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Simple Summary: Here, we compared the performance of four different autoencoders: (a) vanilla,
(b) sparse, (c) denoising, and (d) variational for subtype detection on four cancer types: Glioblastoma
multiforme, Colon Adenocarcinoma, Kidney renal clear cell carcinoma, and Breast invasive carcinoma.
Multiview dataset comprising gene expression, DNA methylation, and miRNA expression from
TCGA is fed into an autoencoder to get a compressed nonlinear representation. Then the clustering
technique was applied on that compressed representation to reveal the subtype of cancer. Though
different autoencoders’ performance varies on different datasets, they performed much better than
standard data fusion techniques such as PCA, kernel PCA, and sparse PCA.

Abstract: A heterogeneous disease such as cancer is activated through multiple pathways and dif-
ferent perturbations. Depending upon the activated pathway(s), the survival of the patients varies
significantly and shows different efficacy to various drugs. Therefore, cancer subtype detection using
genomics level data is a significant research problem. Subtype detection is often a complex problem,
and in most cases, needs multi-omics data fusion to achieve accurate subtyping. Different data
fusion and subtyping approaches have been proposed over the years, such as kernel-based fusion,
matrix factorization, and deep learning autoencoders. In this paper, we compared the performance
of different deep learning autoencoders for cancer subtype detection. We performed cancer subtype
detection on four different cancer types from The Cancer Genome Atlas (TCGA) datasets using
four autoencoder implementations. We also predicted the optimal number of subtypes in a cancer
type using the silhouette score and found that the detected subtypes exhibit significant differences
in survival profiles. Furthermore, we compared the effect of feature selection and similarity mea-
sures for subtype detection. For further evaluation, we used the Glioblastoma multiforme (GBM)
dataset and identified the differentially expressed genes in each of the subtypes. The results obtained
are consistent with other genomic studies and can be corroborated with the involved pathways
and biological functions. Thus, it shows that the results from the autoencoders, obtained through
the interaction of different datatypes of cancer, can be used for the prediction and characterization of
patient subgroups and survival profiles.

Keywords: cancer subtype detection; multi-omics data; data integration; Autoencoder;
survival analysis
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1. Introduction

Due to technological advancement and decreasing costs, high-throughput sequencing
technology such as RNA-seq, SNP-chip, UPLC-MS, and GC-MS techniques generate exten-
sive and diverse amounts of omics data that allow biologists to understand the different
processes and interactions within biological organisms with unprecedented detail. These
omics technologies provide the ability to interpret and explain the genome through DNA
sequencing, genome expression based transcriptome studies, protein identification from
the proteome, and others. However, such individual data can only provide limited infor-
mation on the molecular complexity occurring inside the organisms due to the multi-level
regulation inside biological units [1]. For example, we observe the combined effects of
transcripts and methylome in the tumor cell due to genomics defect [2]. Considering
gene expression data alone ignores the effect of point mutation, which alters the efficacy
of gene products [3]. Furthermore, the dimension and the diversity of such data make
it extremely challenging to perform proper data handling and in-depth analysis. Hence,
there is an urgent requirement for mathematical models that can efficiently fuse these
diverse molecular data from different measurements and provide us with a comprehensive
and robust insight into biological phenotypes.

Ritchie et al. [4] define multi-omics data integration as the method in which diverse
types of omics data are combined as predictor variables to allow more accurate and ex-
tensive modeling of complex traits or phenotypes. The integrated multi-omics methods
permit the identification of crucial genomic factors and biomarkers, generate models to
explain and predict disease risk, and understand the genetics and genomics architecture of
complex phenotypes. Such integrated data also provide a holistic view of the biological
system compared with traditional data-based methods [4–7]. Several data fusion models
have been proposed recently, which fall into the following three categories: (a) early fusion,
(b) intermediate fusion, and (c) late fusion. One example of a data fusion algorithm is
similarity network fusion (SNF) [8]. Here, diverse types of data are first normalized into
a network form through a nonlinear kernel function. Next, SNF efficiently fuses these
networks through an iterative fusion algorithm. Recently, the deep-learning framework of
autoencoders also exhibited significant potential as a data fusion algorithm. An autoen-
coder reconstructs its input by a nonlinear transformation of its original input features.
Hence, in this process, the autoencoder generates new nonlinear features from its original
input feature-set. Several cancer studies used autoencoders to analyze multi-omics data.
Autoencoder based data integration has also been successfully applied to predict drug
response [9] and kidney graft survival analysis [10]. The autoencoder is an unsupervised
deep learning (DL) algorithm for dimensionality reduction and heterogeneous data inte-
gration based on feed-forward neural networks [11]. Autoencoders can automatically learn
nonlinear features from the unlabeled data after setting the output value equal to the input
value. An autoencoder is constructed by combining simple neurons where the output of
one layer of neurons acts as the input to other layer of neurons . The autoencoder network
forms a “butterfly” structure, where the number of inputs is equal to the number of outputs
and consists of bottleneck hidden layers in the middle. This design drives the network
to seek a compressed representation of the data while preserving the input data’s most
important features (Figure 1). The architecture of an autoencoder allows it to concatenate
the features and information of different omics sources [12–15].

