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Simple Summary: Metabolic reprogramming is a hallmark of malignancy. Hepatocellular carcinoma
(HCC) cancer cells alterations in metabolism are due to the adaption to hypoxia and hypo-nutrient
conditions. Several proteins and metabolites associated with glycolysis, tricarboxylic acid cycle and
pyrimidine synthesis were found to be differentially regulated in serum, tumor and peritumoral
tissues with increased tumor size, suggesting that microenvironment and tumor cell cooperate to
regulate metabolism. In this study, the metabolomic characterization of HCC using paired tumor
and adjacent liver tissues indicated tumor size-dependent metabolic reprogramming. Targeting
cancer metabolism provides potential diagnostic and prognostic metabolic biomarkers. Our study
brings new insight into the potential therapeutic use of metabolic targets and a methodological
framework and diagnostic and prognostic metabolic markers that may be used in a clinical setting.
The stratification of future clinical trials based on these metabolic subsets should improve the
development of effective therapies and more intensive surveillance.

Abstract: Hepatocellular carcinoma (HCC) is a common malignancy with poor prognosis, high mor-
bidity and mortality concerning with lack of effective diagnosis and high postoperative recurrence.
Similar with other cancers, HCC cancer cells have to alter their metabolism to adapt to the changing
requirements imposed by the environment of the growing tumor. In less vascularized regions of
tumor, cancer cells experience hypoxia and nutrient starvation. Here, we show that HCC undergoes
a global metabolic reprogramming during tumor growth. A combined proteomics and metabolomics
analysis of paired peritumoral and tumor tissues from 200 HCC patients revealed liver-specific
metabolic reprogramming and metabolic alterations with increasing tumor sizes. Several proteins
and metabolites associated with glycolysis, the tricarboxylic acid cycle and pyrimidine synthesis
were found to be differentially regulated in serum, tumor and peritumoral tissue with increased
tumor sizes. Several prognostic metabolite biomarkers involved in HCC metabolic reprogramming
were identified and integrated with clinical and pathological data. We built and validated this
combined model to discriminate against patients with different recurrence risks. An integrated and
comprehensive metabolomic analysis of HCC is provided by our present work. Metabolomic alter-
ations associated with the advanced stage of the disease and poor clinical outcomes, were revealed.
Targeting cancer metabolism may deliver effective therapies for HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is one of the most prevalent cancers around the
world and the second-most common cause of cancer-related death [1]. HCC is a pathology
processed with multiple etiologies, which are dynamic and multi-staged [2]. The observed
variations in the age-, sex- and race-specific distributions of HCC in geographic regions are
related to different abundance of risk factors, with chronic hepatitis B virus (HBV), chronic
hepatitis C virus (HCV) infection and cirrhosis being the largest risk factors [3].

The high lethality (10–20/100,000, in East Asia) associated with HCC is mainly due to
the late diagnosis and high post-operative recurrence, which is, in turn, due to the lack of
symptoms at the early stage [4]. Currently, there is no standard or routine screening test for
liver cancer. Depending on the local guidelines, ultrasound, X-ray Computed Tomography
scan and α-fetoprotein (AFP) are the typical tests being used to screen for liver cancer [5–7].
The available tests have several limitations: for example, early/small tumors are difficult to
be detected by ultrasound and computed tomography scan and often show negative AFP
levels [8]. In contrast, AFP levels are often elevated under certain conditions, including
pregnancy, hepatitis, cirrhosis and other types of cancer, causing up to 20% false-positive
results [7,8]. Furthermore, there is currently no consensus regarding the risk stratification.
These limitations complicate the recurrence surveillance of high-risk patients. Recently,
several models to evaluate postoperative recurrence have been developed—for example,
the Korean model, the Singapore Liver Cancer Recurrence (SLICER) score and the Surgery-
Specific Cancer of the Liver Italian Program (SS-CLIP) [9–11]. However, the performance
of these models is still not satisfactory for clinical practice, due to the lack of specific
biomarker integration. Thus, novel biomarker candidates for the early diagnosis of HCC
and new approaches that allow clinicians to estimate the risk of recurrence in an individual
patient are urgently required.

Recent studies based on mass spectrometry and next-generation sequencing unveiled
the activation status of signaling pathways and reprogramming of liver-specific metabolism
in HBV-related HCC on the genomic and the proteomic levels [12,13]. MS-based proteomics
can provide measures of the global changes in protein abundance related to the deregulation
of signaling and metabolic pathways in HCC. Nonetheless, how the cancer metabolic
phenotypes are driven by proteomic alterations remains unexplained in HBV-related HCC.
Moreover, the application of proteomics-based biomarkers for diagnosis and prognosis
remains difficult in a clinical setting [14,15]. One of the reasons of these complications
might be imposed by the observation that tumors can undergo re-programming during
growth to allow the tumor to adapt to changing conditions and challenges, including,
for example, limited access to nutrients and oxygen [16,17]. However, how proteomic and
metabolomic signatures change upon tumor growth in HCC remains unknown.

