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Simple Summary: More than 80% of patients with pancreatic ductal adenocarcinoma (PDAC)
suffer cachexia, characterized by loss of muscle and fat. However, most cachexia studies were
predominantly focused on muscle. Our clinical study showed adipose tissue loss as a prognosticator
in PDAC cachexia. Our study aims to understand the concurrent muscle and adipose changes
using transcriptome profiling. We identified tissue-specific gene expression profiles with changes in
adipose being more dynamic. Pathway analysis suggests that muscle and adipose wasting may be
mediated through independently targetable mechanisms which may have therapeutic implications.
Many of the well-known and novel cachexia genes have been validated using an external muscle and
adipose datasets. The study provides the groundwork for future studies to understand if fat wasting
precedes muscle wasting in PDAC and if adipose can be targeted for therapeutic interventions. The
study also shows that age related muscle loss has distinct mechanisms compared to cachexia.

Abstract: The vast majority of patients with pancreatic ductal adenocarcinoma (PDAC) suffer
cachexia. Although cachexia results from concurrent loss of adipose and muscle tissue, most studies
focus on muscle alone. Emerging data demonstrate the prognostic value of fat loss in cachexia. Here
we sought to identify the muscle and adipose gene profiles and pathways regulated in cachexia.
Matched rectus abdominis muscle and subcutaneous adipose tissue were obtained at surgery from
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patients with benign conditions (1 = 11) and patients with PDAC (n = 24). Self-reported weight loss
and body composition measurements defined cachexia status. Gene profiling was done using ion
proton sequencing. Results were queried against external datasets for validation. 961 DE genes were
identified from muscle and 2000 from adipose tissue, demonstrating greater response of adipose than
muscle. In addition to known cachexia genes such as FOXO1, novel genes from muscle, including
PPP1R8 and AEN correlated with cancer weight loss. All the adipose correlated genes including
SCGN and EDR17 are novel for PDAC cachexia. Pathway analysis demonstrated shared pathways
but largely non-overlapping genes in both tissues. Age related muscle loss predominantly had
a distinct gene profiles compared to cachexia. This analysis of matched, externally validate gene
expression points to novel targets in cachexia.

Keywords: pancreatic cancer; pancreatic ductal adenocarcinoma; gene expression; RNAseq; adipose;
skeletal muscle; atrophy; cachexia; neoplasia

1. Introduction

Cancer associated cachexia is a debilitating multifactorial syndrome characterized
by involuntary loss of muscle and fat [1-4]. Patients with pancreatic ductal adenocarci-
noma (PDAC), the major subtype of pancreatic cancer, have a higher proclivity to develop
cachexia; such cachexia is significantly associated with PDAC-related deaths [5-8]. The
pathophysiology of PDAC cachexia involves a complex interplay between the host and
tumor interactions which results in inflammation, malnutrition, anorexia, and neuroen-
docrine changes. These complex interactions lead to a series of metabolic changes including
Warburg effect resulting in increased Cori cycle, lipolysis and decreased lipogenesis [9-11].
Studies using animal models have helped uncover many mechanisms that cause muscle
and fat wasting [12-18], and newer animal models are constantly developed to study
PDAC and understand cachexia mechanisms [19,20]. Although most of our understanding
about cachexia comes from muscle, it is known that cachexia often involves wasting of
fat [4,21-24]. Fat wasting is prognostic in PDAC cachexia. In one cohort study, patients
with PDAC who lost only fat had similarly reduced survival to those with combined fat
and muscle loss (10 months less) relative to patients who lose neither, independent of
tumor response to therapy [4]. However, the molecular mechanisms of fat wasting in
PDAC cachexia are less explored.

Understanding the human biology of cancer cachexia is challenging and datasets to
date have been limited. Most human cachexia studies to date have used muscle and fat
from multiple cancer types [25]. However, though certain genes may be common across
cancer types, it seems likely that there will be both tumor-type and treatment-specific
mechanisms. Studying a single cancer type could reduce the heterogeneity and begin to
interrogate cachexia in a cancer-specific manner. In human studies as well, the focus has
either been muscle or fat but to date, never both.

Our current study aims to address several of these challenges in human PDAC
cachexia. The aims of the study are to (i) identify differentially expressed (DE) genes
for muscle and adipose from the same individuals, (ii) identify common and unique
pathways between muscle and fat in cachexia, (iii) identify tissue specific transcription
factors, cytokines, growth factors and receptors, (iv) correlate all profiled genes from mus-
cle and fat to the clinical variable of cancer weight loss grade (CWLG) [2] (V) to validate
the differentially expressed (DE) muscle and adipose genes in external datasets and (vi)
understand if age related muscle loss has distinct gene signatures when compared to
PDAC cachexia. Our study identified differentially expressed, distinct tissue-specific gene
expression signatures. Genes within common pathways were differentially present in
muscle and adipose. We found genes commonly identified in animal models of cachexia,
such as FOXO1, FOXO3, IL6R, ZIP14 and PIK3R1, manifested in two independent muscle
human datasets. Inflammation-related pathways emerged as key component from the
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adipose tissue validation data. Our results also suggest that age related muscle loss had
a predominantly distinct gene signatures and regulated pathways when compared to
PDAC cachexia indicating that age related muscle loss has distinct molecular mechanisms
compared to PDAC cachexia.