A critical application of such data fusion algorithms is cancer subtype detection us-
ing omics data. Multiple oncogenes are involved in a heterogeneous disease like cancer,
and they are perturbed through several pathways. Cancer patients’ severity and their
survival also differ considerably depending upon this perturbation. For example, Glioblas-
toma multiforme (GBM) has four established subtypes: Classical, Mesenchymal, Neural,
and Proneural. Subtype detection is a complex problem and frequently requires the fusion
of various heterogeneous datasets. Recently autoencoders are also used for subtype de-
tection problems for Liver cancer by fusing three heterogeneous data types. For example,
Chaudhary et al. [16] used autoencoders on methylation, RNA-seq, and miRNA-Seq data
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from liver cancer patients to develop a robust model to predict two distinct survival groups.
Also, Tan et al. [17] used the denoising autoencoder to develop a model that can identify
and extract an intricate pattern from omics data in breast cancer. Deep learning autoen-
coders were also used for subtype classification in colorectal cancer using multi-omics
data [18], while [14] applied autoencoders to identify two subtypes in neuroblastoma.

Figure 1. The workflow of subtype detection using autoencoders. First, we perform feature selection
from the multi-omics data of the same patients from the TCGA database. Next, autoencoders
fuse the selected features by encoding and decoding. Then, we run two clustering algorithms
on the patient similarity networks constructed from the bottleneck layer to identify the subtypes of
cancer. Finally, we run a survival analysis of the identified clusters to validate the results.

In Zhang et al. [19], the authors used a variational autoencoder to integrate multi-omic
cancer data. The model was used to develop pan-cancer classification analysis and obtained
an average precision of 97.49% after 10-fold cross-validation of 33 tumor types and normal
samples. Simidjievski et al. [20] explored the different architectures, designs, and construction
of multi-omic data integration methods using Variational Autoencoders; they demonstrated
that autoencoders are suitable methods for representing data and the production of stable
and accurate diagnostics. To study the genes that mediate human lung adenocarcinoma,
a model was created based on the denoising autoencoder. This allowed the identification of
more positive genes related to this type of cancer than other methods [21].

Depending upon the deep learning layer construction and regularization, an autoen-
coder can be of different types such as vanilla autoencoder, denoising autoencoder, sparse
autoencoder, and variational autoencoder. Though autoencoders showed promise for
data fusion and subtype detection in the recent past, the performance of different types
of autoencoders on the different datasets is still unknown. In this work, we compared
the performance of four different autoencoders to integrate and reduce multi-omics data.
By data fusion, autoencoders created new features to represent the input datasets. The new
features were used to implement a survival-based clustering algorithm to define groups
of patients with a similar distribution of features and survival prognosis. We evaluated
the efficiency of the different autoencoders (vanilla, denoising, sparse and variational) for
the fusion and reduction of cancer data dimensions from different sources such as RNA-seq,
methylation, and miRNA-Seq, on four different cancer types.
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2. Materials and Methods
2.1. Dataset and Prepossessing

We obtained the multi-omics cancer data from The Cancer Genome Atlas Program
(TCGA) database. TCGA consists of more than 20,000 primary cancer samples over 33
cancer types. We applied autoencoder-based subtyping on datasets of four cancer types:
Glioblastoma multiforme (GBM) and Colon Adenocarcinoma (COAD) from TCGA and
Kidney renal clear cell carcinoma (KRCC) and Breast invasive carcinoma (BIC) from TCGA
but preprocessed by Wang et al. [8]. We utilized three types of data: gene expression, DNA
methylation, and miRNA expression.

