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Simple Summary: Here, we examined the interaction between DNA repair proteins and immune
biomarkers and their association with survival in 181 cases of epithelial ovarian carcinoma (EOC).
We used a panel of 12 antibodies for immunocytochemistry staining of tissue microarray (TMA)
consisting of 181 cases. Applying standard statistical methods, we detected that PD-L2 expression
was associated with decreased survival in ovarian cancer. This is the first demonstration that
increased expression of PD-L2 may serve as a marker for decreased progression-free survival (PFS).
Therefore, further investigation into PD-L2 based immunotherapy as a strategy to treat ovarian
cancer is warranted.

Abstract: Background: Targeting DNA repair and immune checkpoint pathways has been the focus
of multiple clinical trials. In this study, we explore the association between DNA repair proteins,
immune response markers, and clinical outcome in women with EOC. Methods: Immunohisto-
chemical analysis of TMA with 181 EOC samples was used to determine expression levels for DNA
repair proteins (PARP, PTEN, p53, H2Ax, FANCD2, and ATM) and immune-markers (CD4, CD8,
CD68, PD-L2, PD-L1, and FOXP3). Biomarker expression was correlated to clinical data. Prognostic
discriminatory ability was assessed per the combination of biomarkers. Results: Tumor immunity
biomarkers correlated with HRD biomarkers. High PD-L2 was significantly associated with high
expression of CD8 (r = 0.18), CD68 (r = 0.17), and FOXp3 (r = 0.16) (all, p < 0.05). In a multivariate
analysis, PD-L2 (hazard ratio (HR) 1.89), PARP (HR 1.75), and PTEN (HR 1.96) expressions were
independently associated with decreased progression-free survival (PFS), whereas PD-L1 (HR 0.49)
and CD4 (HR 0.67) were associated with improved PFS (all, p < 0.05). In 15 biomarker combinations,
six combinations exhibited a discriminatory ability of >20% for the 4.5-year PFS rate, with four based
on PD-L2 (PARP, PTEN, CD4, and PD-L1, 20.5–30.0%). Conclusions: Increased PD-L2 expression
is a prognostic marker of decreased survival in EOC. Interaction between tumor DNA repair and
microenvironment determines tumor progression and survival.
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1. Introduction

Most women with ovarian cancer present with advanced disease at diagnosis and de-
spite an initial response to treatment, the majority experience recurrence and die of chemo-
resistant disease. Given the poor response of recurrent disease to traditional chemotherapy,
there is a need to develop alternative treatment strategies. Two potential therapeutic targets,
i.e., the DNA repair pathway and the immune checkpoint pathway, are being vigorously
investigated and both are in clinical trials in ovarian and other cancers.

Exploiting the vulnerability of DNA repair deficient ovarian cancer, PARP inhibitors
olaparib, niraparib, and rucaparib have been granted FDA approval for primary or sec-
ondary maintenance or treatment of recurrent ovarian cancer [1,2]. Meanwhile, the pro-
grammed cell death 1 (PD-1) and its ligand (PD-L1) pathway, which inhibits anticancer
response, have been investigated in many tumor types. PD-1 expression in ovarian cancer
has been associated with unfavorable prognosis [3]. In preclinical models, disruption of
the PD-1 pathway has been shown to enhance tumor immune response [4], suggesting
that PD-1/PD-L1 has a role in ovarian cancer treatment. While PD-1 is a transmembrane
receptor expressed at the cell surface of T cells, B cells, monocytes, NK cells, and dendritic
cells [5], inducible expression of PD-L2 is mainly through Th2-associated cytokines, on the
surface of macrophages, dendritic cells, and other immune and non-immune cells [6].
PD-L1 and PD-L2 compete for binding to PD-1, and PD-L2 has two–six-fold higher affinity
than PD-L1 [7]. PD-L2 is generally expressed at lower levels than PD-L1 [8], but PD-L2
expression is significantly higher during Th2 responses [9].