This is the first study to perform cachexia-specific muscle and adipose gene profiling
from same subjects, the first to report genes associated with fat wasting in PDAC cachexia,
and the first to validate both findings in external dataset. We demonstrate that muscle
and adipose transcriptomes are well established early in pancreatic cancer and that the
adipose response is profound than the muscle response. These distinct, tissue-specific gene
expression profiles and pathway modulation suggests that muscle and adipose wasting in
cachexia may be mediated through independently targetable mechanisms.

2. Results
2.1. Study Design and Patient Demographics

The overall study design is shown in Figure 1. The summary of patient demographics
is presented in Table 1. The mean age of controls and PDAC was different, 50 & 14 versus
70 £ 11 years (p = 0.001). While sex and BMI were not different between groups, weight
loss grade was increased in patients versus controls (p = 0.005). By CT analysis, skeletal
muscle index was significantly less in PDAC patients, while total adipose tissue index
was not. However, intramuscular fat was significant between groups and subcutaneous
adipose tissue was trending towards significance (Table 1).

Patients with pancreatic ductal adenocarcinoma
Patients without cancer

BMI (kg/m?) @ L N
28 25 22 20 i \,)L,

;\: 25 o(o|1]1/3 Cases =23, Control =11 Cases =24, Control =10
o 11212 (Rectus abdominis) (Subcutaneous)
o 6
‘-l_' 2|13|3|3
;E, 1 3|3(3 Total RNA isolation
Ion Ampliseq

Cancer weight loss grade

DESeq2 (R pack
(Ordinal classification of history l SR package)

of weight loss and BMI) Differentially expressed RNAs in muscle and adipose
L 1 1 1
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(r>0.5, p<0.05, Hmisc package) (Ingenuity Pathway Analysis) external datasets

Figure 1. Overall study design.
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Table 1. Patient demographics.

Characteristics PDAC Non-Cancer Controls p-Value
n=24 n=11
Age? 70 £ 11 50 + 14 0.001
Gender ®
Male 12 5 NS
Female 12 6
BMI (kg/m?) 2 282+ 6.5 314+6 NS
Weight Loss Grade ©
Grade 0 3 6
Grade 1 1 3
Grade 2 6 1 0.005
Grade 3 8 1
Grade 4 6 -
Skeletal muscle index (cm?/m?2) 2 44.6 +10.5 532 4+9.7 0.04
Total adipose index (cm?/m?) 2 235.2 4 134.2 274 4+ 150.8 NS
Intramuscular Fat (cm?) 17.65 £ 13.46 10.58 £ 3.90 0.03
Subcutaneous Fat (cm?) 226.07 £+ 119.09 316.97 £ 110.97 0.055

N S = Not Significant; * = f-test, b~ Chi-square test, © = Fisher’s exact test. The values are represented as
mean = standard deviation. p < 0.05 were considered statistically significant.

2.2. Muscle and Adipose Tissue Have Distinct Gene Expression Patterns

In all, 14,177 genes were profiled in muscle and 12,910 genes were profiled in adipose
tissue. All the profiled genes served as a starting point for PCA and differential gene
expression analysis. As anticipated, PCA showed a clear separation between muscle and
adipose genes in controls (Figure 2a) and PDAC (Figure 2b). However, there was no clear
separation between controls and PDAC when muscle (Figure 2¢) and adipose (Figure 2d)
tissues were plotted separately. Differential gene expression analysis between controls
and cancer patients identified 961 DE genes in muscle and 2000 DE genes in adipose at
a fold change of 1.4 and p-value of 0.05. The volcano plot shows the DE genes in muscle
(Figure 3a) and adipose (Figure 3b). Overall, 190 genes were common between muscle and
adipose which represents a ~7% overlap between the two tissues (Figure 3c), highlighting
the tissue specific gene expression patterns. The complete list of DE genes for muscle and
adipose is given in Table S1 and Table S2, respectively.
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Figure 2. Principal component analysis. All the profiled genes were utilized for the analysis.
(a,b) Indicate that gene expression gene signatures between muscle (a) and adipose (b) were indeed
different in controls and PDAC; (c,d) illustrate the PCA within muscle (c¢) and adipose in controls
and PDAC (d).
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Figure 3. Identification of differentially expressed genes in muscle and adipose. Volcano plot showing
the differentially expressed genes for muscle (a,b) adipose at 1.4 fold change and p-value of 0.05. Red
indicates upregulation and blue indicates downregulation; (c) the common differentially expressed
genes between muscle and adipose is ~7%.

