 and Hep3B cells to aspirin (Figure 4a).
In addition, EdU assays demonstrated that aspirin in combination with CREB/ATF1
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knockdown significantly inhibited both HepG2 and Hep3B cell proliferation (Figure 4b,c).
These data suggest that CREB/ATF1 activation may antagonize the anti-cancer effect of
aspirin, and targeting CREB/ATF1 may be a strategy to sensitize HCC cells to aspirin.
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Figure 4. CREB/ATF1 knockdown sensitizes HCC cells to aspirin. (a) HepG2 and Hep3B cells were transfected with
siControl or siCREB/ATF1 and treated with or without aspirin for 48 h, followed by CCK-8 assays. The relative cell growth
was plotted. Values represent means ± SD (n = 5). ***, p < 0.001. The efficiency of CREB and ATF1 knockdown was detected
by Western blotting. (b,c) HepG2 and Hep3B cells were transfected with siControl or siCREB/ATF1 and treated with or
without aspirin for 48 h, followed by detecting proliferative cells with EdU assays. In addition, all cells were labeled with
Hoechst33258. The proliferation rate was plotted. Values represent means ± SD (n = 3). *, p < 0.05, **, p < 0.01, ***, p < 0.001.

3.5. The Natural Agent Berbamine Inhibits CREB/ATF1 Phosphorylation and Sensitizes HCC
Cells to Aspirin

Aspirin, in combination with other treatments, may achieve a more significant anti-
cancer effect for established tumors [9,14]. Abrogation of the induction of CREB/ATF1
phosphorylation by aspirin may be a strategy to improve the anti-HCC effect of aspirin.
Indeed, the combination of aspirin and the PKA inhibitor H-89 more significantly inhibited
HepG2 cell growth than the single-agent (Figure 5a). Since H-89 is not a good candidate for
clinical use, we then searched other drugs that might block CREB/ATF1 and synergize with
aspirin to inhibit HCC. We found that berbamine, a natural agent that has been used as a
traditional medicine in clinics to ameliorate leukopenia caused by cancer radiotherapy and
chemotherapy [39], could inhibit the induction of CREB/ATF1 phosphorylation by aspirin
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in HepG2 and Hep3B cells (Figure 5b). Next, we determined the effect of combining aspirin
and berbamine on HepG2 cell growth. Indeed, berbamine synergized with aspirin to inhibit
HepG2 cell growth (Figure 5c,d). All combination index (CI) values were less than 0.9,
and the CI values were less than 0.5 at certain concentrations, indicating that the effect of
aspirin and berbamine in HepG2 cell growth is synergistic rather than additive (Figure 5d).
Meanwhile, the combination of aspirin and berbamine significantly inhibited HepG2 cell
colony formation than each agent alone (Figure 5e). Together, these data demonstrate that
aspirin and berbamine synergistically inhibit HCC cell growth. While berbamine is also a
CAMK2G inhibitor [35], CAMK2G knockdown neither sensitized Hep3B cells to aspirin
nor did it abrogate the induction of CREB/ATF1 phosphorylation (Figure S7), indicating
that CAMK2G inhibition is less likely attributable to the synergism between aspirin and
berbamine.
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6a). Given that the cancerous inhibitor of PP2A (CIP2A) is an endogenous PP2A inhibitor 
[40], we detected the effect of berbamine on CIP2A expression. Treatment with berbamine 
inhibited the expression of CIP2A in both HepG2 and Hep3B cells (Figure 6b). 
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Figure 5. Berbamine inhibits the induction of CREB/ATF1 phosphorylation by aspirin and synergizes with aspirin to inhibit
HCC cell growth. (a) HepG2 cells were treated with aspirin alone or in combination with H-89 for 48 h, followed by CCK-8
assays. The relative cell growth was plotted. Values represent means ± SD (n = 5). ***, p < 0.001, compared to other groups.
(b) HepG2 and Hep3B cells were treated with aspirin individually or in combination with berbamine for 32 h, followed
by Western blot analysis of indicated proteins. The relative levels of p-CREB/ATF1 normalized to total CREB/ATF1 were
shown. (c) HepG2 cells were treated with aspirin alone or in combination with berbamine for 48 h, followed by CCK-8
assays. The relative cell growth was plotted. The cell viability in aspirin- and berbamine-untreated group was set as
100%. Values represent means ± SD (n = 5). ***, p < 0.001, compared to mono-treatment. (d) The combination index (CI)
was identified using CalcuSyn software and shown by the Fa-CI plot. (e) HepG2 cells were treated with aspirin and/or
berbamine for 48 h. The cells were incubated for another 7 days, followed by crystal violet staining. The relative colony
formation was plotted. Values represent means ± SD (n = 3). *, p < 0.05. ***, p < 0.001.