GBM is one of the most aggressive brain tumors; the survival estimate of a diagnosed
patient is 13 months on average, even after chemotherapy and radiotherapy treatments.
We analyzed data collected from 276 patients of this cancer type (male—164, female—112),
with 17,814 features for mRNA expression, 470 features for miRNA expression, and 13,000
features for DNA methylation. BIC is one of the most common types of breast cancer and about
80% of breast cancers are invasive [22]. From BIC dataset [8], we analyzed the data collected
from 106 patients, with 335 features for the miRNA expression, 23,094 features for DNA
methylation, and 17,814 for mRNA gene expression. COAD is a type of cancer that usually
arises from the epithelium lining inside the large intestine. This type of cancer is more prevalent
in the population aged over 50 and in countries with a low fiber diet, such as Europe, the USA,
and Australia. COAD dataset represents approximately 10% of diagnosed cancers [23,24].
From the COAD dataset, we analyzed data collected from 92 patients with 17,814 features
for mRNA expression, 23,087 features for DNA methylation, and 311 features for miRNA
expression. KRCC is the most common type of kidney cancer and affects the lining cell and tiny
tubules that filter waste from the blood and produce urine in the kidney. This type of cancer
is more prevalent in men over 55 years of age [25,26]. From this dataset, we analyzed data
collected from 122 patients, with 17,898 features for mRNA expression, 24,959 features for
DNA methylation, and 329 features for miRNA expression.

First, we downloaded the TCGA dataset comprising gene expression, DNA methyla-
tion, and miRNA expression from the TCGA database using the TCGAbiolink package [27].
Then, we chose the common patients in these datasets for our analysis and also down-
loaded the patients’ clinical data to perform survival analysis. Next, we scaled each data
using the following equation.

Xn =
Xi − xmin

xmax − xmin
(1)

where Xi is the data instance while xmax and xmin are the minimum and maximum absolute
value of feature X respectively, and Xn is the feature after normalization. We chose
100/400/500 number of important features from each dataset based on maximum variance
(VAR) using the function FSbyVar from the CancerSubtypes package in R [28] as shown
in Figure 1. However, other robust variable selection techniques [29] can also be used to
select relevant and robust features; we did not implement these other methods as our goal
in this paper was to primarily assess the performance of autoencoders for data fusion.
These selected features were fed into the autoencoders as the input.

2.2. Autoencoder Construction

An autoencoder can be of different types based on its construction as shown
in Figure 2. One simple form of an autoencoder is vanilla autoencoder, tradition-
ally constructed with a single layer of encoder and decoder. The learning minimizes
the following loss function.

L(x, g( f (x))) (2)

where L is the loss function of input x and output g( f (x)). Due to the nonlinearity of
the encoder and decoder’s activation function, the vanilla encoder learns nonlinear features
from the data. This is not feasible from the linear feature deduction methods such as
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Principal Component Analysis (PCA) [30]. A vanilla autoencoder with multiple hidden
layers is called a deep vanilla autoencoder.

Figure 2. Autoencoder configuration: (A) Vanilla autoencoder; (B) Denoising autoencoder; (C) Sparse autoencoder, and (D)
Variational autoencoder.

Though vanilla autoencoder is simple, there is a high possibility of over-fitting. De-
noising autoencoder, sparse autoencoder, and variational autoencoder are regularized
versions of the vanilla autoencoder. Denoising autoencoder reconstructs the original input
from a corrupt copy of an input; hence, it minimizes the following loss function.

L(x, g( f (x̃))) (3)

where L is the loss function of input x and output g( f (x̃)). A corrupt copy of input is
formed by introducing noise to the original input. Denoising is achieved through stochastic
mapping by setting some input values to zero. The added noise helps the autoencoder
learn features other than the original features directly from the data.

Sparse autoencoder is a regularized version of vanilla autoencoder with a sparsity
penalty Ω(h) added to the bottleneck layer. The learning of a sparse autoencoder minimizes
the following loss function.

L(x, g( f (x))) + Ω(h) (4)

The sparsity penalty Ω(h) helps to learn the important features of data even when
there are many hidden units in the autoencoder.

Variational autoencoder uses a strong assumption about latent variables by generally
using a latent Gaussian distribution [31,32]. It imposes a constraint in the encoder net-
work, which forces the bottleneck layer to follow a Gaussian distribution. The learning of
a variational autoencoder minimizes the following loss function

L(x, g( f (x))) + L(l) (5)
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where L(l) is the latent loss, measured in terms of the Kullback-Leibler divergence of
the bottleneck layer to a unit Gaussian distribution, which quantifies the difference between
them. This assumption generates the latent variable with a generalization of the network.

