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Simple Summary: In the precision medicine era, epithelial ovarian cancer (EOC) is characterized
by a high death-to-incidence rate and poor 5-year survival. The identification of novel molecular
markers is of utmost importance to guide personalized prognosis. The objective of the present
study has been to evaluate, for the first time, the prognostic utility of tRNA-derived fragments
(tRFs) in ovarian carcinomas. In this context, we have performed in silico analysis and expression
profiling, utilizing a TCGA-OV database, GEO datasets and our two institutionally-independent
cohorts. The analysis highlighted the internal tRF derived from tRNAGlyGCC (i-tRF-GlyGCC) as a
novel molecular predictor of EOC prognosis. More precisely, elevated i-tRF-GlyGCC levels were
correlated with an aggressive phenotype of ovarian tumor and linked to adverse survival outcomes
and early progression following debulking surgery and platinum-based chemotherapy. Interestingly,
i-tRF-GlyGCC integration in multivariate strategies benefits prognostication and achieves superior
patient risk-stratification, supporting precision medicine decisions.

Abstract: Epithelial ovarian cancer (EOC) remains a highly-lethal gynecological malignancy, char-
acterized by frequent recurrence, chemotherapy resistance and poor 5-year survival. Identifying
novel predictive molecular markers remains an overdue challenge in the disease’s clinical man-
agement. Herein, in silico analysis of TCGA-OV highlighted the tRNA-derived internal fragment
(i-tRF-GlyGCC) among the most abundant tRFs in ovarian tumors, while target prediction and gene
ontology (GO) enrichment analysis predicted its implication in key biological processes. Thereafter,
i-tRF-GlyGCC levels were quantified in a screening EOC (n = 98) and an institutionally-independent
serous ovarian cancer (SOC) validation cohort (n = 100, OVCAD multicenter study). Disease progres-
sion and patient death were used as clinical endpoints for the survival analysis. Internal validation
was performed by bootstrap analysis and the clinical net benefit was estimated by decision curve
analysis. The analysis highlighted the significant association of i-tRF-GlyGCC with advanced FIGO
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stages, suboptimal debulking and most importantly, with early progression and poor overall survival
of EOC patients. The OVCAD validation cohort corroborated the unfavorable predictive value of
i-tRF-GlyGCC in EOC. Ultimately, evaluation of i-tRF-GlyGCC with the established/clinically used
prognostic markers offered superior patient risk-stratification and enhanced clinical benefit in EOC
prognosis. In conclusion, i-tRF-GlyGCC assessment could aid towards personalized prognosis and
support precision medicine decisions in EOC.

Keywords: non-coding RNAs (ncRNAs); transfer RNAs; tRNA-derived small fragments (tsRNAs);
tRFs; tRNA fragments; internal tRFs; itRF; molecular diagnostics

1. Introduction

Ovarian cancer (OC) is the most lethal female reproductive system-related malignancy
in developed countries, responsible for more than 300,000 incidences and 200,000 deaths
worldwide per year [1,2]. Diverse molecular characteristics and clinical behaviors render
this cancer a highly heterogeneous disease comprising of several histological subtypes [3].
Epithelial ovarian cancer (EOC) represents the largest subgroup (90%) of ovarian neo-
plasms and is further subdivided into five major histotypes: high-grade serous (70%),
endometrioid (10%), clear cell (10%), low-grade serous (<5%) and mucinous (3%); each of
them encompassing their own morphological and molecular features [4,5].

Throughout the last decades, major improvements have been accomplished in patients’
survival in many human malignancies; however, only a modest improvement was observed
in EOC, while emerging novel strategies remain suboptimal. In fact, the newly diagnosed
EOC patients are treated with the one-size-fits-all approach of cytoreductive surgery and
adjuvant platinum-based first-line chemotherapy, while disease prognosis relies mainly
on FIGO stage and residual tumor size following debulking surgery [6,7]. Nonetheless,
the majority of women will progress after first-line chemotherapy and maintenance ther-
apy, which constitutes the main reason for the poor prognosis of EOC patients [8,9]. To
overcome recurrence, the emergence of targeted therapies, such as the FDA-approved beva-
cizumab (monoclonal antibody against VEGF-A) and olaparib (PARP inhibitor), envisions
ameliorating patient survival and quality-of-life [10]. Beyond doubt, the development of
a biomarkers-based approach [11] towards the improvement of prognostic accuracy and
risk-stratification of EOC patients will certainly support personalized treatment decisions
and modern precision medicine.