Next, we investigated the mechanisms underlying the inhibition of CREB/ATF1
phosphorylation by berbamine. While berbamine did not inhibit PKA activity (Figure S8),
treatment with the protein phosphatase 2A (PP2A) inhibitor okadaic acid abrogated the
inhibition of aspirin-induced CREB/ATF1 phosphorylation by berbamine, indicating that
PP2A may mediate the inhibition of CREB/ATF1 phosphorylation by berbamine (Figure 6a).
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Given that the cancerous inhibitor of PP2A (CIP2A) is an endogenous PP2A inhibitor [40],
we detected the effect of berbamine on CIP2A expression. Treatment with berbamine
inhibited the expression of CIP2A in both HepG2 and Hep3B cells (Figure 6b).
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Figure 6. Berbamine inhibits protein phosphatase 2A (CIP2A) expression, promotes PP2A-mediated CREB/ATF1 dephos-
phorylation, and potentiates the inhibition of cyclin D1 expression in HCC cells. (a) HepG2 cells were treated with or
without aspirin, berbamine and okadaic acid, followed by western blot analysis of CREB/ATF1 phosphorylation. The
relative levels of p-CREB/ATF1 normalized to total CREB/ATF1 were shown. (b) HepG2 and Hep3B cells were treated
with indicated doses of berbamine, followed by western blot analysis of CIP2A. The relative levels of CIP2A were shown.
(c) HepG2 and Hep3B cells were treated with aspirin and/or berbamine for 48 h, followed by western blot analysis of cyclin
D1 expression. The relative levels of cyclin D1 were shown. (d) HepG2 and Hep3B cells were transfected with siControl or
siCREB/ATF1 and treated with or without aspirin for 48 h, followed by western blot analysis of indicated proteins. The
relative levels of cyclin D1, CREB and ATF1 were shown. (e) HepG2 and Hep3B cells were treated with aspirin individually
or in combination with berbamine for 48 h, followed by detecting proliferative cells with EdU assays. Scale bar, 50 µm. The
proliferation rate was plotted. Values represent means ± SD (n = 3). ***, p < 0.001.
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Aspirin slightly increased the expression of cyclin D1, a known CREB/ATF1 target,
in HepG2 cells (Figure 6c,d). However, the combination of aspirin and berbamine dra-
matically inhibited the expression of cyclin D1 in HepG2 cells (Figure 6c). In addition,
the combination of aspirin and berbamine significantly inhibited cyclin D1 expression in
Hep3B cells (Figure 6c). Moreover, CREB/ATF1 knockdown inhibited cyclin D1 expression
in both HepG2 and Hep3B cells (Figure 6d). The combination of CREB/ATF1 knockdown
and aspirin more significantly inhibited cyclin D1 expression in HepG2 cells than in each
treatment alone (Figure 6d). Together, these data indicate that activation of CREB/ATF1
may antagonize the ability of aspirin to inhibit cyclin D1 expression. Thus, inhibition
of CREB/ATF1 could potentiate the inhibition of cyclin D1 by aspirin. Furthermore, the
percentage of EdU-labeled HepG2 and Hep3B cells was more dramatically reduced by
cotreatment with aspirin and berbamine compared to each agent alone (Figure 6e), indicat-
ing that combination of aspirin and berbamine more strongly inhibited S-phase entry and
cell proliferation. No obvious cell death was observed in aspirin- and berbamine-treated
HepG2 and Hep3B cells. Treatment of HepG2 cells with the pan-caspase inhibitor and
necroptosis inhibitor had no effects on the inhibition of cell growth by combined treatment
with aspirin and berbamine (Figure S9).