2.3. Autoencoder Implementation

We used the Keras library [33] with TensorFlow [34] background to implement the four
distinct autoencoders compared in this paper. The autoencoders were trained on a Quadro
P4000 GPU with 8 Gb RAM. For subtyping and survival analysis, we applied the Cancer-
Subtype R package [28].

For the vanilla, denoising, and sparse autoencoders, we set 500, 100, 500 nodes re-
spectively for the three hidden layers and 1000 nodes for both input and output layers.
The number of nodes for the input and output layers, were selected based on the maximum
variance of three data types as we selected 500 features from gene expression, 400 fea-
tures from DNA methylation, and 100 features for miRNA expression. For the denoising
autoencoder, we applied a noise factor of 0.5 in the input data network. For the sparse
autoencoder, we set an L1 regularization penalty of 0.01 and an L2 regularization penalty
of 0.01 on the nodes to induce sparsity. For the variational autoencoder we set four hidden
layers with 1000, 500, 250 and 100 nodes respectively. Also, we used the sequential model
for the decoder and the functional model for the encoder. We used the log variance and
lambda layer to convert the standard deviation for numerical stability when necessary.

To optimize all the autoencoders we utilized an extension to the stochastic gradient
descent (adam) algorithm [35]. For vanilla, sparse, and denoising autoencoders, we applied
hyperbolic tangent (tanh) activation function on the input and hidden layers and sigmoid
on the output layer. For the variational autoencoder, we applied a rectified linear activation
function (ReLU) on the input and hidden layers and sigmoid in the output layer. Also,
to measure the loss between the input layers (X) and the output layer (X′), we chose
the mean square error function for the vanilla and denoising autoencoders and the binary
cross-entropy function for sparse autoencoder, and the negative log-likelihood function for
variational autoencoder.

2.4. Clustering and Subtyping

The autoencoder transforms multidimensional features to a reduced number of fea-
tures in the bottleneck layer. On this reduced feature set, we applied the standard subtyping
method to subtype patients. First, we calculated the similarity of each patient pair con-
sidering these reduced set of features. Here, we used Euclidean distance and Spearman
correlation as a similarity measure between two patients. Then, we employed an un-
supervised clustering algorithm to cluster similar groups of patients. Here, we used
an unsupervised subtypes discovery method combined with k-means [36] and Partitioning
around medoids (PAM) [37] as our clustering methods. We executed the two algorithms
(k-means and PAM) in a window between 3 and 6 clusters.

2.5. Evaluation Metrics for Subtyping

We utilized two different metrics to evaluate the performance of different autoencoders
on the TCGA dataset. First, we performed survival analysis to evaluate the survival
patterns from different subtypes. Next, we calculated the p-value of the log-rank test to
identify the difference in Kaplan-Meier survival curves between different subtypes. Here,
low p-value (<0.05) ensure high confidence of different survival times for the different
identified subtypes.

We also used the silhouette width of the clusters to benchmark the performance of
Clustering. Silhouette scores measure how well a patient is matched to its identified
cluster compared to other clusters, i.e., inside the group versus outside the group. A high
Silhouette value indicates a proper group distribution.
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2.6. COX Model for Feature Selection

To validate the data fusion, we selected the two datasets (COAD and KRCC) that
obtained the lowest results with the feature selection by the variance and made a new
selection of features based on the COX proportional hazards model [38]. COX proportional
hazards model is a regression model that predicts the relationship between the predictor
variable and patients’ survival. Using the univariate COX model with a cutoff of p < 0.05,
we selected 8788 features from the mRNA data, 400 features from DNA methylation data,
and 16 features from the miRNA expression data from COAD datasets. Also, we selected
565 features from mRNA data, 419 features from DNA methylation data and 33 features
from miRNA expression data. Next, we fed these selected features as input for vanilla,
sparse, denoising, and variational autoencoder implementations.

2.7. Comparison with Other Data Integration Methods

We compare our results with other data fusion methods such as SNF, principal com-
ponent analysis (PCA), kernel PCA and sparse PCA [39]. SNF is a computational method
for the fusion of similarity network to aggregate multi-omics data [8]. In this method,
we used the methylation and mRNA from GBM datasets. Before applying SNF, we per-
formed a feature selection using the COX regression model. We selected 2806 features
from the DNA methylation data and 3309 from the mRNA expression data. The SNF
algorithm and the survival analysis were implemented with clusters from 3 to 6 using
the CancerSubtype package.