Nuclear Magnetic Resonance (NMR) spectroscopy-based metabolomics can provide
an untargeted, quantitative snapshot of global metabolite abundance to provide additional
biological insights, which cannot be deciphered by proteomics alone [18]. Compared to
other “omics”, the metabolome provides the most direct snapshot of the actual functional
and physiological state of biological networks [19]. Related to HCC, metabolic fingerprints
have the potential to capture metabolic changes, which could help clarifying the pathogen-
esis and changes in environmental or lifestyle factors [20]. Untargeted metabolomics has
been established as key technique for investigation of metabolic alterations in carcinogen-
esis [19,21], and the first metabolites have been identified to be changed in HCC [22,23].
Metabolomic research associated with HCC allows an unparalleled opportunity to dis-
cover metabolites for early diagnosis candidates and to assess the progression of treatment.
The combination with MS-based proteomics promises to fill the current knowledge gap be-
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tween HCC cancer proteomic and metabolomic phenotypes and the underlying molecular
mechanisms [24].

Here, we performed a metabolomic analysis of patient serum samples and integrative
analyses of metabolomic and proteomic [15] data from tumor and matched peritumoral
liver tissues. Significant alterations in crucial metabolic and signaling pathways were
revealed by this analysis. Strikingly, a comparison of the proteomic and metabolomic sig-
natures obtained for different tumor sizes and their matched peritumoral tissues showed
that both tumors and their surrounding tissues undergo proteomic and metabolic re-
programming during growth. Proteomic clustering resulted in a set of proteins that are
differentially regulated in different-sized tumors. Several proteins, and metabolites in-
volved in glycolysis, the tricarboxylic acid (TCA) cycle and pyrimidine synthesis were
found to be differentially regulated with increased tumor sizes in serum, tumor and
peritumoral tissues.

We further used our metabolomic data to develop a statistical model that can pre-
dict the risk of HCC recurrence based on clinical pathological data, metabolomics data
and a combination thereof. This model will be valuable in predicting the clinical out-
comes of the treatment, guiding follow-up surveillance or in the design of post-resection
clinical strategies aiming to decrease the risk of recurrence. In conclusion, our study pro-
vides high-quality and high-content proteometabolomic resources of HBV-related HCC
complementary to the sequencing-based data. Moreover, it highlights the therapeutic
and prognostic implications and inherent regulatory mechanisms of metabolomic data
benefiting clinical practice.

2. Materials and Methods
2.1. Patients

Tissues (carcinoma tissues (CT) and peritumoral tissues (PT)) and fasting sera were
collected from 200 patients (male/female, 160/40) with HCC ranged from age 23 to 77 years.
Several tumorous factors were collected, including tumor size, microvascular invasion,
tumor lesion number, differentiation grade and portal vein tumor thrombus. According
to the Barcelona Clinic Liver Cancer (BCLC) staging classification system [25] or TNM-
based staging system [26], the tumor size is an important factor to grade HCC patients.
In a number of more recent studies, the tumor size reflects changes in tumor growth,
which were related with metastasis, microvascular invasion, operative complications
and recurrence. Herein, serum, CT and PT were divided into 4 groups according to the
tumor size (diameter ≤ 3 cm, grade I, n = 50; 3 cm < diameter ≤5 cm, grade II, n = 50;
5 cm < diameter ≤ 10 cm, grade III, n = 50; diameter > 10 cm, grade IV, n = 50). Serum and
tissues were taken from each individual, i.e., serum, CT and PT were from the same
patient. Intact encapsulation or distinct boundary tumors of patients through computed
tomography scan were selected as the clinical samples. Of these, 45 of grade I patients, 40 of
grade II, 48 of grade III and 41 of grade IV HCC patients were HBsAg-positive (Hepatitis
B surface antigen) and one grade III patient with unknown HBsAg (all HCV (Hepatitis
C virus) negative). All patients received the standard radical resection without any other
therapies before surgery. The detailed clinical information is summarized in Table S1.

In addition, 42 HCC patients with cirrhosis and 23 cirrhosis controls without HCC
enrolled at the Medical University of Graz were included. These patients were enrolled
2007–2009 in a biomarker study, and plasma samples stored at −70 ◦C were used for
metabolomic analyses. In the HCC patients (male/female, 35/7; age range 54–83 years) all
had underlying cirrhosis of different etiologies (alcohol, 13; NASH, 13; HCV, 12; other, 4).
Cirrhosis controls without HCC were matched to age, sex and etiology.

This study was approved by the ethics committee of the Institution Review Board
of Mengchao Hepatobiliary Hospital of Fujian Medical University, China (ethical code:
2018_067_01) and by the Ethics Committee of the Medical University of Graz (ethical code:
33-040 ex 20/21), respectively. Written informed consent was obtained from all patients.
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2.2. MS Sample Preparation, Data Acquisition

In our previous study [15], CT and PT tissues were collected from 60 patients and were
divided into 4 groups according to their tumor sizes, including small (n = 15), medium
(n = 15), large (n = 15) and huge HCC groups (n = 15), respectively. The criteria for grouping
was the same as in this study. After sample preparation, 5 individual samples with equal
amounts from the same group were pooled together and were labeled using the iTRAQ
kit, resulting in 3 biological repeats of each group, named as CT/PTI1, CT/PTI2, CT/PTI3,
CT/PTII1, CT/PTII2, CT/PTII3, CT/PTIII1, CT/PTIII2, CT/PTIII3, CT/PTIV1, CT/PTIV2
and CT/PTIV3, respectively. Proteomic profiles of pooled samples were identified by 2D
LC-MS/MS. Here, the raw data obtained in the previous study was used as input for
the analysis.