3.6. Combination of Aspirin and Berbamine Synergistically Inhibits HCC Growth

The tumor-suppressive effect of aspirin in combination with berbamine was detected
in the HepG2 xenografts model. While aspirin- or berbamine-treated tumors tended to be
smaller than vehicle (control)-treated tumors, this difference was not statistically significant.
The combination of aspirin and berbamine more significantly inhibited tumor growth
compared to the single-agent (Figure 7a,b). Immunohistochemical analysis of PCNA
in tumor samples demonstrated that the combination of aspirin and berbamine more
significantly inhibited cancer cell proliferation than single-agent (Figure 7c). Consistent
with the in vitro data, treatment with aspirin led to increased CREB/ATF1 phosphorylation
in tumors, which was abrogated by berbamine (Figure 7d). Whereas aspirin downregulates
CPS1 via inducing AMPK activation in HCC cells, a previous study demonstrates that
aspirin does not induce AMPK phosphorylation in the normal liver [15]. We then detected
the effects of aspirin on CPS1 expression in liver tissues and xenograft tumors. Whereas
aspirin inhibited CPS1 expression in HCC xenografts (Figure 7e), it did not affect CPS1
expression in liver tissues (Figure S10). Meanwhile, aspirin did not induce CREB/ATF1
phosphorylation in the normal liver tissues (Figure S10).
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Figure 7. Combined treatment with aspirin and berbamine inhibits HepG2 xenograft tumors in nude mice. (a) BALB/c-nu
mice with HepG2 xenografts were treated with or without aspirin and/or berbamine. The tumor growth curves were
plotted. Values represent means ± SD (n = 8). *, p < 0.05, **, p < 0.01, ***, p < 0.001, compared with tumors treated with
berbamine alone. (b) The tumor weight was plotted. Values represent means ± SD (n = 8). *, p < 0.05. n.s., not significant. (c)
Immunohistochemical staining of PCNA in tumor tissue sections. The proliferation rate was plotted. *, p < 0.05, ***, p < 0.001.
(d) Immunohistochemical analysis of CREB/ATF1 phosphorylation in tumor tissue sections. The relative CREB/ATF1
phosphorylation was plotted. n.s., not significant. *, p < 0.05, **, p < 0.01. (e) Immunohistochemical staining of CPS1 in
tumor tissue sections. Representative immunohistochemical staining of vehicle- or aspirin-treated tumors was shown. Scale
bar, 50 µm. The relative CPS1 expression was plotted. **, p < 0.01.

4. Discussion

Aspirin is an effective chemopreventive agent for some types of cancer, including col-
orectal and liver cancer. Although aspirin monotherapy has a limited effect on established
cancer, aspirin can enhance the effect of neoadjuvant chemoradiotherapy and improve the
prognosis of patients with rectal cancer [41]. A better understanding of the effects of aspirin
on cell signaling may help maximize its anti-cancer effects. Here, we show that aspirin
induces PKA activation and CREB/ATF1 phosphorylation in HCC cells. Furthermore,
inhibition of PKA or CREB/ATF1 sensitizes HCC cells to aspirin. Combination of aspirin
and berbamine, a natural product that inhibits CREB/ATF1 phosphorylation, achieves a
significant therapeutic effect on HCC in a murine model. Our results support the concepts
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that aspirin has multiple effects on signaling pathways in cancer cells and that inhibiting
some of these signaling pathways may enhance aspirin’s anti-cancer effects.

Previous studies have demonstrated that aspirin can directly or indirectly activate AMPK,
a contextual tumor suppressor or promoter [9,12,13]. AMPK can inhibit mTORC1 through
suppressing raptor or phosphorylating TSC2, a negative regulator of mTORC1 [22,23,42]. On
the other hand, AMPK can promote lysosome biogenesis via TFE3 or BRD4 and protect
cancer cells under stresses [43]. In addition, AMPK may directly or indirectly phosphorylate
CREB at S133 [44]. Our data indicate that the induction of CREB/ATF1 phosphorylation by
aspirin in HCC cells is predominantly mediated by the indirect activation of PKA by AMPK.
The COX-PGE2-EP2 signaling axis also upregulates the cAMP–PKA pathway [36]. As an
AMPK activator and a COX inhibitor, aspirin may regulate PKA activity in two opposing
directions. The upregulation of PKA activity in HCC cells by aspirin indicates that AMPK-
mediated PKA activation outweighs PKA inactivation resulting from COX inhibition if
the latter situation does happen. CREB has been identified to promote tumor progression
and to be associated with the overall survival and therapy response of patients with many
types of cancer, while it may be tumor-suppressive in some types of cancer [45–47]. From a
therapeutic perspective, the induction of PKA and CREB/ATF1 activation by aspirin and
AMPK may be a disadvantage for treating many cancer types. In fact, our results show
that inhibition of PKA and CREB/ATF1 can improve the anti-HCC effects of aspirin.