PCA allows linear dimensionality reduction to project the data in lower-dimensional
spaces. Whereas, kernel PCA is a nonlinear version of PCA and sparse PCA is a regularized
version of PCA. We implemented PCA, kernel PCA and sparse PCA in Python using
the sklearn package, and the features were selected based on the variance (0.90) in the GBM
dataset. We used the PCA-transformed dataset as the input to the k-means/PAM Clustering
algorithm for cancer subtype identification using the CancerSubtype package.

2.8. Differential Expression and Enrichment Analysis on Detected Subtypes

Lastly, we performed a differential expression (DE) and functional enrichment analysis
of the clusters and compared the DE genes and enriched processes among the clusters.
The DE genes were detected using the linear method LIMMA [40], while the functional
enrichment analysis was performed using the ClusterProfiler [41] package in R. This can
identify the critical genes that belong to a subtype and identify the functional processes
which may lead to this outcome.

To explore the organization of the clusters, we performed a differential expression
analysis using the GBM dataset. For the analysis, we downloaded the gene expression data
for each cluster obtained from the different types of autoencoders and used the clustering
algorithms (PAM and k-means) from the HT_HG-U133A platform, using the GDCquery,
GDCdownload, and GDCprepare functions. Samples with Primary Tumor and samples
with solid tissue normal were compared to get differential expression utilizing the TCGA-
analyze_DEA function with f dr.cut = 0.01 and logFC.cut = 1.

For the enrichment analysis of the gene sets, we used the TCGAanalyze_EAcomplet
function that allows us to obtain the biological processes, cellular components, and molec-
ular functions of Gene Ontology (GO) [42], in addition to the enrichment of the pathways.

3. Results and Discussion
3.1. Performance of Different Autoencoders

We ran the survival analysis for 3 to 6 clusters for each autoencoder (Tables 1 and 2).
We noticed that the silhouette score differs depending upon the regularization methods.
Hence, we chose the optimal cluster number for a disease based on counting the number of
autoencoders that achieved a high silhouette score (>0.80). Next, we performed a log-rank
test to check if the identified clusters have different survival profiles. The lowest p-values
with a high silhouette score (>0.8) for the optimal cluster number were considered as
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the final cluster prediction. The performance of different autoencoders varies depending
upon the dataset, and clearly there is no single winner architecture.

Table 1. p-value of survival analysis results for the clusters generated with the autoencoder output.

Dataset Number of Cluster
Autoencoder Vanilla Autoencoder Denoising Autoencoder Sparse Autoencoder Variational

PAM/
Spearman

k-Means/
Euclidean

PAM/
Spearman

k-Means/
Euclidean

PAM/
Spearman

k-Means/
Euclidean

PAM/
Spearman

k-Means/
Euclidean

GBM

3 0.002 0.001 9 × 10−5 9 × 10−4 0.015 0.001 5 × 10−5 0.001
4 0.002 2 × 10−4 0.06 2 × 10−5 0.109 6 × 10−5 0.006 6 × 10−5

5 2 × 10−4 1 × 10−4 0.001 1 × 10−5 0.015 7 × 10−5 5 × 10−5 3 × 10−5

6 3 × 10−4 2 × 10−5 0.003 4 × 10−5 0.018 1 × 10−5 1 × 10−4 2 × 10−5

BIC

3 0.0667 0.664 0.193 0.508 0.089 0.078 0.271 0.443
4 0.0049 0.183 0.145 0.0275 0.016 0.304 0.0659 0.194
5 0.322 0.0273 0.0481 0.0476 0.003 0.37 0.103 0.219
6 0.212 0.621 0.0306 0.0457 0.007 0.0012 0.367 0.441

COAD

3 0.00524 0.00581 0.0275 0.00011 0.592 0.178 0.00871 0.0053
4 0.0144 0.0135 0.044 0.0007 0.007 0.221 0.054 0.0181
5 0.0309 0.031 0.0159 0.0041 0.0094 0.292 0.0951 0.0006
6 0.0241 0.0336 0.0341 0.00547 0.97 0.212 0.0802 0.014

KRCC

3 0.288 0.392 0.165 0.135 0.346 0.229 0.00608 0.0266
4 0.471 0.6144 0.437 0.47 0.614 0.174 0.0353 0.0393
5 0.665 0.347 0.691 0.036 0.508 0.321 0.131 0.0141
6 0.369 0.527 0.268 0.068 0.541 0.349 0.0669 0.0324

Table 2. Silhouette index results for the clusters generated with the autoencoder output.