2.3. Different Genes Are Involved in Activating or Inhibiting the Common Pathways in Muscle
and Adipose

Respectively, 47 and 53 pathways were identified for muscle and adipose (p < 0.05
and Z-score > 1.5). Eight pathways were common between muscle and fat: acute phase
signaling, senescence pathway, cardiac hypertrophy, IL-8 signaling, CXCR4 signaling,
HMGBI signaling, GP6 signaling and PDGF signaling (Figure 4a). However, the genes
involved in activating or inhibiting these common pathways were predominantly different
in muscle and adipose tissue (Figure 4b). Other unique pathways identified in muscle
include the STAT3 pathway, HIF1 o Signaling and LXR/RXR activation (Figure 4a). A few
representative pathways that appeared only in adipose tissue include IL-6 signaling, mTOR
signaling, Leptin signaling, Oncostatin M signaling and JAK/STAT signaling (Figure 4a).
The complete list of pathways, along with the genes involved and p-values for muscle is
given in Table 53 and for adipose in Table 54.
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Figure 4. Canonical pathways for muscle and adipose. (a) The top pathways highlighted in red indicates the common
pathways between muscle and adipose. The unique pathways are also represented in muscle and adipose; (b) although
there are common pathways between muscle and adipose, the genes involved in activating or inhibiting those pathways are
predominantly different, indicating a tissue specific gene expression.

To further characterize the different classes of molecules that are expressed in muscle
and adipose, we classified the DE genes of muscle and adipose into transcriptional regula-
tors (Figure 5a), growth factors (Figure 5b), cytokines (Figure 5¢) and receptors (Figure 5d)
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using IPA. Indeed, many of these genes in all these classes were tissue specific and few
were common between muscle and adipose tissue. DE gene profiles were also subjected to
disease pathway analysis. The highest association for both muscle (Figure 6a) and adipose
(Figure 6b) was “organismal death”.

From these different levels of analyses, it is clear that (i) tissue specific expression
patterns exist at gene and pathway levels between adipose and muscle, (ii) adipose tissue
gene expression appears to be more dynamic than skeletal muscle in PDAC as the number
of adipose genes is approximately twice more than muscle, (iii) inflammation is one of
the key drivers of both muscle and adipose wasting, and (iv) the cachexia signature
is well-established in muscle and adipose even in patients with early stage, resectable
pancreatic cancer.

Transcriptional regulators

e

<

x> @
<o SR -
“Huscle: >

@

Growth factors

(b) ()

(d)

Figure 5. Tissue specific expression of different classes of molecules including transcriptional regula-
tors (a), growth factors (b), cytokines (c) and receptors (d). Differentially expressed genes were given
as input in IPA and the genes were classified based on their known functions. A strong tissue specific
gene expression pattern exists across classes. The genes in red text are upregulated and green text are
downregulated genes. The genes represented in between are commonly expressed between muscle
and adipose. The genes that are circled in red and blue are also present in aged muscle dataset where
the blue circles indicate same direction of effect (upregulated) and red indicates opposite direction of

effect (up in one and down in other).



Cancers 2021, 13, 1975

8 of 23

Muscle
Extracellular Space Other
wipy COBAL.  ECM1 HGF Fafi2on b TNEAIPS
Tiges > e ox L cc.Avmﬁ cpRy WHED GLYED2
FeNs IMP- 18615 VCAN
CHRO™MBSZ At Rep1 CAOA oon BON o BWE"GD:': ) CYTOR
WNToA PTHLH
118 MugED SEHME‘YNXB SPINTY CFL2 - c oz LOKLY Gtz ook
ToF62 DBNDD1
M
BUANE. ot raind "™ iig_c1gtnrsROP03 BOF11cotear <Fig) TGFB!
Plasma Membrane sr‘fwz T p T
STXBR2 Feer1G SLAfba3 . DAB2 ‘i GPR183  PCDHGAS
SLEBA1OMBT! rorL NTEE L csPiR . FLRT3
e cBia- g Aogy? ST eats 9. vsxsqmg PN s
@ SONGA pgky MRCT U LI NGNS 2o ST
T S
GhBs PDGFRB ONING (1GAM ER!B: o P e

ITGA4
FADS? EPHAS
ElSR1 MSTiR
vASP BGELS —— SLCM‘PCDHGCJ TE“E"SLCHM - BCHE
28
ONAS COR2  MSR1 HAs2 C3ART 1pms PTAFR PTGIR rarmNGFR FATA

Cytoplasm o TNFAIPBL2 prKFBI BRSK1 CKE DaCKZ ey PXNIP TKT coLmt

SHCa - CREBpz DACT1  HK2 MAPK10 SVOPELOCSY KALRN PLEKHM PIKIRT -

A
JAK2 i amnoy B FSON! Res Mvmn'AKmm K%ocss PPPIRISA

TRAF4
GsTZ1 SNCENDA PRF1 C :u; ALOWIAY s RA! plK1 LOALSZ

DDAH1 FABP3
MGST1 gy - TNNI3 gap: FABP7 MO, pucns  CYRIBIACSS!
Nucleus H3-3A/H3-38 AKAPS, )1
LNO3 OSRNR3  prppn: P?‘;:)ZSW“B O PARPY FOXOI - gy
E2F3 sPin
AHR PER2 (IRFS
RAMIs RECS . OSRY VAV! A a T S Z-score =7.238
P Amﬂ Srabsin B0t RASSF2 ETVA OO —value = 3.66 x 1012
PINX1 zF"”cnemmcc" W punxz FOXOR  TBXS P :
PTTG
(@)
Adipose
Extracellular S HoE ~ Oother
xtracellular pac..‘s ol = 4 afoc ey " o
ciga sy COBLLY colfieat g5 TP Gigs
HOEGF gy O8RS Oglt = crin ™ TV
o cle Lﬁﬂwn colsar N senins 22 g capi PooHGAY

oA TNFSFT0 LaBp MMETI Crines ARG THEST T Eiiez ANGPT1 Spoe ADANIS!