An important finding of the current study is that aspirin can inhibit the urea cycle
enzyme CPS1 expression in HCC cells, an effect also related to AMPK. While AMPK
reportedly inhibits CPS1 expression in KRAS-mutant lung cancer cells [27], our results
show that it also inhibits CPS1 expression in HCC cells without KRAS mutation. Similar
to AMPK, CPS1 has contrasting effects on tumorigenesis. CPS1 depletion may result
in decreased levels of the metabolic intermediate carbamoyl phosphate and impaired
NSCLC cell survival [27,48]. In contrast, CPS1 downregulation is thought to promote
hepatocarcinogenesis through increased glutamine availability for de novo pyrimidine
biosynthesis [28,32].

CPS1 depletion is supposed to lead to ammonia accumulation. Although ammonia
is usually considered as a highly toxic waste product of glutaminolysis reaction, it can
be effectively incorporated into amino acids, including glutamate, proline, aspartate and
alanine in breast cancer cells [30]. While tumor cells with CPS1 overexpression gener-
ate high amounts of carbamoyl phosphate that may translocate into the cytoplasm and
then support CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and
dihydroorotase)-mediated de novo pyrimidine synthesis [27,31,48], the reduction of CPS1
in HCC rewires ammonia metabolism by recycling ammonia to glutamine for the initiation
of de novo pyrimidine biosynthesis [28,49]. Given that the activity of CAD is positively
regulated by the mTOR-S6K1 pathway [50], and aspirin can inhibit mTOR through acti-
vation of AMPK, it is less likely that aspirin may paradoxically promote CAD-mediated
pyrimidine synthesis as a result of CPS1 downregulation.

Hence, far, little is known about the role of CPS1 in cell signaling. The current study
demonstrates that depletion of CPS1 leads to increased CREB/ATF1 phosphorylation in
HCC cells, which may represent a noncanonical function of CPS1. While CPS1 catalyzes
the production of carbamoyl phosphate, it consumes bicarbonate and ammonia. Therefore,
CPS1 loss may reduce bicarbonate depletion, a pH regulator, metabolic intermediate and
signal transducer. sAC is directly stimulated by bicarbonate to produce the PKA activator
cAMP. AMPK-mediated downregulation of CPS1 and subsequent activation of sAC and
PKA may contribute, at least in part, to the induction of CREB/ATF1 phosphorylation
by aspirin. The diversion of bicarbonate to support cAMP synthesis and PKA–CREB
signaling by aspirin-induced CPS1 depletion may counteract aspirin’s detrimental effects
on HCC cells. Thus, targeting the PKA/CREB pathway is a strategy for maximizing the
anti-cancer effects of aspirin. Although aspirin can induce AMPK phosphorylation in colon
tissues, it does not induce AMPK phosphorylation in the normal liver [13]. Consistent with
these data, we find that aspirin neither inhibits CPS1 expression nor induces CREB/ATF1
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phosphorylation in normal liver. Therefore, it is less likely that aspirin may impair ammonia
detoxification in the liver when it is used as a chemopreventive or therapeutic agent.

Our current study demonstrates that berbamine can inhibit CIP2A expression and
abrogate the induction of CREB/ATF1 phosphorylation by aspirin in a PP2A-dependent
manner. Given that STAT3 upregulates CIP2A expression, and berbamine is a STAT3
inhibitor [51,52], the inhibition of CIP2A expression by berbamine may result from STAT3
inhibition. Cyclin D1 is one of CREB/ATF1 and wnt/β-catenin targets and a critical driver
of cancer cell proliferation. On one hand, aspirin may inhibit cyclin D1 expression by
suppressing wnt/β-catenin signaling. On the other hand, the induction of CREB/ATF1
activation by aspirin may enhance cyclin D1 expression. The balance between these two
opposing effects may dictate whether aspirin inhibits or promotes cyclin D1 expression
in HCC cells. Hence, inhibition of CREB/ATF1 activation is supposed to potentiate the
suppression of cyclin D1 expression by aspirin. In addition, aspirin induces the expression
of other CREB/ATF1-responsive genes, such as c-Jun, in AMPK-dependent manner. Except
for suppression of cyclin D1 expression, the abrogation of aspirin-induced c-Jun expression
by CREB/ATF1 inhibition may also contribute to the synergistic inhibition of HCC cells
growth by CREB/ATF1 inactivation and aspirin.