2.3. NMR Sample Preparation, Data Acquisition and Analysis

Tissues samples were flash-frozen in liquid nitrogen and stored at −80◦C until analysis.
In each patient, approximately 9-mm3 CT and PT was resected and 200-µL serum was
used for the metabolomics analysis. Serum and tissue sample preparation was conducted
as described previously [27,28]. Tissuelyser-24 was used for homogenization at 60 Hz
for 180 s (Lixin Co., Ltd, Shanghai, China). NMR measurements for 1H NMR metabolic
profiling and analyses were performed as described and using a Bruker Avance III HD
600-MHz NMR spectrometer equipped with a TXI probe head [28,29]. Chenomx NMR
suite 8.4 and reference compounds were used to identify the metabolites in the serum
and tissue during the analysis. A Receiver Operating Characteristic (ROC) analysis was
done in MetaboAnalyst 5.0 to evaluate the specificity and sensitivity of each metabolite.
GraphPad Prism 5.01 (GraphPad Software, La Jolla, CA, USA) was employed to perform a
univariate statistical analysis where the data are represented as the mean +/− standard
deviation (SD).

2.4. Multivariable Prediction Model

The model building and evaluation were performed by SPSS statistical software
(V19.0, SPSS Inc., Chicago, IL, USA) or in R version 3.2.5 (R Foundation for Statistical
Computing, Vienna, Austria). Two models to predict the recurrence of HCC were built
using the derivation cohort. The difference between two models is whether the metabolites
as a parameter are included in the model. Cox regression was conducted to evaluate
the correlation between the clinicopathological parameters and metabolites. Univariable
factors with p < 0.05 were incorporated into the multivariable cox regression analysis.
Multivariate cox regression was then applied to establish the final model. As shown in
Table 1 and Table S4, two novel risk score formulae were developed, including or omitting
metabolites, respectively. The risk score of enrolled HCC patients was calculated according
to the aforementioned risk scoring formulae. The median risk score was subsequently used
as cut-off to divide the patients into low- and high-risk groups. The survival differences
between low- and high-risk groups were examined by a Kaplan–Meier analysis.

The sensitivity and specificity of this prognosis prediction model were assessed by the
area under the time-dependent receiver operating characteristic (tdROC) curve (tdAUC),
which was analyzed using the “tdROC” package of R software (4.0.3, R core Team, R Foun-
dation for Statistical Computing, Vienna, Austria). The discriminatory performance of
the models was assessed by Harrell’s c-index, Gönen & Heller’s K, as previously de-
scribed [30–32].
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Table 1. Multivariable Cox regression analyses of the prognostic factors in the derivation and validation groups of the
Chinese cohort with metabolic factors.

Variable
Derivation Group (n = 100) Validation Group (n = 100)

Hazard Ratio (95% CI) β-Estimate (95% CI) p-Value Hazard Ratio (95% CI) β-Estimate (95% CI) p-Value

ALT
<50 Ref Ref Ref Ref
>50 2.557 (1.191, 5.490) 2.552 (1.291, 5.046) 0.007 0.916 (0.473, 1.774) −0.088 (−0.749, 0.573) 0.794

serum
succinate/serum

pyruvate
4.572 (1.360,15.372) 1.520 (0.307, 2.733) 0.014 1.968 (1.185, 3.268) 0.677 (0.170, 1.184) 0.009

Tumor number 2.242 (1.540, 3.264) 0.807 (0.432, 1.183) <0.0001 2.228 (1.614, 3.075) 0.801 (0.479, 1.123) <0.0001

Model score = tumor number * 0.807 + serum succinate / serum pyruvate * 1.52 + ALT (0, <50; 1, ≥50) * 0.937; PI = eˆ model
score/(1 + eˆmodel score); Cut-off to generate the risk groups: PI ≤ 0.874 (low) and PI > 0.874 (high). ALT, Alanine aminotransferase.

3. Results
3.1. Metabolic Serum Profiles Change during Tumor Progression

Given that metabolic reprogramming is a hallmark of cancer development [33], we hy-
pothesized that tumors of HCC patients undergo metabolic changes upon growth. To this
end, we carried out an in-depth analysis using recently published proteomic data [15]. Pro-
teomic clustering was performed based on differentially expressed proteins in different-size
tumors, revealing 509 dysregulated proteins during tumor growth (Figure 1A). The proteins
whose expression were altered the most significantly (p < 0.01), along with the increase
in tumor size, are listed in Figure 1A. Among these differentially expressed proteins,
many proteins have been demonstrated to be involved in glycometabolism, such as glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH) [34] and phosphoglycerate kinase 1
(PGK1) [35], lipid metabolism such as apolipoprotein A4 (APOA4) [36] and protein synthe-
sis or degradation such as plasminogen protein (PLG) [37] in cancer cells. Next, a Gene
Ontology (GO) enrichment analysis identified the top terms (ranked by p-values) specific
for the upregulated biological processes involving metabolic, mRNA, cellular metabolic,
RNA, organic substances and catabolic processes (Figure 1B, upper panel). Tumors with
larger sizes showed a decrease of mRNA processing related to the carboxylic acid, oxoacid,
organic acid, small molecule and monocarboxylic acid metabolic processes (Figure 1B,
lower panel). These results clearly indicate that metabolism undergoes tremendous change
in tumors with different sizes. Therefore, we hypothesized that the metabolomic profile
might consistently change in tumors with different sizes.