Dataset Number of Cluster
Autoencoder Vanilla Autoencoder Denoising Autoencoder Sparse Autoencoder Variational

PAM/
Spearman

k-Means/
Euclidean

PAM/
Spearman

k-Means/
Euclidean

PAM/
Spearman

k-Means/
Euclidean

PAM/
Spearman

k-Means/
Euclidean

GBM

3 1 0.91 0.98 0.91 0.97 0.83 0.98 0.87
4 0.84 0.58 0.77 0.6 0.66 0.59 0.95 0.6
5 0.8 0.62 0.82 0.73 0.71 0.64 0.88 0.51
6 0.73 0.57 0.77 0.73 0.75 0.61 0.85 0.64

BIC

3 0.96 0.86 0.53 0.65 0.77 0.82 0.95 0.81
4 0.91 0.87 0.67 0.81 0.84 0.79 0.85 0.78
5 0.69 0.63 0.63 0.67 0.69 0.67 0.65 0.74
6 0.67 0.74 0.61 0.6 0.66 0.55 0.59 0.74

COAD

3 0.97 0.82 0.7 0.67 0.75 0.58 0.83 0.82
4 0.65 0.7 0.74 0.57 0.69 0.53 0.6 0.67
5 0.8 0.68 0.72 0.59 0.56 0.45 0.96 0.73
6 0.89 0.69 0.59 0.527 0.43 0.41 0.69 0.65

KRCC

3 0.83 0.77 0.58 0.48 0.65 0.64 0.95 0.63
4 0.78 0.8 0.65 0.56 0.81 0.68 0.95 0.49
5 0.55 0.67 0.59 0.46 0.79 0.64 0.78 0.58
6 0.7 0.59 0.65 0.53 0.75 0.62 0.67 0.68

3.2. Performance of Different Autoencoders for Gbm

GBM is the most studied cancer for subtype detection using multiview learning. How-
ever, a different number of subtypes has been detected by different computational methods
on different datasets (Figures 3 and 4). Authors in [8] discovered three subtypes from
215 patients from TCGA using mRNA, miRNA, and DNA methylation data. While [43]
classified GBM into the following four subtypes: (a) Classical, (b) Mesenchymal, (c) Neural
and (d) Proneural. The authors in [44] also found three subtypes for the GBM dataset.
We predicted three as the optimal cluster number. All eight autoencoders achieved a high
silhouette score (>0.8), while the variational autoencoder with PAM/Spearman achieved
the lowest p-value in the log-rank test.
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Figure 3. K-means survival analysis on Datasets. In each subfigure, (Top): Kaplan-Meier survival curves of three identified
clusters. The log-rank test confirmed a difference in survival profiles among clusters; (Down): Patient to patient similarity
and identified clusters on the dataset.

Figure 4. PAM survival analysis on Datasets. In each subfigure, (Top): Kaplan-Meier survival curves of three identified
clusters; (Down): Patient to patient similarity and identified clusters on the dataset.

3.3. Performance of Different Autoencoders for Coad

For COAD, based on the count of silhouette score cutoff, we predicted the optimum
number of clusters as three (Figures 3 and 4 and (Supplementary Materials S1). Four
different autoencoders (Vanilla and variational autoencoders) achieved a high silhouette
score for three clusters. The vanilla autoencoder with PAM/Spearman achieved the highest
silhouette score of 0.96. We also observed a significant difference in the survival profiles
between these clusters p = 0.05. Moreover, all other autoencoders also detected a difference
in survival time for K = 3. It should be noted here that Wang et al. [8] also found three
clusters in COAD based on the Eigen distance.

3.4. Effect of Different Similarity Measures

Calculating patient-to-patient similarity measure is a crucial step in subtype detection.
We can use various similarity measures for subtype detection, in which performance can
vary depending on the dataset. Here we observed that PAM clustering with Spearman
distance usually performed favorably than the k-means clustering with Euclidean distance.
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PAM with Spearman achieved better clustering based on the silhouette score. However,
the identified clusters using k-means/Euclidean distance commonly showed a lower
p-value for the survival difference between the identified clusters.