Targeting both DNA repair and immune checkpoint pathways has emerged as a
concept based on the unique characteristic of DNA repair deficient tumors as genetically
unstable and characterized by production of tumor-specific neoantigens. This concept
has been recently investigated in clinical trials and a recent molecular subclassification of
samples from a trial of niraparib and pembrolizumab in platinum resistant ovarian cancer
yielded important results [10]. Nonetheless, it is still largely unknown which biomarkers
predict tumor response to immune treatment or combined therapy.

Here, we investigate the correlations between selected DNA repair proteins, the im-
mune checkpoint pathway, and survival in patients with sporadic epithelial ovarian cancer.

2. Materials and Methods
2.1. Study Population

All patients underwent surgical staging or debulking for epithelial ovarian, fallopian
tubal, or primary peritoneal carcinoma. All pathology specimens were collected and
reviewed, and tumors were classified according to the World Health Organization (WHO)
criteria [11]. The medical records of the patients were retrospectively reviewed under an
approved Institutional Review Board protocol (Oregon Health and Sciences IRB 921) in
accordance with relevant guidelines and regulations, and informed consent was obtained
as required by the IRB. The review included outpatient and inpatient treatment, including
surgery and chemotherapy. Survival information for overall survival (OS) and progression-
free survival (PFS) were also collected.

2.2. Tissue Microarrays

Ovarian cancer tissue microarrays (TMAs) were constructed using paraffin-embedded
archival tissue from 181 eligible patients with epithelial ovarian cancer, as described
previously [12,13]. Hematoxylin-eosin (HE) staining was used to select morphologically
representative regions and core biopsies were sampled from 3 distinct areas of each tumor
to account for tumor heterogeneity. Triplicate 0.6 mm cores were punched from the
individual donor formalin-fixed, paraffin-embedded blocks, and transferred to the TMA
paraffin-embedded receiver blocks. One section from each TMA was stained with H&E to
confirm the presence of the tumor by light microscopy [13].
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2.3. Immunohistochemistry Assay and Scoring Criteria

Immunohistochemistry was performed, as previously described [13]. Sections (4 µm)
were deparaffinized and pretreated in citrate buffer pH 6.0 for 20 min, cooled 20 min, and
incubated 10 min at ambient temperature in 3% H2O2 to quench endogenous peroxidase
activity. Blocking was performed using serum-free protein block, (Dakocytomation, Car-
penteria, CA, USA) for 30 min. Sections were incubated with antibodies to ATM, FANCD2,
PTEN, H2AX, PARP, p53, and CD4, CD8, CD68, FOXP3, PD-L1, and PD-L2 and conditions
are summarized in Table 1 [14].

Table 1. Immunohistochemistry summary.

Antibody Company Primary
Antibody Dilution Antigen Retrieval Incubation Positive Control

PARP Abcam Monoclonal 1/25 Citrate buffer,
20 min steamer 1 h Breast carcinoma

PTEN Millipore Monoclonal 1/100 Citrate buffer,
20 min microwave 2 h Endometrial cancer

ATM Abcam Monoclonal 1/50 TRIS, 40 min steamer 1 h Normal testis

FANCD2 Epitomics Monoclonal 1/100 Citrate buffer,
20 min microwave 1 h Breast carcinoma

H2AX Bethyl Lab Monoclonal 1/100 Citrate buffer,
20 min microwave 1 h Ovarian cancer

p53 Novocastra Monoclonal 1/50 Citrate buffer,
40 min microwave 1 h Ovarian cancer