Plasma Membrane m«f mgmgmw m VAT Kcms B, i
LaGAn & J!L‘
sugpal ‘OD‘« mfm' 14 2 Wi WASFZ pcnuccacuu C@‘a
ATRTA sofy2PUUR s Al Fhst PONTTAANE | AOVRTE sTXBP2

TNFREF12A C.A" S "v’ T 82

¥ AL T HRAS MGAM ¢ v : [¥) calErL

cum = _sUBiAY NTgha ps s M‘ @ TR Ang

\ TSPAN3T % eia PRI ] . AN

A GP‘@M cuﬁswﬂ oAz prof = ryzws“““‘ wm- . .

PIRFEG. . S100A11 v%z
Ut Abr © Py gs FERMTS.
PPRICA D1 o¥6s 1FTST DCUN:
C P MYBMIPTI? i GRK2 piRaCHMF E""mgw
TP MARK1 o 8O MOP! g CiB2
N oL P MGSNCG Nﬁlf‘;ﬁ’ﬂ’“”"””“ Awl Aw'
wolper @ Rhks ONM3 PIKSRT
. EIREE2 cagiy LOBS L pRgy R“' N PEATS m: shais l w
e yi. HACE: g
vigan RALA ARRPS dgr . GNpATWIRE %}va FERiTz MAB2K 7 2
L4 ACADVL ez RCN3-
VEEK e PN hges bl s
& pERTLIC MR INPPSK aigerrs RES1H }"cgm' ARRBT <D
g Flic Enmi""‘ APl ""3
Nucleus ;agag GENB) BT 60KA) khTen worsc PURAKITSA G
B o, 6 OB """“.‘«m "“‘mz”"'“ @ 2 90!
CINGY
i o Wmm D o7

Cytoplasm o o oy
2 2,

o, NS
TR oo nosT

N 8 F“WP:CO«FSVMEZ >
B K1 SN2 i Gy 106 O “\”‘m oox Fg WEOR  ppsy

shs” W) o) AN RS g NAS® &S ge

- usmm @ A EED phgr; T GATADA g, GATRY ponl B

EuBB ceir 7301 gy D 2 BEED nEr g oogy B P usel  Z-score =2.83

L. "p::,:mg"““""fm, Fw;st’“ maﬁ:‘ ) 0 PO G p-value =1.13 x 1012

- ncmzm

X
ﬂ
g4

FBYO5

(b)

Figure 6. Gene expression predicted organismal death. Genes predicted to enhance (orange lines) or
inhibit (blue lines) organismal death versus no prediction (yellow lines) in muscle (a) and adipose (b).

2.4. Correlation of Genes from Muscle and Adipose to Cancer Weight Loss Grade

It is known that combination of weight loss and BMI can differentiate the severity
of cachexia and survival [2]. Therefore, to understand whether the genes relate to degree
of weight loss, we used all the profiled genes from muscle and adipose and correlated
them to cancer weight loss grade, a score generated from BMI and 6-month history of
weight loss that has prognostic value in patients with advanced cancers. Only PDAC
samples were used for this analysis. To further confirm if these genes are correlated to
PDAC alone, we also ran the correlation for controls and removed the genes that were
common between PDAC and controls from further interpretation. Genes that correlated
with r > 0.5 and p < 0.05 were then subjected to clustering analysis (k-means clustering)
using the STRING database.

A total of 340 genes from muscle, including several known genes for cachexia such
as FOXO1, FOXO3, PIK3RI, GLUL were correlated with CWLG (Figure 7a and Table S5).
Other genes which were not previously implicated such as PPP1RS, WNT9A, SESN1,
CCDC68, RNF207, POMT2 and DST were also found to be correlated with CWLG. KDM6B
and FOXO1 were identified as top nodal molecules in the network (Figure 7b).
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Figure 7. Top 30 muscle genes correlated with CWLG and gene network. (a) All genes were correlated against CWLG with

PDAC samples alone. Spearman’s rank correlation was performed and only genes with r > 0.5 and p < 0.05 were considered.
340 genes correlated with CWLG; (b) the network was generated using the STRING database for the top 50 correlated genes
with CWLG. Orphan networks were removed.