To obtain a comprehensive molecular understanding of the metabolic changes in
HCC patients, tumor tissues, their paired peritumoral tissues and serum collected from
200 HCC patients were used for a metabolomic analysis based on stringent criteria (see
Materials and Methods). The study was designed to obtain samples of 50 HCC patients for
each of the four groups defined according to a classification based on tumor size [38,39].
To this end, the HCC patients were divided into four subtypes, including small HCC
(diameter ≤ 3 cm, grade I), medium HCC (3 cm < diameter ≤ 5 cm, grade II), large HCC
(5 cm < diameter ≤ 10 cm, grade III) and huge HCC (diameter > 10 cm, grade IV).

Using untargeted NMR spectroscopy, we determined the metabolic fingerprints of
the serum and tissues. A Principle Component Analysis (PCA) and Partial Least Squares-
Discriminant Analysis (PLS-DA) of the serum samples showed that the serum metabolic
profiles of HCC patients gradually change with increasing the tumor size (Figure 2A).
While the metabolic profiles of HCC patients with small tumors are more homogenous,
the profiles become more heterogeneous with the increasing tumor size. An inspection
of the PCA loading plot revealed a strong increase of several 1H NMR signals between
3.5–4.0 ppm and between 5.4 and 5.7 ppm in a subset of patient samples with grade III and
IV tumors. A statistical total correlation spectroscopy (STOCSY) [40] analysis confirmed
that all the signals belong to the same group of metabolites (Figure S1A). Although the
corresponding metabolites could not be assigned unambiguously, we suspect that this
group of metabolites corresponds to circulating DNA. This is in line with previous works
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reporting high levels of circulating tumor and cell-free DNA in HCC [41,42]. When com-
paring the differences in the metabolic fingerprints between the serum samples of patients
with different tumor sizes, O-PLS-DA revealed increasing correlation coefficients R2Y up
to 0.924 and a Q2 of 0.714 (p < 0.01) (Figure 2B,C) with increased clustering of the patient
samples. In patients with different tumor sizes, altered serum metabolites were indicated
by the reduced NMR spectra (Figure 2D) and indicated that the serum levels of glucose,
pyruvate, glutamine, succinate, valine and 3-hydroxyisovalerate significantly changed
(Figure 2E). The results obtained for succinate and valine were in line with a recent study
using gas chromatography-mass spectrometry (GC-MS) on a small HCC patient cohort [43]
and indicated that metabolites are stable markers for HCC. In line, we also observed
significantly decreased glutamine and increased 3-hydroxyisovalerate in plasma samples
of HCC patients with cirrhosis compared to matched cirrhosis controls without HCC in
the European cohort (Graz, Austria) (Figure S1B). We further analyzed HCC metabolomic
results in subgroups (Asian vs. non-Asian and nonalcoholic steatohepatitis (NASH) vs.
other etiologies). When comparing the metabolic fingerprints between serum/plasma from
Asian (Chinese cohort) and non-Asian (European cohort), the O-PLS-DA revealed distinct
clustering with correlation coefficients R2Y of up to 0.977 (p < 0.01) and a positive Q2 of
0.942 (p < 0.01) (Figure S1C). We found significantly increased levels of branched-chain
amino acids (BCAAs; valine, leucine and isoleucine) in the Asian group (Figure S1D), which
demonstrated changes in the metabolites may be relevant to HCC in a population-specific
manner. Lower valine levels in the non-Asian group are in agreement with a previous
study [44]. However, we cannot exclude the possibility that pre-analytics (plasma vs.
serum), diet or lifestyle cause the differences. NASH is a common preneoplastic state of
HCC [45]. Emerging data has revealed excessive hepatic lipid accumulation as the major
contributor for NASH that sensitizes the liver to oxidative stress, along with subsequent
necroinflammation [46,47]. The distinguishing clustering of plasma samples (European
cohort) from NASH and other etiologies is shown in the score and validation plots of the
O-PLS-DA (Figure S1F) with a correlation coefficients R2Y value of 0.936 (p = 0.81) and
the Q2 value of 0.217 (p = 0.02). We observed elevated concentrations of glucose in the
NASH group (Figure S1E). Consistently, a global meta-analysis demonstrated that NASH
patients have a higher prevalence of type 2 diabetes and obesity compared to patients
having nonalcoholic fatty liver diseases [48]. Glucose metabolism is complexly associated
with other metabolic pathways (i.e., fatty acids metabolism), which will require further
studies to obtain a deeper understanding [47].