CD4 Agilent Monoclonal ready to use Automated 30 min Tonsil

CD8 Agilent Monoclonal ready to use Automated 30 min Tosnil

CD68 Agilent Monoclonal 1/3000 Automated 30 min Lymph node

FOXP3 Biolegend Polyclonal 1/20 Tris buffer 30 min Lymph node

PDL1 Lifespan Polyclonal 1/250 Alkaline buffer, 20 min 30 min Tonsil

PDL2 Atlas Polyclonal 1/100 Citrate buffer,
40 min microwave 1 h Tonsil

Immunostaining (the intensity of positive tumor cells) was reviewed using conventional light microscopy and scored by a board-certified
gynecologic pathologist (P.M.F.). For PARP, ATM, H2AX, PTEN, FANCD2, PDL1, and PDL2, staining intensity was categorized as 0, 1+
(light brown), 2+ (moderate brown), or 3+ (dark brown). For CD4, CD8, CD68, and FOXP3 interpretation, only intraepithelial T cell (CD4,
CD8, and FOXP3) and intraepithelial tumor-associated macrophages (CD68) were evaluated. For this interpretation, 10 independent areas
evaluating all 3 cores were done. Lost, severely damaged, or cores without sufficient tumor cellularity were not evaluated. The reviewer
was blinded to clinical data. Ovarian cancer cases were excluded from statistical analysis if triplicate cores were unavailable for analysis
secondary to inadequate cancer tissue or poor quality of the specimen [13,14].

2.4. Study Definition

In this study, various cutoffs of immunohistochemistry intensity for each biomarker
were examined for outcome measures assessed by log-rank test (Tables S1 and S2), and the
cutoff point exhibiting the largest statistical value was chosen for each cutoff. For PFS, the
cutoffs were: 0 vs. 1–3 (H2Ax and PD-L2), 0–1 vs. 2–3 (PARP, PTEN, and PD-L1), and 0–2 vs.
3 (ATM and FANC). For CD4, CD8, CD68, and FOXp3 results, the results among those that
scored >0 were trichotomized as 1–33 percentile, 34–66 percentile, and 67–100 percentile.
The log-rank value was determined in each cutoff for each biomarker, and the largest
statistical value was used for the cutoff as follows: none vs. 1–100 percentile (CD4),
none/1–33 percentile vs. 34–100 percentile (CD68 and FOXp3), and none/1–66 percentile
vs. 67–100 percentile (CD8).

The rationale of this cutoff analysis was to provide a mechanistic approach to detect
a more predictive cutoff for survival as compared with our prior analysis where the
biomarker expressions were only dichotomized as 0–1 vs. 2–3. In this way, we identified
2 biomarkers (ATM and FANCD2) that a higher cutoff (0–2 vs. 3) predicted PFS better as
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compared with the historical cutoff (0–1 vs. 2–3). Likewise, we identified two biomarkers
(H2Ax and PD-L2) that a lower cutoff (0 vs. 1–3) predicted PFS better vs. the historical
cutoff. For consistency purposes, a similar methodology was undertaken for cell counts in
our study.

The age cutoff was 70, per prior studies. High-grade serous ovarian cancer was defined as
grade 2–3 serous carcinoma, as described before [15]. PFS was defined as the time interval
between the initial surgery and the first recurrence/progression of disease, or death from
ovarian cancer. OS was the interval between surgery and death from all cause. Data were
censored at the last follow-up for patients without these survival events.

2.5. Statistical Analyses

The primary step of the analysis was to examine the correlation of examined biomark-
ers and clinical and pathological factors. The secondary step of the analysis was to assess
the prognostic impact of the examined biomarkers.

Continuous variables were expressed as a mean (±SD). Categorical and ordinal
variables were expressed as a number (%). Spearman’s correlation coefficient was used
to examine the statistical significance of biomarkers expressed with correlation coefficient
value. For survival analysis, the Kaplan–Meier method was used to construct the survival
curves, and statistical difference between the curves was assessed by a log-rank test in
univariate analysis. A Cox proportional hazard regression model was fitted to identify
the independent prognostic markers for survival (PFS or OS) in the multivariate analysis.
In this study, covariates with p-value of less than 0.20 in univariate analysis were chosen
for the model construction. This relatively liberal cutoff of the covariate selection was due
to the small sample size in our study. The effect size for survival outcome measures was
expressed by adjusted-hazard ratio (HR) with corresponding 95% confidence interval (CI).