Although primarily considered random by-products of tRNA degradation and/or
biogenesis, recent advances in RNA biology and high-throughput sequencing clearly
highlighted that tRNA-derived fragments (tRFs) constitute an abundant and evolutionarily
conserved category of small RNAs with a precise sequence, characterized by specific
expression patterns and biological roles [12]. tRFs, 14–40 bases in length [13], are produced
by the specific cleavage of primary or mature tRNA molecules [14], and are subdivided
into several groups according to their generation; tRNA-derived small RNAs (tsRNAs)
emerge from the 3′-end of pre-tRNAs by RNase Z cleavage [15], 3′-tRFs are generated by
Dicer or Angiogenin cleavage in TψC-loop of mature tRNAs 3′-end, 5′-tRFs derived mainly
by Dicer cleavage in the D-loop of mature tRNAs 5′-end and internal tRFs (i-tRFs) arise
from cleavage within internal sites of mature tRNAs. Additionally, tRNA-halves, usually
detected under stress conditions, arise from angiogenin cleavage within the anticodon
loop [16,17].

It is increasingly apparent that tRFs exhibit crucial roles in numerous biological pro-
cesses, such as mRNA stabilization, miRNA-like post-transcriptional silencing and regu-
lation of protein translation [18]. Interestingly, an ever-growing number of studies have
documented the deregulation of tRFs in numerous human malignancies, along with their ac-
tive involvement in cancer onset and progression [19]. Focusing on OC, a tRNAGly-derived
5′-tRF (tRF-03357) has been reported to enhance cell proliferation, migration and invasion
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in vitro [20], while tRNAGly-derived i-tRFs have been identified as potential diagnostic
tools since they are differentially expressed in serum OC patients compared to healthy
controls and are able to predict OC with high specificity and sensitivity [21]. Recently, their
diagnostic capability has been further supported, since numerous tRFs were identified to
be differentially expressed in high-grade serous OC (HGSOC) vs. normal ovary tissues [22].
Evidently, clinical assessment of tRFs in EOC could provide novel molecular markers that
could successfully face the unmet clinical challenges of personalized prognosis and tailored
therapeutics.

The aim of the present study was to analyze, for the first time, the prognostic value of
tRFs in EOC. In this regard, following in silico analysis of TCGA-OV and GEO deposited tRF
datasets, we targeted tRNAGlyGCC-derived internal fragments (i-tRF-GlyGCC) for complete
clinical evaluation in two institutionally-independent EOC patient cohorts [23,24].

2. Materials and Methods
2.1. Screening Cohort

The screening cohort of our study consisted of 98 patients with primary EOC. Histolog-
ical subtypes were represented by 64 high-grade serous, 14 low-grade serous, 9 mucinous,
6 endometrioid, 2 clear cell carcinomas and 3 undifferentiated carcinomas. All samples were
acquired from the Department of Obstetrics and Gynecology, School of Medicine, Technical
University of Munich, Munich, Germany. Following radical cytoreductive surgery, tissue
samples were fresh frozen and stored at−80 ◦C until analysis. Platinum-based therapy was
given in 97 patients, 1 patient received taxane (paclitaxel) monotherapy, while 14 patients
received neo-adjuvant therapy. Disease progression and response to chemotherapy were
assessed by CT scan and serum CA125. The study complied with the ethical standards of
the 1975 Declaration of Helsinki, as revised in 2008 and approved by the Ethics Committee
of the Faculty of Medicine, Technical University Munich (491/17). Informed consent was
obtained from all individual participants.

2.2. Institutionally-Independent Validation Cohort

One hundred patients with primary advanced (FIGO III/IV) serous OC (SOC) enrolled
in the multicenter OVCAD cohort constituted the institutionally-independent validation
cohort of the present study [25]. Cytoreductive surgery was performed on all patients
and, thereafter, the tissue samples obtained were fresh-frozen and stored in liquid nitrogen
until analysis. Platinum-based first-line chemotherapy was applied to patients in accor-
dance with consensus recommendations, while neoadjuvant therapy was administrated to
14 patients. RECIST criteria or CA125 variations (GCIG-criteria) were used to assess re-
sponse to treatment and progression during follow-up [26,27]. The approval of the presents
study’s protocol was obtained by the local Ethics Committees of the participating OVCAD
partners (EK207/2003, ML2524, HEK190504, EK366, and EK260), while the study was in
agreement with ethical standards of the 1975 Declaration of Helsinki, as revised in 2008.
Finally, all participating patients had given informed, written acquiescence.