3.2. Metabolic Profiles of Tumor and Peritumoral Tissues Change during Tumor Progression

In line with the serum data, the PCA and PLS-DA of tumor and peritumoral tissue
samples showed that the metabolic profiles of tumor and peritumoral tissues gradually
changed with the increasing tumor size, with grade III and IV tumor tissues showing the
largest metabolic heterogeneity (Figure 3A). Interestingly, about half of the peritumoral
tissue samples show a metabolic profile more similar to cancer tissues, whereas the other
half showed a distinct metabolic phenotype. We hypothesized that this could be due
to increased metastasis in these patients. To test our hypothesis, we performed a PCA
analysis dividing the NMR metabolomics datasets into three groups: (i) cancer tissue,
(ii) peritumoral tissue without metastasis and (iii) peritumoral tissue with metastasis.
In agreement with our hypothesis, peritumoral tissue samples without metastasis clustered
with a distinct metabolic phenotype, whereas peritumoral tissue samples with metastasis
showed a more cancer-like metabolic phenotype (Figure S2A,B). Reduced NMR spectra
revealed glucose and succinate as the most significantly changed metabolites (Figure S2C).
Given that many peritumoral tissue samples showed a cancer-like phenotype even without
reported metastasis, metabolic biomarkers might help to detect metabolic reprogramming
and early metastasis in peritumoral tissue in the future. O-PLS-DA of pairs of tumor–
tumor, peritumoral–peritumoral and tumor–peritumoral tissue revealed an increased
clustering of patient samples with different tumor sizes (Figures 3B,C and 4A,B,D,E).
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Strikingly, not only the metabolic profiles of tumors but, also, peritumoral liver tissues
are affected, depending on the size of the tumors. Reduced NMR spectra revealed altered
metabolites under all conditions compared, i.e., between tumor and peritumoral tissue
(Figure 3D), as well as between different grade tumors (Figure S3B) and peritumoral tissues
(Figure S3A), respectively. The levels of glucose, lactate; succinate; 3-hydroxyisovalerate;
glutamate; choline; fumarate; nucleotides (uridine and UDP sugars) and other amino acids
(isoleucine, leucine, valine, phenylalanine, tyrosine and lysine) were changed in tumor
tissues compared to peritumoral tissue (Figure 3E), with a largest difference observed
for grade IV tumor–peritumoral tissue pairs (Figure 3C). Within the tumor, the levels of
glucose; lactate; glutamine; fumarate; nucleotides (uridine and UDP sugars) and other
amino acids (isoleucine, leucine, valine, phenylalanine, tyrosine and lysine) were affected
(Figure 4F). Interestingly, most of these metabolites were affected similarly in peritumoral
tissues—in particular, lactate; glutamine; nucleotides (uridine and UDP sugars) and several
amino acids (isoleucine, leucine, valine and lysine) (Figure 4C). Glucose, lactate and leucine
have been identified previously by solid-state 1H NMR in HCC tumor tissues and are in
line with our results [23]. In summary, our results indicate that NMR metabolomics are
well-suited to studying tumor metabolism and that metabolism of the tumor is strongly
coupled to its environment (Figure 4C).

Figure 1. Proteome changes during tumor progression. (A) Hierarchal molecular clustering of 509 dysregulated (1.5-fold
up or down regulation) proteins in tumors of different HCC subtypes. Each column represents a pool of patient samples,
and rows indicate proteins. Up- and downregulated proteins were compared to the peritumoral tissue, respectively. The red
frame surrounds the proteins whose upregulation was significantly associated with larger tumor sizes (p < 0.001), while the
purple frame surrounds proteins whose downregulation was significantly associated with bigger tumor sizes (p < 0.001).
(B) An enriched analysis of the Gene Ontology Biological Processes (GOBP) using protein panels based on upregulated
and downregulated proteins to generate top-term significant biological process. Each column represents a pool of patient
samples, and rows indicate proteins involved in that particular biological process. Cells are colored according to their Z-score
(log2 of the relative protein abundance). The analysis was performed on the HCC cancer tissue proteome dataset from a
previous work [15].
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Figure 2. NMR metabolomics analysis of serum samples. (A) PCA and PLS-DA plots of serum samples. (B) Heatmap
showing O-PLS-DA-derived Q2 for pairwise comparisons of the serum samples. (C) O-PLS-DA plot of the serum samples,
including a cross-validation. (D) The reduced NMR spectrum reveals altered components in normalized serum samples.
Positive covariance corresponds to the components present at increased concentrations, whereas negative covariance
corresponds to decreased component concentrations. The predictivity of the model is represented by R2. (1) glutamine,
(2) succinate, (3) pyruvate, (4) 3-hydroxyisovalerate, (5) valine, (6) glucose and (7) and (8) DNA. (E) Statistical analysis of
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individual metabolites in serum samples. Statistical differences among multiple groups (one-way ANOVA) are indicated by
p-values of < 0.05 (*), < 0.01 (**), < 0.001 (***) or < 0.0001 (****).