A total of 98 DE genes from adipose tissue were correlated with CWLG and not
surprisingly given the relative paucity of data in adipose tissue, the roles of these genes in
the context of PDAC and cachexia are undescribed. The top representative genes include
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RPS4X, AFF3, PDZD8 and DBX2 (Figure 8a and Table S6). APOE was identified as the top
molecule in the network (Figure 8b).
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Figure 8. Top 30 adipose genes correlated with CWLG and gene network. (a) All genes were correlated against CWLG with
PDAC samples alone. Spearman’s rank correlation was performed and only genes with r > 0.5 and p < 0.05 were considered
and 98 genes correlated with CWLG; (b) the network was generated using the STRING database for the top 50 correlated

genes with CWLG.
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2.5. Comparison with External Datasets

We sought to validate our data with external datasets. Few human studies are available
with moderate sample size in muscle and only one study has profiled adipose wasting in
cachexia to date. Since many of the human studies in cachexia have used array platforms,
technological advancement must be considered in deciding the cut-off for the datasets.
For example, ion proton sequencing has higher sensitivity and orders of magnitude of
detection when compared to microarray [26]. One aim of this analysis was to identify
common gene signatures or drivers associated with cachexia across different cancer types.
In muscle, 2481 genes were identified in our IU dataset (Table S57), while 1737 genes were
identified in the external dataset GSE18832 (Table S8). 294 genes were common between
both the datasets, of which 251 genes had similar direction of effect in both datasets (~84%)
(Figure 9). In adipose, the IU dataset had 4744 genes (Table S9) while the external dataset
GSE20571 had 1372 genes (Table S10). 426 genes were common between both the datasets,
of which 357 (~83%) genes showed similar direction of effect in both the datasets (Figure 9).

Interestingly, many functionally validated genes in muscle wasting from model sys-
tems and humans such as FOXO1, FOXO3 [27], PDK4 [28], IL6R [29], PIK3R1 [7], LIF [30],
and SLC39A14 (also known as ZIP14) [31] were identified in both the human skeletal
muscle datasets. The top pathways include regulation of elF4 and p70S6K signaling,
mTOR signaling, and insulin receptor signaling. In adipose, inflammation and its related
pathways were highly enriched. Pathways such as acute phase response signaling, IL-8
signaling, IL-10 signaling, complement system, Toll-like receptor signaling, GP6 signaling
were identified. The complete lists of common genes and pathways for the muscle and
adipose datasets are found in Tables S11 and S12, respectively.

It is well documented that gene expression significantly changes with age. As age
was significantly different between our control and PDAC, we wanted to understand the
extent of gene expression changes common between aging and PDAC. To address this, we
identified a non-cancer muscle microarray dataset (GSE9676, GPL 96) which had young
(20-30 years old, n = 14) and old participants (65-75 years old, nn = 16) in the study. Only
baseline samples were considered for analysis. We considered DE genes with 1.2-fold
change and p < 0.1 and identified 1968 genes. When overlaid with IU muscle dataset, only
294 genes were common between IU dataset and GSE9676 age dataset (Table S13), while
1674 genes were unique to age and 2229 genes were unique to PDAC muscle (Figure 10).
Interestingly, many of the cachexia associated genes such as FOXO1, FOXO3, SIRT1,
SMAD3 and FABP3 were identified in age related gene expression in similar direction.
Similarly, at the pathway level, only six pathways were common between the two datasets.
There was minimal overlap of genes between cachexia and age (Figure 11) suggesting that
mechanisms of age-related muscle loss could be strikingly different from cancer related
muscle wasting. We did not find any age-related human gene expression dataset for
adipose tissue and therefore we restricted the analysis to muscle. The list of significant
pathways for PDAC muscle and GSE9676 is given in Table S14 and Table S15, respectively.
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Figure 9. Validation of muscle and adipose DE genes in external dataset. For muscle, 294 genes were common between
IU and the external dataset, of which 251 genes had similar direction of effect (~84%). For adipose tissue, 426 genes were
common between the two datasets of which 357 genes had similar direction of effect (83%).
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Figure 10. Comparison of age-related transcriptome against PDAC muscle. (a) For muscle, 294 genes were common between
PDAC muscle (this study) and GSE9676. (b) There was a minimal overlap between pathways. (c) The list of significant
pathways with z-score of 1.5 and p < 0.05 are represented for GSE9676 and top 30 pathways in PDAC muscle. The common
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Figure 11. Comparison of age-related transcriptome against PDAC muscle. Six Common pathways were identified between
GSE9676 and IU PDAC muscle dataset. Heatmap for each pathway indicate that genes identified in aged muscle dataset
and PDAC muscle wasting dataset are predominantly different. Red and green color represent up and downregulated
genes, respectively.
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3. Discussion

This is the first study to report distinct muscle and adipose gene expression profiled
from the same patients having same cancer type, PDAC. Although several common path-
ways were identified between muscle and adipose, the genes involved in these pathways
are predominantly different, suggesting that adipose and muscle wasting may be mediated
by independent mechanisms. When examining only the patients with cancer, few well
known genes and many unknown genes in muscle were found to be highly correlated with
degree of cancer weight loss grade. A similar inference cannot be made from the adipose
correlation as this is the first study to profile adipose tissue from a homogeneous cohort
and the second overall in the literature to profile human genes associated with fat wasting
in cachexia. Although the mechanism through which adipose loss occurs in cachexia has
been studied in preclinical models [32-36], the specific mechanisms involved in adipose
changes in human PDAC cachexia has not been studied till date. We also directed our
efforts in validating the signatures in different cancer type from a different geographic
location. The fact that some of the well-studied genes in animal models of cachexia are
validated in these human datasets is highly promising. Of course, many genes identified in
the muscle and adipose validation data point to inflammation, which is a well-established
component of cachexia.