3.5. Effect of Supervised Feature Selection

For the KRCC and COAD datasets, there was no significant difference in survival
profile between clusters for most autoencoders. Hence, we chose a supervised feature
selection algorithm COX to select the input features. The COX model is a supervised model
that selects the genes based on the survival status of patients. We observed a significant
improvement of the p value for survival difference between the clusters using this method
(Table 3). However, we noticed a decrease in silhouette score than the VAR feature reduction
method. Based on the silhouette score cutoff, the variational autoencoder with Spearman
distance performed best, and the number of the chosen optimal clusters was 3. It identified
3 different clusters with significant survival difference p = 1 × 10−8. Also, for KRCC,
the variational autoencoders achieved the highest silhouette score with three clusters.
It also revealed a significant difference in survival profile between clusters.

Table 3. Results of autoencoder with data filtered by COX Index.

Dataset Number of Cluster
Autoencoder Vanilla Autoencoder Denoising Autoencoder Sparse Autoencoder Variational

PAM/
Spearman

k-Means/
Euclidean

PAM/
Spearman

k-Means/
Euclidean

PAM/
Spearman

k-Means/
Euclidean

PAM/
Spearman

k-Means/
Euclidean

COAD

3 0.0002 0.0027 0.0025 0.0025 0.005 0.005 0.0024 0.0027
4 0.0081 0.0067 0.0076 0.0076 0.162 0.0072 9 × 10−5 0.012
5 0.016 0.016 0.0097 0.0097 0.0253 0.0017 0.0032 0.026
6 0.0323 0.0217 0.0205 0.015 0.0007 0.0082 0.0082 0.051

KRCC

3 4 × 10−9 7 × 10−8 1 × 10−8 8 × 10−5 0.1 1 × 10−6 0.006 0.026
4 5 × 10−9 3 × 10−7 9 × 10−12 1 × 10−6 0.1 5 × 10−6 0.035 0.039
5 9 × 10−11 3 × 10−8 1 × 10−10 2 × 10−8 0.5 2 × 10−5 0.1 0.014
6 3 × 10−10 9 × 10−7 1 × 10−12 6 × 10−8 0.4 3 × 10−5 0.67 0.032

Silhoutte Index Result

COAD

3 0.99 0.91 1 0.85 1 0.9 0.88 0.96
4 0.95 0.76 0.98 0.76 0.98 0.76 0.85 0.78
5 0.98 0.67 0.83 0.68 0.82 0.65 0.93 0.78
6 0.87 0.63 0.87 0.6 0.77 0.63 0.81 0.6

KRCC

3 0.74 0.82 0.77 0.83 0.28 0.1 0.95 0.63
4 0.68 0.74 0.69 0.8 0.38 0.1 0.95 0.49
5 0.64 0.71 0.66 0.64 0.48 0.22 0.78 0.58
6 0.54 0.62 0.75 0.6 0.55 0.26 0.66 0.68

3.6. Comparison with Other Subtype Detection Methods

Next, we compared the autoencoder subtype detection result with four other com-
monly used data fusion techniques: PCA, kernel PCA and sparse PCA and SNF
(Table 4). PCA is a commonly used method for dimensionality reduction. Unfortunately,
PCA performed poorly for subtype detection. The clusters identified by PCA using Spear-
man correlation did not significantly differ in survival time (Figure 5). SNF is another
popular approach for data fusion. SNF showed comparable performance to autoencoders
for subtype detection (Figure 6). However, SNF has a few additional hyperparameters,
and the result is sensitive to hyperparameter selection.
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Table 4. PCA and SNF Results.

Principal Component Analysis Results

Dataset Number
of Cluster

PCA Kernel PCA Sparse PCA

p-Value Silhoutte
Index p-Value Silhoutte

Index p-Value Silhoutte
Index

GBM

3 0.542 0.56 0.459 0.23 0.396 0.65
4 0.514 0.42 0.668 0.31 0.492 0.61
5 0.989 0.35 0.506 0.5 0.104 0.61
6 0.731 0.38 0.89 0.5 0.113 0.58

Similarity Network Fusion Results

Dataset Number
of Cluster p-Value Silhoutte

Index

GBM

3 2.43 × 10−5 0.46
4 0.001 0.47
5 3.39 × 10−5 0.47
6 1.92 × 10−5 0.46

Figure 5. Principal component analysis results: (A) Principal Component Analysis (PCA) Results; (B) Kernel Principal
Component Analysis (KPCA) Results; and (C) Sparce Principal Component Analysis (SPCA). Results In each subfigure,
(Top): Kaplan-Meier survival curves of the identified clusters. (Down): Patient to patient similarity and identified clusters
on the dataset.
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Figure 6. Similarity Network Fusion (SNF) results. In each subfigure, (Top): Kaplan-Meier sur-
vival curves of the identified clusters. (Down): Patient to patient similarity and identified clusters
on the dataset.