Figure 3. NMR metabolomics analysis of the tissue samples. (A) PCA and PLS-DA plots of tissue samples (grade IV
carcinoma tissues (CTIV) and peritumoral tissues (PTIV)). (B) Heatmap showing O-PLS-DA-derived Q2 for pairwise
comparisons of the tissue samples. (C) O-PLS-DA plot of the tissue samples, including a cross-validation. (D) The reduced
NMR spectrum reveals altered components in the normalized tissue samples. Positive covariance corresponds to the components
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present in increased concentrations, whereas negative covariance corresponds to decreased component concentrations.
The predictivity of the model is represented by R2. (1) leucine, (2) isoleucine, (3) valine, (4) 3-hydroxyisovalerate, (5) lactate,
(6) lysine, (7) glutamate, (8) succinate, (9) choline, (10) glucose, (11) uridine, (12) UDP sugars, (13) fumarate, (14) tyrosine
and (15) phenylalanine. (E) Statistical analysis of the individual metabolites in the tissue samples.

Figure 4. NMR metabolomics analysis of peritumoral and cancer tissue samples at different stages. (A) Heatmap showing
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O-PLS-DA-derived Q2 for pairwise comparisons of peritumoral tissue samples. (B) O-PLS-DA plot of peritumoral samples,
including a cross-validation. (C) Statistical analysis of individual metabolites in peritumoral tissue samples. (D) Heatmap
showing O-PLS-DA-derived Q2 for pairwise comparisons of cancer tissue samples. (E) O-PLS-DA plot of cancer tissue
samples, including a cross-validation. (F) Statistical analysis of individual metabolites in cancer tissue samples. Statistical
differences among multiple groups (one-way ANOVA) are indicated by p-values of < 0.05 (*), < 0.01 (**), < 0.001 (***) or
< 0.0001 (****).

3.3. Metabolite Panels Enable Diagnosis and Prognosis Potential of HCC

We performed a supervised analysis to identify robust and representative metabolites
for the serum-based discrimination against the tumor size and prognosis. In the serum,
increased levels of succinate and decreased levels of glutamine and pyruvate were observed
depending on the tumor grade (Figure 2E). To assess the specificity and sensitivity for
each serum metabolite, an ROC analysis was applied. The highest predictivity associate
with a tumor grade, as indicated by the highest values of the Area under the Curve
(AUC), was obtained for pyruvate (AUC, 0.849), followed by glutamine (AUC, 0.84),
and succinate (AUC, 0.809) (Figure S4B). Glutamine also exhibited a high diagnostic
accuracy for the discrimination of HCC with underlying cirrhosis from cirrhosis without
HCC in the European cohort (AUC, 0.787) (Figure S4C). These metabolites also showed
an elevated response probability to the prognosis, which was consistent with the above
order for pyruvate (AUC, 0.625) followed by glutamine (AUC, 0.621) and succinate (AUC,
0.583) (Figure S4D). Using a combination of these metabolites yielded a slightly higher
AUC (~0.65) compared to the AUC using single metabolites (pyruvate of serum, 0~0.625),
revealing an improved predictive estimate of recurrence (Figure S4E).

Surgical resection offers a potential curative treatment for HCC patients. Nonetheless,
as a major cause of mortality, recurrence happens in around 50–70% of the patients within
the 5 years’ recurrence period [49,50]. Out of 200 patients of the Chinese cohort tested in
this study, a total of 96 patients (48%) developed recurrence within 5 years of surgery.

We hypothesized that metabolites might assist to enable clinicians to determine the
suitable therapy and surveillance of patients who were at higher risk of recurrence after
surgery. Despite a lack of consensus regarding the optimal tool for stratification, Chan et al.
recently proposed a prognostic model called the Early Recurrence After Surgery for Liver
tumor (ERASL) [51] for the surgical treatment of the patients with HCC according to the
accessible pathological and clinical parameters. As described before, the tumor number and
size, the preoperative alpha-fetoprotein (AFP) level, the preoperative albumin-bilirubin
(ALBI) grade and gender were first combined as independent predictors to first validate
the pre-ERASL model. In our cohort, 86 out of 184 patients (46.73%) developed recurrence
within 5 years of surgery. An additional 16 patients with missing data in our cohort were
excluded; in eight patients, no AFP could be detected, in six patients, no exact AFP value
could be reported and, in two patients, no ALBI could be determined). We found that the
ERASL model is suitable to predict the 5-year (preoperative) recurrence of HCC patients
with our own data provided (p = 0.03) (Figure S5).

Among the 22 clinicopathological parameters analyzed, a univariate Cox regression
analysis was performed, and tumor number, tumor size, TNM stage (8th version [26]),
serum alanine transaminase (ALT), alkaline phosphatase (ALP), serum glutamic-oxaloacetic
transaminase (AST), Gamma-glutamyltransferase (γ-GT) and tumor encapsulation were
found to be potentially relevant with p < 0.05 (Tables S2 and S3). Here, in contrast to
previous studies [52], we did not find microvascular invasion to improve the prediction of
recurrence-free survival in our derivation cohort (100 randomly picked samples, p = 0.377),
although it could improve the prediction in the entire cohort (200 samples, p = 0.0041). Pa-
tients were divided randomly into two groups of 100 patients each to generate a derivation
and validation cohort, and the eight relevant parameters were used to build a modified
and slightly improved preoperative model to predict the 5-year recurrence (p = 0.006 for
the derivation and p = 0.025 for the validation cohort) (Figure 5A,B). The formula of the
constructed preoperative model is shown in Table S4. Using 0.691 as the cut-off value for
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the clinicopathological preoperative model score, two prognostically distinct groups were
stratified, a low risk (5-year recurrence-free survival, RFS = 64/37%) and a high-risk (5-year
RFS = 33/0%) group in the derivation and validation groups, respectively.