As much as the distinct gene expression profiles between muscle and adipose seem
obvious, it conveys a critical information that adipose tissue may have independent mech-
anisms in causing fat wasting providing a potential therapeutic opportunity to target
adipose wasting. This was evident from our pathway results where similar pathways
had predominantly different and few common genes between adipose and muscle. One
possibility for the overall difference in gene expression in adipose versus muscle is that
adipose wasting might be well underway prior to overt muscle loss in PDAC cachexia.
Although the majority of cachexia research has focused on muscle, our recent clinical
study showed that fat loss alone is associated with reduced survival [4]. Furthermore,
mechanistic studies in animal models suggest that blocking lipolysis can promote muscle
preservation in cachexia [34,37,38]. The molecular mechanisms behind adipose wasting in
cancer remain unclear. Our pathway analysis and comparison to the diabesity literature
indicate that inflammation could be one of the key drivers of adipose wasting. Indeed,
interleukin signaling pathways such as IL-2, IL-6, IL-8, IL-9, IL-15 and IL-23 were observed
in adipose. While IL-6 is known to cause fat wasting in cachexia [39], more experimental
evidence is needed to understand the interaction between cytokines in augmenting adipose
wasting in cachexia. Some of these pro-inflammatory cytokines such as IL-6, IL-8 and IL-23
are implicated in tumor progression and metastasis. IL-4, IL-10 and chemokines recruit
circulating monocytes leading to generation of tumor associated macrophages (TAM). The
infiltrated monocytes when primed in tumor microenvironment release pro-inflammatory
cytokines thereby causing a cachectic environment. However, the exact mechanism through
which the macrophages modulate adipose tissue mechanisms in cachexia remains to be elu-
cidated [40]. In another interesting observation, mTOR and NF-kB signaling, which have
long been implicated in muscle growth and wasting [41-44], were identified in adipose
tissue here and are known to regulate lipogenesis and lipolysis respectively [45] [46,47].
Based on the IPA, mTOR signaling has a z-score of -2.4, indicating pathway inhibition. The
implication of this is unclear, given that the role of mTOR in adipose tissue in cachexia has
thus far been little explored.

There is more than one-way that adipose tissue can have a negative impact on skeletal
muscle and survival. Evidence suggests that lipids may have an important role in maintain-
ing skeletal muscle mass and on the flip side, it can also affect muscle function. Pathologic
accumulation of fat in muscle can cause myosteatosis but the exact mechanisms is not clear,
although few genes have been studied in injury model. Increased expression of FABP4, a
fatty acid carrier protein leads to accumulation of fat in a muscle injury model [48], and
FABP4 is indeed upregulated in our IU PDAC muscle and external datasets. Myosteato-
sis alone is associated with increased mortality in cancer [49] and Stretch et al., showed
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that myosteatosis, sarcopenia and the combination are associated with reduced survival
in pancreatic and periampullary adenocarcinomas [50]. This suggests that myosteatosis
in cachexia affects survival and their molecular mechanisms in cancer cachexia should
be delineated. The key conclusions from these findings are: (i) it is critical to study the
molecular mechanisms of adipose wasting along with muscle because fat only loss phe-
notype is possible at least in PDAC cachexia at this point, (ii) mitigating fat loss may also
reduce the incidence of myosteatosis thereby improving the overall survival of patients and
(iii) many pathways that are extensively studied in muscle wasting but never in adipose
wasting were identified and should be investigated further to see if it can lead to newer
therapeutic interventions.

For any study, validating the findings in an external dataset adds better value to the
existing findings. However, with only a limited number of human studies conducted
in cachexia to date, finding well-matched datasets would be ideal but never a reality.
The external datasets were profiled using rectus abdominis muscle and subcutaneous
adipose tissue similar to our study but were collected from multiple cancer types and
using different gene profiling platforms. While the GSE18832 muscle study compared
non-cancer controls to cachectic cases as we did, the GSE20571 adipose study compared
weight-stable cancer controls to cachectic cases. Given these differences, the common
genes may more likely represent true observations of cachexia-specific events. It is most
promising that genes such as IL-6R, FOXO1, PDK4, and ZIP14, among others, that have
been functionally validated in animal models were identified in both ours and external
datasets. Blocking the overexpression of these molecules were shown to reverse muscle
wasting and had beneficial effects. Therapeutics targeting FOXO signaling pathways
and IL6-R are in various stages of testing in pancreas cancer [51,52], but whether these
might have beneficial impact on cachexia needs to be investigated. Given there are many
disparities between animal models and human findings in cachexia, findings from human
studies must be tested in animal models towards building for a possible trial. To have genes
with therapeutic potential expressed in common between humans and model systems
augurs well for the future of cachexia research. More efforts are required to understand the
mechanisms involved in adipose wasting in cachexia.