For a sensitivity analysis, the effects of biomarker combination on survival were
examined. Specifically, among the significant biomarkers for PFS on multivariate analysis,
combination patterns of any two markers were assessed. Then, among four patterns in
each biomarker combination of the two, the absolute difference between the lowest and
highest survival rate at the specific point estimate, namely the discriminatory ability for
survival rate, was computed. A p-value of less than 0.05 was considered to be statistically
significant. All analyses were based on the two-tailed hypothesis. IBM SPSS Statistics,
version 25.0 (Armonk, NY, USA) was used for the analysis.

3. Results
3.1. Study Population and Cohort Characteristics

There were 181 cases examined for analysis. Patient’s characteristics at baseline are
summarized in Table 2. The mean age of the study population was 61.6 years, and the
majority of the patients had ovarian cancer (75.1%), grade 3 tumors (86.2%), and stage
III–IV disease (90.0%). The most common histology type was high-grade serous (n = 141)
in this study population. Complete cytoreduction was recorded in only about one-third of
cases (34.1%). All patients received platinum-based first line chemotherapy.

3.2. Biomarker Correlations

DNA repair marker (ATM, H2Ax, PARP, PTEN, FANCD2, and p53) and immune
marker expression (CD-4, CD-8, CD-68, PD-L2, and PD-L1) was observed in the ovarian
cancer tissue array (Figure 1 and Figure S1). Correlation among selected DNA repair
deficiency biomarkers and tumor microenvironment immune markers were examined
(Table 3). Overall, the biomarkers representing tumor immunity correlated well to the
biomarkers representing DNA repair. Specifically, strong correlations (r > 0.20) were
observed between CD-4 and PARP (r = 0.24), CD8 and ATM (r = 0.27), PD-L1 and PARP
(r = 0.59), PD-L1 and ATM (r = 0.32), and PD-L1 and FANCD2 (r = 0.37) (all, p < 0.05).
Of interest, PD-L2 expression was significantly associated with CD8, CD68, and FOXp3
(all, p < 0.05). PD-L2 and PARP were not associated (p = 0.34). Similar findings were
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seen in 141 cases of high-grade serous ovarian cancer (Table S3). PD-L2 expression was
significantly associated with CD68 expression (r = 0.17, p = 0.048).

Table 2. Patient demographics.

Characteristics n = 181

Age (yrs) * 61.6 (±12.1)
<70 (71.4%)
≥70 (28.6%)

Primary site
Ovary 136 (75.1%)

Fallopian 1 (0.6%)
Peritoneal 44 (24.3%)

Cancer Stage *
I 8 (4.4%)
II 10 (5.6%)
III 138 (76.7%)
IV 24 (13.3%)

Histology type
Serous * 147 (81.2%)

Clear cell 8 (4.4%)
Endometrioid 9 (5.0%)

Mucinous 5 (2.8%)
Mixed 9 (5.0%)

Carcinosarcoma 3 (1.7%)

Grade tumor differentiation
1 10 (5.5%)
2 15 (8.3%)
3 156 (86.2%)

Complete resection
No 118 (65.9%)
Yes 61 (34.1%)

Progression of disease
No 24 (13.3%)

Yes ** 157 (87.7%)

Death due to disease
No 30 (16.8%)
Yes 149 (83.2%)

Mean (± SD) or number (%) is shown. * 1 missing. * Serous histology includes 141 (77.9%) of high-grade histology
and 6 (3.3%) of low-grade histology. ** Including 68 cases of recurrence or progression and 89 cases of persistent
disease with ultimate succumbing to death. Total number may not be 181 due to missing information. Median
follow-up time was 37.3 months.
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Figure 1. Expression of DNA repair and immune checkpoint markers in epithelial ovarian tumors. Representative
immunohistochemistry staining of (A) DNA repair (ATM, H2Ax, PARP, PTEN, FANCD2, and p53) and (B) immune markers
(CD-4, CD-8, CD-68, PD-L2, and PD-L1) in a tissue microarray with clinically annotated ovarian tumor tissue.
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Table 3. Correlation analysis for biomarkers.
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3.3. Survival Statistics

The median follow-up time of the patients who were alive at the last visit was 4.7 years
(interquartile range 2.9–6.7). Nearly 90% of the study population had recurrence, progres-
sion, or death from ovarian cancer (87.7%). There were 140 deaths recorded during the
follow-up. The median estimated PFS and OS for the whole cohort was 1.8 (95% CI 1.4–2.1)
and 3.4 (95% CI 2.9–3.8) years, respectively. The 4.5-year PFS rate of the entire cohort was
19.7% (95% CI 14.0–26.1). Of note, 4.5-year survival estimates were based on the median
follow-up of censored cases.