Combination treatment is a particularly important strategy to combat cancer [53].
While aspirin monotherapy is less effective in HCC models, the combination of aspirin and
sorafenib can significantly inhibit HCC growth [8,9]. Our current study demonstrates that
berbamine can synergize with aspirin to inhibit HCC cells. The mechanisms underlying
the synergistic inhibition of HCC by aspirin and berbamine are illustrated in Figure 8.
Notably, berbamine has been administered in the clinic to prevent leukopenia caused by
cancer radiotherapy and chemotherapy [39]. Both aspirin and berbamine are inexpensive
and easily accessible drugs. The combination of berbamine and aspirin may be a feasible
treatment for many HCC patients. Clinical trials are warranted to determine the efficacy
of this regimen in patients with HCC. Except for systemic treatment with aspirin and
berbamine, aspirin combined with berbamine may be a topical use during downstaging
procedures for advanced HCC, which awaits further study. Meanwhile, it remains to
know whether combined treatment with aspirin and berbamine is effective for non-HCC
malignancy in the liver, such as intrahepatic cholangiocarcinoma.
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Figure 8. Schematic illustration of the signaling pathways that are involved in the synergistic
inhibition of HCC by aspirin and berbamine. While aspirin may inhibit Wnt/β-catenin signaling,
it can activate AMPK, leading to downregulation of CPS1 in HCC cells. Downregulation of CPS1
diverts bicarbonate to stimulate sAC, thereby increasing cAMP synthesis, which may contribute,
at least in part, to the stimulation of PKA activation and CREB/ATF1 phosphorylation in HCC
cells by aspirin. Berbamine can inhibit CIP2A expression in HCC cells, leading to PP2A-dependent
abrogation of aspirin-induced CREB/ATF1 phosphorylation and target gene expression. Thus, the
combination of aspirin and berbamine can synergistically inhibit HCC. Red arrows represent the
upregulation of indicated molecules by aspirin. Green arrows represent the net effects of combined
treatment with aspirin and berbamine on indicated proteins.

5. Conclusions

In summary, the current study demonstrates that CPS1 can regulate cAMP–PKA–
CREB/ATF1 signaling. The AMPK-mediated downregulation of CPS1 and subsequent
upregulation of cAMP–PKA–CREB/ATF1 signaling restricts the anti-HCC effects of aspirin.
Inhibition of PKA and CREB/ATF1 activation represents a novel strategy to potentiate the
anti-HCC effects of aspirin. The combination of aspirin with the natural agent berbamine
holds promise in HCC prevention and treatment. The data in this study could be instru-
mental in identifying signaling pathways involved in aspirin resistance, which can be
therapeutically targeted for boosting the anti-cancer potential of aspirin.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13071738/s1, Figure S1: The AMPK agonist AICAR induces CREB/ATF1 phosphoryla-
tion in HepG2 cells. Figure S2: AMPKα1 knockdown abrogates the induction of c-Jun transcription
by aspirin. Figure S3: The effects of MEK inhibitor U0126, Akt inhibitor MK2206, PKA inhibitor
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H-89, CAMK inhibitor KN93 and p38 inhibitor SB203580 on the induction of CREB/ATF1 phospho-
rylation by aspirin in HepG2 cells. Figure S4: The effects of PKA inhibitor H-89 on the induction
of CREB/ATF1 phosphorylation by AMPK agonist AICAR. Figure S5: The effects of aspirin on
CA2, CA9 and CA12 expression in HepG2 cells. Figure S6: NH4Cl does not induce CREB/ATF1
phosphorylation in HepG2 cells. Figure S7: CAMK2G knockdown does not sensitize Hep3B cells
to aspirin. Figure S8: Berbamine does not inhibit PKA activity. HepG2 cells were treated with or
without berbamine, followed by PKA kinase assay. Figure S9: The caspase inhibitor Z-VAD-FMK
and necroptosis inhibitor necrostatin-1 do not affect the inhibition of HepG2 cell growth by aspirin
and berbamine. Figure S10: Aspirin does not induce CREB/ATF1 phosphorylation and inhibits CPS1
expression in mouse liver tissues. Table S1: List of the chemicals used in this study. Table S2: List of
the antibodies used in this study. Table S3: List of siRNA sequences for RNA interference. Table S4:
List of the primer sequences for quantitative reverse-transcription polymerase chain reaction. File S1:
The original Western blots.
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