In our study cohort, age was significantly different between cases and controls. It
is well documented that gene expression changes with age [53-55]. To address the influ-
ence of age-related gene expression in our study, we analyzed age related muscle gene
expression dataset and compared it to our IU PDAC muscle data. Our results showed
fewer overlapping genes and more unique genes, suggesting that biological aging process
could have different mechanism compared to cancer associated muscle wasting. A similar
trend was observed in pathways as well. The key differences in the molecular mechanisms
can be attributed to the presence of cancer and its associated chemotherapy effects. It is
known that cancer and its related treatment can lead to an accelerated aging process [56].
As well, the effect of chemotherapy is also attributed to accelerated aging as telomere
shortening was exacerbated in older patients subjected to chemotherapy [57,58]. One of
the common pathways identified was the sirtuin signaling pathway, which has few of the
well characterized cachexia genes such as FOXO1 to be present in aging. FOXO family
of transcription factors plays an important role in aging and longevity. One of the key
roles of FOXO factors is to modulate the ubiquitin proteasome pathway which has been
studied in cancer cachexia. In cachexia, activation of FOXO leads to increased activation of
ubiquitin ligases leading to proteolysis and eventually muscle wasting [59,60]. FOXO1 was
also upregulated in age related gene expression. It could be surmised that FOXO1 could
act through the same ubiquitin mechanisms in causing muscle loss in aging which requires
further investigation. With loss of muscle mass being central to both aging and cachexia,
and with evidence suggesting that inhibition of FOXO transcriptional activity attenuates
muscle wasting [27], it could be an interesting target to pursue for therapeutics.

The study has limitations. The differential gene expression between controls and
cancer subjects is confounded by the age difference, which we have attempted to address
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by using an external transcriptome dataset. We will aim to avoid this in our future studies.
Another way to address this issue is to perform gene expression between weight stable
versus weight losing cancer patients. However, we may not know if the weight stable
cancer patients continued to remain weight stable, unless we have a longitudinal follow
up of patients, which we lack in this study. As well, in our current study, we have only
three weight loss grade 0 patients with PDAC and performing differential expression with
such small numbers can lead to compromised results. However, the correlation analysis for
cancer weight loss grade were done using cancer patients only and are thus not confounded.
Furthermore, we did not analyze the data for sex specific gene differences due to the small
sample size. As well, there are different phenotypes observed in cachexia such as muscle
only loss, fat only loss or a combination of both, which could not be addressed in this
analysis due to the lack of longitudinal body composition data.

4. Materials and Methods
4.1. Recruitment of Study Subjects

The study was conducted under the Indiana University Institutional Review Board
(IRB) approved protocol #1312105608, the same protocol referenced in our prior study [61].
Patients were recruited at Indiana University Hospital between 2014 and 2016. Written and
informed consent was obtained. The cancer cohort consists of 24 patients with PDAC-23
had localized PDAC and underwent surgery and 1 participant had chemotherapy prior to
surgery. Patients within the control group underwent surgery for non-malignant conditions
including hernia repair and cholecystectomy. Rectus abdominis muscle from the incision
site and adjacent subcutaneous adipose tissues were collected and snap frozen in liquid
nitrogen and stored at —80 °C until further use. In all, we had muscle and adipose tissues
from 24 PDAC subjects and 11 non-cancer controls.

4.2. Body Composition Measurements Using Computed Tomography

Body composition measurements were obtained from the CT scan obtained as a part
of standard of care. The third lumbar vertebrae were used as a landmark to measure the
skeletal muscle area (cm?), total adipose area (cm?) and skeletal muscle density [62,63].
Skeletal muscle index and total adipose index were calculated by normalizing surface area
to height (cm?/m?). Image analysis was performed using the SliceOMatic software. History
of weight loss was obtained from patients using the patient-generated subjective global
assessment (PG-SGA) [64,65] and confirmed by consulting the medical record. Cancer
weight loss grade (CWLG) was calculated using 6-month weight loss history and BMI as
described by Martin et al. [2].

4.3. Isolation of RNA

RNA was isolated using AllPrep DNA-RNA-miRNA Universal Kit (80224, Qiagen,
Valencia, CA, USA). An approximately 10 mg section was removed from the main biopsy
in a minimal amount of time. All surfaces were RNase-free. The biopsies were returned to
dry ice while the excised piece was homogenized using the TissueRuptor Homogenizer
for 30 s in RLT plus buffer. Homogenized lysates were frozen at —80 °C until ready for
complete isolation. For muscle, RNA isolation was performed on the Qiacube Instrument
using the “Purification of DNA from Tissues or Cells; Part A” and “Purification of RNA,
including miRNA, from tissues or cells; Part B” Protocol Sheet. Default elution values were
used. RNA was quantified using the RNA-BR Kit and Qubit Fluorometer. For adipose,
RNA isolation was performed manually due to the chloroform step in the isolation protocol.
Samples were quantified and sized using the Qubit BR RNA Kit and TapeStation RNA Kit.

4.4. Library Preparation

For muscle, library preparation was done in accordance with AmpliSeq Transcrip-
tome Human Gene Expression Kit (A26325, Thermo-Fisher Scientific, Waltham, MA, USA,
MANO00010742 Rev. A.0) using 10 ng of RNA as starting material. Libraries for all samples
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were prepared simultaneously and barcoded using Ion Xpress Barcode 1-16 Kit (4471250,
Thermo-Fisher Scientific). Libraries were quantified using the Ion TagMan Quantitation
Kit (4468802, Thermo-Fisher Scientific) in Fast Mode using the 7900HT (Thermo-Fisher
Scientific). Libraries were diluted to 75 pM for sequencing. For adipose, automated li-
brary preparation from 10 ng of RNA was completed according to the Ion Chef protocol
(MANO0013432). Libraries were barcoded using the plates available with the Chef Kit and di-
luted to 50 pM for sequencing. For both tissues, template preparation and sequencing were
performed using the Ion PI Hi-Q Chef Kit (A27198, Thermo-Fisher Scientific) with template
quantitation using the IonSphere Quality Control Kit (4468656, Thermo-Fisher Scientific).