3.7. Differential Expression and Enrichment Analysis on Detected Subtypes

The Gene ontology (GO) and KEGG pathways’ enrichment showed numerous dif-
ferentially expressed genes between GBM and control samples on the four autoencoders
(vanilla, denoising, Sparse, variational) identified subgroups. The genes were related to
cellular components, biological processes, and molecular function as shown in Figure 7
(and Supplementary Materials S2), which is similar to previous studies [45,46]. Some selec-
tion criteria were applied to increase the reliability and precision of the results as follows:
(i) p-value < 0.05, (ii) reads count ≥ 6 (0 to 12), (iii) shared in the results from all autoen-
coders, and (iv) belong to at least two clusters.

First, we found that only synaptic organization is present among the three clusters
(CL1, CL2, and CL3). According to the GO, the cell function called synaptic organization is
a process that results in the assembly, an arrangement of constituent parts or disassembly
of a synapse, the junction between a neuron and a target (neuron, muscle, or secretory cell).
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Figure 7. GO analysis was performed on the differentially expressed genes identified in the Denoising and Sparse
autoencoders’ results in patients cluster 1 using the k-means algorithm. The GO results were used to analyze the (A)
molecular functions, (B) Cellular components, and (C) Biological processes, identified by the Denoising Autoencoder and
the Sparse Autoencoder data.

Immune synapse occurs when a conjugate of T cells and their targets are formed and trig-
gers the reorganization of surface receptors. Then actin accumulates at the contact site, forming
the peripheral ring that delivers cytotoxic granules to the cytolytic synapse. The authors in [47]
showed that impaired synaptic organization affects cell adhesion in T cells.

Second, we identified pre-synaptic and vesicle-mediated transport in cellular synapse
components in at least two out of the three clusters we evaluated. These findings were
similar to the study by Xiong et al. [48] when analyzing targets of genes differentially
expressed in GBM samples from in silico analysis using the Gene Expression Omnibus
(GEO) database.

A pre-synaptic terminal in a synapse secretes neurotransmitters and the postsynaptic
terminal receives the neurotransmitters in its receptors [49]. This process is orchestrated
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by multiple and complex signaling pathways that differentiate the excitatory from the in-
hibitory pre-synapse; however, this process is still mostly unknown [50].

Yool et al. [51] identified that SYN1 (considered as a pre-synaptic marker) is ex-
pressed outside neural tissues that can mimic neurotransmission. Furthermore, glutamate
self-stimulation in malignant cells favors proliferation, motility, excitotoxic cell death,
and seizures in peritumor brain tissues [52]. Therefore, pre-synaptic hyper-expression is
unfavorable to a good prognosis.

Vesicles have been extensively investigated as a repository and as a transportation mode
of proteins, RNAs, and lipids between local and distant cells [53]. Vesicle-mediated intercellular
communication, also known as surrounding tumor microenvironment (TME) is composed of
malignant, benign cells and non-cellular components. It can interfere with gene expression by
favoring a pro-tumorigenic microenvironment that modulates tumor behavior, aggressiveness,
recurrence, and progression [54,55]. In GBM, the TME plays a crucial role in the progression
of the GBM, with the vesicles being identified in the bidirectional communication between
the tumor and the TME, in addition to favoring avoidance of apoptosis and therapeutic
resistance [56], and also unfavorable to a good prognosis.

4. Conclusions

Recently, deep learning autoencoders are showing huge promise for multiview data
fusion and cancer subtype detection. Here, we compared four regularized autoencoders for
subtype detection for four cancer types from the TCGA database. Though the performance
of different autoencoders varied on different datasets, in general vanilla and variational
autoencoders showed the best performance to detect the subtypes. We also observed that
PAM/Spearman similarity showed better performance than k-means/Euclidean clustering.
We predicted the optimum number of subtypes for four cancer types by comparing the four
autoencoders’ results. Moreover, DE analysis of the identified subtypes discovered critical
genes and pathways in each subtype. Overall, we showed that multi-omics data fusion
combined with subtype detection as proposed here can improve cancer patient care.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13092013/s1, Figure S1: Data results images, Figure S2: GBM Differential Expression
Analysis Results.
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