3.4. Prognostic Biomarkers

Independent characteristics for PFS were examined in a multivariate analysis (Table 4).
Three biomarkers were found to be prognostic for decreased PFS (PARP, PTEN, and PD-L2).
Specifically, moderate-strong expression of PARP was associated with decreased PFS as
compared with negative-mild expression (4.5-year rates, 16.1% vs. 25.6%, HR 1.75, 95%
CI 1.19–2.59); moderate-strong PTEN expression was associated with decreased PFS as
compared with negative-mild expression (10.4% vs. 21.1%, HR 1.96, 95% CI 1.13–3.41); and
any PD-L2 expression was associated with decreased PFS as compared with no expression
(18.4% vs. 32.8%, HR 1.89, 95% CI 1.01–3.52). In contrast, expression of PD-L1 remained
an independent prognostic factor associated with improved PFS (4.5-year rates 22.0%
versus 17.4%, HR 0.49, 95% CI 0.32–0.73). Moreover, higher CD4 and CD8 cell counts were
associated with improved PFS, i.e., 4.5-year rates for any positive vs. negative CD4 cell
counts, 22.9% vs. 12.5%, HR 0.67, 95% CI 0.45–0.99 and 3rd quartile cell counts versus
negative/1st–2nd quartile cell counts, 24.9% vs. 17.6%, HR 0.68, 95% CI 0.45–1.04.

Independent characteristics for OS were assessed in multivariate analysis (Table 5).
Among the tested biomarkers, only CD8 cell counts remained statistically significant for
OS. Specifically, any positivity for CD8 cell counts was associated with improved OS
as compared with negative cell count (4.5-year rates 34.0% vs. 14.8%, HR 0.60, 95% CI
0.36–0.99). For both outcome measures for survival, complete cytoreduction status was
independently associated with both PFS (4.5-year rates 32.0% vs. 13.8%, HR 0.64, 95%
CI 0.43–0.95) and OS (39.9% vs. 25.8%, HR 0.61, 95% CI 0.41–0.92). Higher stage was
associated with decreased PFS in this study (4.5-year rates 15.8% vs. 66.7%, HR 2.28, 95%
CI 1.02–5.10).

3.5. Biomarker Combination Patterns and Survival Outcome

According to the results of the PFS analysis (Table 3), the combination pattern of six
biomarkers were examined (i.e., PARP, PTEN, PD-L1, PD-L2, CD4, and CD8). Any two
biomarkers were chosen, and a total of 15 combinations were assessed for PFS (Figure 2).
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Of those, six combinations exhibited a discriminatory ability of >20% point for the 4.5-year
PFS rate, of which four combinations were based on PD-L2 (PARP, PTEN, CD4, and PD-L1).
The large discriminatory ability for the 4.5-year PFS rate was seen in the combination of
PD-L2 and CD4 (30.0%, p = 0.021, Figure 3A) followed by the combination of PD-L1 and
PARP (29.1%, p < 0.01, Figure 3B), the combination of PD-L2 and PARP (27.3%, p = 0.05,
Figure 3C), and the combination of PD-L2 and PD-L1 (24.3%, p = 0.01, Figure 3D).

Table 4. Independent factors for progression-free survival (n = 181, whole cohort).