4.5. Differential Gene Expression

Raw reads were obtained by mapping the sequence to the human genome build,
hg19. Principal component analysis (PCA) was performed using Partek flow genomic
analysis software. DESeq2 was used to identify differentially expressed (DE) genes between
control and PDAC using R for both adipose and muscle gene expression analyses [66].
For discovery purposes, a fold change of 1.4 and p-value of 0.05 were used to identify DE
genes. For PCA and for performing correlation with CWLG, DESeq2-generated variance
stabilization counts were used. We refer our dataset as IU datasets which was generated
for the study from Indiana University.

4.6. Statistical Analysis

Student’s t-test was used to compare age, BMI, skeletal muscle index and total adipose
index between subject groups. Chi-square test was used for gender comparison and
Fisher’s exact test for cancer associated weight loss between non-cancer controls and
PDAC cases. Pearson correlation test was used for correlating all the muscle and adipose
genes with CWLG. As we wanted to consider only the strong correlations, genes with
Pearson r > 0.5 and p < 0.05 were selected for downstream analyses. Correlation plots
were generated using GraphPad Prism 7. The raw reads and normalized counts for all the
samples are deposited in Gene Expression Omnibus database (GSE133979). The overall
workflow is presented in Figure 1.

4.7. External Validation Datasets

Two datasets from Gene Expression Omnibus data repository were used as con-
trasts to our own datasets. GSE18832 profiled the rectus abdominis transcriptome of
3 non-cancer controls and 18 upper gastrointestinal cancer subjects via Affymetrix HGU-
133plus2 GeneChip array [67]. GSE20571 profiled abdominal subcutaneous adipose tissue
of 14 weight stable cancer controls and 13 weight losing cancer patients using Affymetrix
Gene 1.0 ST Array [21]. Factoring in the cross-platform differences and discovery intent, we
used a relaxed cut-off of 1.2-fold change and p < 0.1, for both our dataset and the external
dataset for differential gene expression. Datasets were compared using Illumina BaseSpace
Correlation Engine [68]. The gene numbers correspond to the output obtained from the
correlation engine software.

As age was significantly different between the cases and controls in our study, we
wanted to understand if there are any common genes between cachexia and age. We
identified a muscle gene expression dataset (GSE9676) profiled using vastus lateralis
muscle, that had 14 young and 16 older participants. The “analyze GEO2R” tool in gene
expression omnibus database is used for differential expression analysis. We considered
only the baseline samples for analysis. There was no human adipose dataset available for
age. In line with the other external datasets, we selected differentially expressed genes
with 1.2-fold change and p < 0.1.

4.8. Pathway Analysis for DE Genes and Gene Networks

Ingenuity Pathway Analysis (IPA, Qiagen, Version 2.3, November 2018) was used
for pathway discovery, identification of upstream regulators, and classification of genes
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with fold change >1.4 and p-value of 0.05 for both muscle and adipose. Pathways with
Z-score > 1.5 and p < 0.05 were considered significant. We focused mainly on signaling
pathways for muscle and adipose. However, the entire list of pathways is presented in
the supplementary information. STRING database version 11.0 was used to generate gene
networks for genes that were significantly correlated with CWLG.

5. Conclusions

This is the single largest study in cachexia to generate expression profiles of muscle
and adipose genes from the same individuals and from the same cancer type to understand
the concurrent muscle and adipose wasting in a homogenous population.
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AFF3 AF4/FMR2 Family Member 3
CCDC68 Coiled-Coil Domain Containing 68
DBX2 Developing Brain Homeobox 2
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FABP3 Fatty Acid Binding Protein 3
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FOXO1 Forkhead Box O1
FOXO3 Forkhead Box O3
GLUL Glutamate-Ammonia Ligase
IL-10 Interleukin 10
1L-23 Interleukin 23
IL-4 Interleukin 4
IL-6 Interleukin 6
IL6R Interleukin 6 Receptor
IL-8 Interleukin 8
KDM6B Lysine Demethylase 6B
LIF Leukemia Inhibitory Factor
MTOR Mechanistic Target Of Rapamycin Kinase
NFKB1 Nuclear Factor Kappa B Subunit 1
PDK4 Pyruvate Dehydrogenase Kinase 4
PDZD8 PDZ Domain Containing 8
PIK3R1 Phosphoinositide-3-Kinase Regulatory Subunit 1
POMT2 Protein O-Mannosyltransferase 2
PPP1R8 Protein Phosphatase 1 Regulatory Subunit 8
RNF207 Ring Finger Protein 207
RPS4X Ribosomal Protein S4 X-Linked
SESN1 Sestrin 1
SIRT1 Sirtuin 1
SLC39A14/ZIP14  Solute Carrier Family 39 Member 14
SMAD?3 SMAD Family Member 3
WNT9A Wnt Family Member 9A
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