Figure 5. Recurrence-free survival (RFS) according to risk groups defined by the clinicopathological and metaboclinico-
pathological model. Clinicopathological model (A) derivation group and (B) validation group. Metaboclinicopathological
model (C) derivation group and (D) validation group.

Next, we aimed to validate the suitability of metabolites to improve the preoperative
model by using the same derivation and validation cohorts. To this end, all significantly
changed serum and tissue metabolites and their ratios were subjected to a univariable Cox
regression analysis. Several metabolites were found to be potentially relevant, with p < 0.05
in the univariable Cox regression analysis: serum succinate and glucose, CT lactate, PT lac-
tate, isoleucine, glucose, UDP sugars and valine, as well as the ratios of serum pyruvate/PT
valine, serum pyruvate/PT isoleucine, serum pyruvate/CT lactate, serum pyruvate/PT
leucine and serum succinate/pyruvate (Tables S2 and S3). These 13 metabolite param-
eters were combined with the eight relevant clinicopathological parameters to build an
integrated metaboclinicopathological model. The combination of parameters showed a
comparable performance in the derivation group (from p = 0.006 to p = 0.010) and an
improved performance in the validation group (from p = 0.025 to p = 0.001) (Figure 5C,D).
The multivariable analysis identified the tumor number, alanine aminotransferase, succi-
nate and pyruvate as the key parameters related to a poor prognosis. Using these variables,
a metaboclinicopathological preoperative model was constructed, and the independent
parameters and their formulae are shown in Table 1. Using 0.874 as the cut-off value,
two prognostically distinct groups were stratified, a low-risk (5-year RFS = 61/50%) and
high-risk (5-year RFS = 42/6%), in the derivation and validation groups, respectively.
The discriminatory performance of the models was compared via Harrell’s c-index, Gö-
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nen & Heller’s K and tdAUC, as shown in Table 2. By including NMR metabolite data,
the metaboclinicopathological preoperative model showed a better discriminatory perfor-
mance compared to the clinicopathological preoperative model. Both models may help to
design clinical guidelines trials.

Table 2. Prognostic performance of the models.

Measure of
Discrimination

With Metabolites Without Metabolites

Derivation (SE) Validation (SE) Derivation (SE) Validation (SE)

Harrell’s c-index 0.661 (0.047) 0.638 (0.041) 0.610 (0.045) 0.573 (0.040)
Gönen &

Heller’s K 0.658 (0.041) 0.619 (0.036) 0.669 (0.056) 0.637 (0.052)

tdAUC (5 years) 0.671 (0.059) 0.667 (0.060) 0.618 (0.055) 0.572 (0.052)
Standard errors (SE) were estimated from 200 bootstrap samples; tdAUC, areas under the time-dependent receiver
operating characteristic curve.

4. Discussion

A comprehensive global genomic, transcriptomic, proteomic and phosphoproteomic
analysis of HCC provided the first insights into the underlying molecular mechanisms
and first insights into the biological understanding of HCC [12,53]. Herein, the global
metabolomics data provided new insights into the biological understanding of HCC,
with particular implications related to the clinical and therapeutic understanding of HCC.
NMR spectroscopy is a powerful tool in this regard, as it is characterized by its high
reproducibility and outstanding suitability for in vitro diagnostics (IVD). The integrated
metabolomic characterization of the serum and paired tumor and peritumoral liver tissue
tumor samples at different grades of tumor growth revealed metabolic reprogramming,
communication between tumor and peritumoral tissue and clinically and therapeutically
relevant metabolite markers in HCC.

Our integrated analysis revealed alterations of the metabolic pathways in the serum,
tumor tissue and peritumoral liver tissue. Moreover, we discovered that metastasis affects
the metabolic profile of peritumoral tissue. The related metabolites can be used in follow-
up studies as markers in a clinical setting for the early diagnosis of HCC and to detect
metastasis in peritumoral tissue, which is a difficult task—in particular, for micrometasta-
sis [54]. In addition, we compared the metabolic changes of serum/plasma in subgroups
(Asian vs. non-Asian and others vs. NASH). Our results showed that BCAAs may act
as population-specific HCC metabolites and identified glucose as a plasma biomarker
candidate for distinguishing NASH from other etiologies. A limitation of our analysis
concerns the inability to subdivide HBV and HCV in the same population.