Characteristic 4.5-yr (%) Adjusted HR (95% CI) p-Value

Stage
I–II 66.7% 1

III–IV 15.8% 2.28 (1.02–5.10) 0.046

Cytoreduction
Residual 13.8% 1
Complete 32.0% 0.64 (0.43–0.95) 0.026

PARP
0/1+ 25.6% 1

2+/3+ 16.1% 1.75 (1.19–2.59) 0.005

PTEN
0/1+ 21.1% 1

2+/3+ 10.4% 1.96 (1.13–3.41) 0.017

FANC
0/1+/2+ 17.3% 1

3+ 25.9% 0.82 (0.55–1.24) 0.350

PD-L1
0/1+ 17.4% 1

2+/3+ 22.0% 0.49 (0.32–0.73) <0.001

PD-L2
0 32.8% 1

1+/2+/3+ 18.4% 1.89 (1.01–3.52) 0.046

CD4
0 12.5% 1

1+/2+/3+ 22.9% 0.67 (0.45–0.99) 0.042

CD8
0/1+/2+ 17.6% 1

3+ 24.9% 0.68 (0.45–1.04) 0.073
The point estimate of 4.5 years for the survival rate was based on the median follow-up of the censored cases in
the cohort. Cutoffs of each biomarkers are shown in Table S1. Only the factors exhibited p < 0.20 on univariate
analysis were entered in the model as above. A Log-rank test was used for the univariate analysis. A Cox
proportional hazard regression model was used with conditional backward method for multivariate analysis.
Significant p-values are emboldened. Abbreviations: 4.5-yr (%), 4.5-year progression-free survival; HR, hazard
ratio; and CI, confidence interval.

Table 5. Independent factors for overall survival (n = 181, whole cohort).

Characteristic 4.5-yr (%) Adjusted-HR (95%CI) p-Value

Age (years)
<70 34.3% 1
≥70 24.1% 1.40 (0.96–2.05) 0.079

Stage
I–II 69.3% 1

III–IV 28.4% 2.12 (0.90–5.01) 0.086

Cytoreduction
Residual 25.8% 1
Complete 39.9% 0.61 (0.41–0.92) 0.019
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Table 5. Cont.

Characteristic 4.5-yr (%) Adjusted-HR (95%CI) p-Value

H2Ax
0 65.9% 1

1+/2+/3+ 28.9% 1.64 (0.82–3.30) 0.163

PD-L1
0/1+ 27.3% 1

2+/3+ 35.8% 0.83 (0.59–1.16) 0.273

CD8
0 14.8% 1

1+/2+/3+ 34.0% 0.60 (0.36–0.99) 0.045

FOXp3
0/1+ 28.9% 1

2+/3+ 35.6% 0.74 (0.51–1.08) 0.115
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Figure 2. Discriminatory ability of progression-free survival based on protein microarray results.
Among 6 biomarkers identified in multivariate analysis (Table 3), combination patterns of any two
biomarkers were assessed (total 15 patterns). In each pattern, biomarker expression was assessed as
negative/negative (−/−), negative/positive (−/+), positive/negative (+/−), and positive/positive
(+/+). The cutoff definition of negative and positive results is displayed in Table 3. Then, the 4.5-year
progression-free survival (PFS) rates were computed, and discriminatory ability defined as the
difference between the lowest and highest rates was estimated and shown by red dots and line
(displayed as the secondary axis for intra-group difference). A log-rank test was used for p-values
(lowest vs. highest). Subgroups with fewer than ten cases were not interpreted for analysis due to
insufficient number. Bars represent the highest PFS rate (right side) and the lowest PFS rate (left side)
in each biomarker combination. The dashed line indicates the 4.5-year PFS rate of 19.7% for the entire
study cohort.
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Figure 3. Survival curves for progression-free survival based on combination patterns. Survival curves are constructed with
the Kaplan–Meier method per the combination pattern of biomarkers. (A) PD-L2 and CD4; (B) PD-L1 and PARP; (C) PD-L2
and PARP; (D) PD-L2 and PD-L1. In Figure panels (A,C,D), subgroups with small number (<9) were censored due to futility.
Log-rank test for p-values.