Strikingly, the metabolic phenotypes of the serum and tumor tissue, as well as peri-
tumoral liver tissue, are shifted gradually with the increasing tumor size. Together with
an alteration of the proteomics phenotype, this indicates that tumors undergo metabolic
reprogramming with increasing size. Metabolic reprogramming is a hallmark of tumor
growth, independent of their carcinogenetic origin [55]. Our results in the serum and
tissues of HCC patients show that the tumor shifts metabolic pathways and indicates
that the resulting change in the nutrient supply is indispensable to overcome nutrient
starvation and the changing environmental conditions. Notably, metabolites related with
glycolysis, the tricarboxylic acid (TCA) cycle and pyrimidine synthesis were changed in
tumor tissues of different stages. The increasing demand of growing tumors for glucose
and glutamine is well-visible in the serum and both tumor and peritumoral tissues, re-
spectively. In line with this, the lactate levels increased both in tumor and peritumoral
tissues, as well as the expression of glutamine transporters (i.e., SLC1A5) and glycolytic
enzymes, such as glucose-6-phosphate isomerase (GPI), phosphoglycerate kinase (PGK1),
aldolase A (ALDOA) and hexokinase 2 (HK2) (Figure 6). Despite the increased glutamine
uptake, enzymes involved in the conversion of glutamate to α-ketoglutarate are downreg-
ulated, such as glutamate dehydrogenases (GLUD1), glutamic-oxaloacetic transaminases
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(GOT1) and glutamic-pyruvate transaminases (GPT). This might be coupled to the altered
expression of downstream TCA enzymes. A prominent example is the drop in the tumor
suppressor succinate dehydrogenase (SDHA and SDHB) with the increasing tumor size.
Converting succinate to fumarate, the loss of this enzyme is in agreement with reduced
levels of fumarate in tumors and increased levels of succinate in the serum. In addition
to glutamine, other amino acids such as branched-chain amino acids (BCAAs; valine,
leucine and isoleucine) can function as opportunistic fuel sources for cells. In line with
this expression of related catabolic enzymes such as BCAT2 are increased in tumor tissues,
although other enzymes are undetectable.

Figure 6. Schematic overview of growing human hepatocellular tumors undergoing a global metabolic reprogramming
and proteomic changes. Metabolic genes and metabolites involved in glycolysis, the tricarboxylic acid (TCA) cycle and
pyrimidine synthesis. Red line represents tumor tissues, and green line represents peritumoral tissues in proteomics.
Red arrow represents tumor tissues, green arrow represents peritumoral tissues and yellow arrow represents the serum in
the metabolism.

Strikingly, we observed large changes in the metabolites associated with pyrimidine
synthesis (UDP sugars and uridine), which are in line with the recent proteogenomic
analysis of HCC [12] and the upregulation of CAD protein (CAD), dihydroorotate dehydro-
genase (DHODH), uridine 5’-monophosphate synthase (UMPS), CTP synthase 2 (CTPS2)
and nucleoside diphosphate kinase A (NME1). These findings suggested that pyrimidine
synthesis pathways could be an alternative target for HCC therapy.

Encouraged by the large changes in HCC metabolic profiles, we validated and adapted
a recently proposed a preoperative model that enables risk assessment of 5-year recurrence
before resection for the inclusion of metabolomics data. Our validation shows that the
recently proposed model can be applied to our setting and that it was capable of stratifying
patients into two groups with discrete risk profiles. In the low-risk group comprising
about 56.52% of patients among the entire cohort, only 34.61% developed 5-year recur-
rence, whereas in the intermediate-risk group of 42.39% patients, 61.53% developed 5-year
recurrence (Figure S5). Although the metabolomics data on their own were not sufficient
to predict the 5-year recurrence (p = 0.000 for the derivation and p = 0.705 for the validation
cohort), the inclusion of metabolomics data improved the predictions of the clinical model.
Currently, the serum AFP levels and ultrasonography are regarded as common means
for the surveillance of HCC and the early detection of recurrence [56]. Ultrasonography
shows a low level of sensitivity for the surveillance of HCC, especially in patients with
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cirrhosis [56]. Indeed, AFP leads to high rates of false negatives for HCC, both in the case of
the Chinese (66/192) and the European cohorts (20/42). The ROC curve analysis and AUC
revealed a higher diagnostic performance of our metaboclinicopathological model (AUC
0.669) than AFP (AUC 0.518) to predict the 5-year recurrence (Figure S4A). Our models are
clinically relevant, as they enable the identification of a small, although potentially man-
ageable group of patients with a high risk of recurrence for which an adjuvant therapy and
more intensive surveillance could be provided. The benefit of adding metabolomics data
to the set of clinicopathological parameters should be further validated in a multicenter
study in the future.

In all, after the curative surgery for HCC, recurrence of the tumor is a common and
potentially severe complication. Our combined clinicopathological and metabolomic model
is a clinically relevant, validated and potent tool to predict the 5-year recurrence. Further
prospective studies are needed to demonstrate the applicability of our model in patient
allocation for adjuvant trails and more frequent follow-up.

5. Conclusions

An integrated and comprehensive metabolomic analysis of HCC is provided by our
current work. It could be established that poor clinical outcomes, coupled with an advanced
disease stage, were the key factors associated with metabolic alterations. Targeting cancer
metabolism, especially purine metabolism, may offer a promising strategy for the effective
treatment of HCC. The methodological framework, diagnostic and prognostic metabolic
markers capable of being used in a clinical setting are provided by our study, besides
generating a high-quality untargeted analysis of HCC metabolism, also benefitting the
basic research.
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