Among the 15 combination patterns, there were two patterns with an estimated
4.5-year PFS rate that exceeded 40% (Figure 2). The highest one was the combination of
negative PD-L2 and negative PARP expressions (44.4%, Figure 3C), followed by negative
PD-L2 and positive CD4 cell counts (41.1%, Figure 3A). This was followed by positive PD-L1
and negative PARP expressions (38.5%, Figure 3B) and negative PD-L2 and negative PD-L1
expression (37.7%, Figure 3D). In contrast, there were three patterns that the estimated
4.5-year PFS rate was <10% (Figure 2). These included negative PD-L1 and positive PARP
expressions (9.4%, Figure 3B), negative CD8 cell count and positive PTEN expression
(9.2%), and positive PTEN and positive PARP expressions (7.1%).

4. Discussion

Inhibitors of immune checkpoints have recently shown therapeutic success in several
tumor types, yet a significant number of patients do not respond to this class of drugs.
To date, no immune checkpoint inhibitor (ICI) has been approved by the U.S. Food and
Drug Administration for the treatment of patients with ovarian cancer. In order to success-
fully apply ICIs to the treatment of ovarian cancer, it is essential to define molecular and
other predictors of response to these agents. Several recent observations have suggested
that tumors with defects in homologous recombination (HR) pathway display genomic
instability, high tumor mutational burden, and an increased repertoire of neoantigens, are
more immunogenic, leading to adaptive upregulation of PD-L1 by tumor and sensitization
to ICI [16]. Another important observation is that PARP inhibition leads to an accumulation
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of cytosolic double-stranded DNA, and thereby activates the cytoplasmic DNA sensor
cyclic guanine monophosphate/adenosine monophosphate synthase/stimulator of inter-
feron genes (cGAS/STING) [17]. This pathway triggers activation of a signaling cascade
connecting cGAS to signal transducers, including STING and TBK1, and eventually to
transcription factors (mainly IRF3 and nuclear factor-κB) that collectively induce a type
I interferon response, and thereby turn “cold” non-T cell-inflamed tumors into “hot” T
cell-inflamed tumors. The same principle molecular mechanism was the rationale for the
promising antitumor activity seen in a recent trial (TOPACIO/KEYNOTE-162), using nira-
parib and pembrolizumab in platinum resistant ovarian cancer [18]. Furthermore, a recent
large collaborative initiative utilized the tumor samples from this same trial to analyze
immune predictors of tumor response. The mutational signature reflecting the combination
of defective DNA repair and a positive immune score was found to be associated with an
improved outcome. In contrast, the absence of either defective DNA repair or positive
immune score was associated with no response to combination treatment. In addition,
single-cell spatial analysis revealed prominent interactions of CD8 + T-cells with PD-L1 +
macrophages and PD-L1 + tumor cells as mechanistic determinants of response [19].

In light of these significant contributions for elucidating the biomarkers of ICI sensitiv-
ity, we set out to determine the connections between immune and DNA markers in a cohort
of 181 patients with sporadic ovarian cancer. As the BRCA1 immunocytochemical staining
was overwhelmingly and repeatedly positive in the majority of our samples, we selected
six other DNA repair protein markers, based on our prior experience [14]. As expected, the
current cross analysis of DNA repair markers and immune markers revealed positive cor-
relations between several markers from the two groups. Of particular interest is that PD-L2
expression was associated with overexpression of CD8, CD68, and FOXp3 suggesting that
PD-L2 may induce response of different classes of T cells as well as macrophages.

Survival outcomes depend on the cancer itself and also on the tumor microenviron-
ment of HGSOC which is rich in immune cells and tumor-associated macrophages [20].
An abundance of cytotoxic CD8+ T cells as well as CD4+ in ovarian cancer is a prognostic
indicator of greater PFS and OS [21–25]. In our series, we show similar results with high
numbers of CD4 and CD8 cell counts associated with prolonged PFS. In the multivariate
analysis, the expressions of PARP, PTEN, and PD-L2 were associated with decrease sur-
vival. PARP expression is thought to increase the capacity of cells to repair DNA breaks
accounting for decreased survival. PTEN is traditionally considered to be a tumor sup-
pressor and its loss is associated with poor prognosis. However, its expression in HGSOC
is heterogeneous and effects of PTEN may vary depending on its cytoplasmic or nuclear
localization which was not considered in this study. Interestingly, in our study PD-L1
was found to be an independent prognostic factor associated with improved PFS. While
several studies have indeed suggested that PD-L1 is a good prognostic (and therapeutic)
target in ovarian cancer, the results are inconsistent and many other studies have found no
correlation between PD-L1 expression by ICH and PFS or OS in ovarian cancer [26].

A novel finding in this study is the correlation of PD-L2 expression with decreased
PFS. PD-1 ligands, PD-L1 and PD-L2, bind to inhibitory molecule PD-1 and together
play a key role in the induction of immune tolerance in the tumor microenvironment.
While the PD-1/PD-L1 pathway (pembrolizumab, nivolumab/avelumab, atezolumab)
has been extensively studied in cancer, including ovarian, the role of PD-L2 in cancer
and immunity is less clear and the therapeutic role for PD-L2 inhibition has not been
broadly explored. Nevertheless, our results corroborate work of few other studies [9].
Prior studies have found an impaired survival in patients with PD-L2 expressing tumors,
yet this trend has rarely reached statistical significance, and in the majority of studies,
PD-L2 was expressed in only a minority of cases [27–29]. In a cohort of 70 patients with
ovarian cancer, the majority of the cases were negative or weakly positive and although
PD-L2 expression was correlated with an impaired survival, this did not reach statistical
significance [30].
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These results highlight the need to explore the potential therapeutic role of PD-L2
as a single factor or in combination. Yearley et al. [31] described a positive response of
PD-L2+ /PD-L1 tumors to pembrolizumab, suggesting that the PD-1-PDL-2 axis may
function independently of PD-L1 [31,32]. Moreover, Ahmad et al. characterized a CD8
and CD4 T cell PD-L2 specific T cells and showed that they do not cross react with PD-L1-
specific T cells [32]. They postulated that PD-L2 specific T cells activated by vaccination
can exhibit anticancer immunity by directly killing target cells, or by indirectly altering the
microenvironment through cytokine release [32].

According to our combinatorial analysis, the lack of PD-L2 expression combined with
the lack of PARP expression were the strongest predictor of increased survival. Additionally,
positive PD-L2 expression together with either CD4 or PARP expression was associated
with increased PFS and points to known synergistic mechanisms that can be further
explored. All combinatorial patterns suggest that exploring these leads may confirm the
known effects of these combinatorial pairs and possibly reveal novel mechanisms of PD-L1
and PD-L2 interactions.

Our study has several limitations. First, we only selected to test a limited number
of DNA repair proteins based on their known prognostic relevance in ovarian cancer
and availability of reliable antibodies, yet the list is not comprehensive. Second, this is a
descriptive study based on immunocytochemistry and though we tested several antibodies
to determine the optimal antibody, the results should be validated by additional techniques
in additional cohorts. In addition, BRCA1 antibody had suboptimal performance while
BRCA2 antibody was not tested because of its known heterogenous immunochemical
results. Finally, the utility of biomarker cutoffs proposed in the analysis has not be validated
in an independent cohort and warrants further validation study.

5. Conclusions

In conclusion, we report a previously unrecognized association of PD-L2 with de-
creased survival in ovarian cancer. To the best of our knowledge, this is the first demonstra-
tion that increased expression of PD-L2 may serve as a marker for decreased progression-
free survival, providing justification for further investigation into the PD1/PD-L2 axis and
PD-L2 based immunotherapy as a strategy to treat ovarian cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13081972/s1, Figure S1: Weak/negative expression of DNA repair and immune
checkpoint markers in epithelial ovarian tumor, Table S1: Cutoff values for biomarkers (progression-
free survival), Table S2: Cutoff values for biomarkers (overall survival), Table S3. Correlation for
pathological factors among high-grade serous carcinoma (n = 141).
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