2.3. Extraction of Total RNA

Total RNA was isolated using TRI-Reagent (Molecular Research Center, Cincinnati,
OH, USA) from 40–150 mg of homogenized tissue following the manufacturer’s instructions
and, thereafter, was dissolved in RNA Storage Solution (Ambion, Carlsbad, CA, USA).
RNA concentration and purity were determined spectrophotometrically at 260 and 280 nm,
assessing absorbance ratios at 260/280 nm and 260/230 nm, while the quality of RNA was
evaluated by agarose gel electrophoresis.

2.4. RNA Polyadenylation and First-Strand cDNA Synthesis

Prior to reverse transcription, polyadenylation of 1 µg of total RNA at the 3′-end was
carried out using 800 µM ATP and 1 U of E. coli poly (A) polymerase (New England Biolabs,
Inc., Ipswich, MA, USA), in a 10 µL reaction incubated at 37 ◦C for 60 min. Polymerase
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inactivation was accomplished at 65 ◦C for 15 min. Subsequently, first-strand cDNA
was synthesized with 50 U MMLV reverse transcriptase (Invitrogen, Carlsbad, CA, USA),
40 U recombinant ribonuclease inhibitor (Invitrogen) and 0.25 µM oligo (dT) adapt-er
5′-GCGAGCACAGAATTAATACGACTCACTATAGGTTTTTTTTTTTTVN-3′ (V = G, A, C
and N = G, A, T, C), in a 20 µL reaction at 37 ◦C for 60 min. Finally, MMLV was inactivated
at 70 ◦C for 15 min.

2.5. Quantitative Real-Time PCR (qPCR)

Quantitative real-time PCR (qPCR) assays based on SYBR-Green fluorescence were op-
timized to quantify i-tRF-GlyGCC levels. The small nucleolar RNA C/D box 48 (SNORD48),
also known as RNU48, served as an endogenous reference control for normalization pur-
poses. Specific forward primers were designed for the RNU48: 5′-TGATGATGACCCCAGG-
TAACTCT-3′ and for the i-tRF-GlyGCC: 5′-GAGGCCCGGGTTCGATTC-3′, according to
published RNA sequences. The specific primers were used along with the universal reverse
primer: 5′-GCGAGCACAGAATTAATACGAC-3′ for the generation of specific amplicons.
The qPCR assays were performed using 150 nM of each qPCR primer and 2 ng of cDNA,
as previously described [23,24]. After amplification, melt curve analysis and agarose gel
electrophoresis were carried out to distinguish specific amplicons from non-specific PCR
products and/or primer dimers.

2.6. In Silico Analysis

The TCGA-OV dataset was analyzed, through MINTbase (https://cm.jefferson.edu/
MINTbase/ (accessed on 5 April 2021)) [28,29], while tRF levels from GSE94533 GEO dataset
in OC were accessed through tsRBase (http://www.tsrbase.org/ (accessed on 18 May
2021)) [30]. tRFTar (http://www.rnanut.net/tRFTar/ (accessed on 10 April 2021)) [31]
was used for i-tRF-GlyGCC target prediction and, thereafter, predicted target gene set
was functionally annotated through DAVID v6.8 (https://david.ncifcrf.gov/summary.jsp
(accessed on 27 April 2021)) [32] for Gene Ontology (GO) enrichment analysis of biological
processes, cellular components and molecular functions. GO analysis was visualized
utilizing features of the GOplot package in RStudio [33].

2.7. Statistical Analysis

The statistical analysis was performed by the IBM SPSS Statistics 20 software
(IBM Corp., Armonk, New York, NY, USA). Sapiro–Wilk and Kolmogorov–Smirnov tests
were applied for the evaluation of the normal distribution of the data. Thereafter, the non-
parametric Mann–Whitney U and Kruskal–Wallis tests were used to correlate i-tRF-GlyGCC
levels with clinicopathological features in OC.

Survival analysis was performed by Kaplan-Meier curves, using a log-rank test, as
well as uni- and multivariate Cox proportional regression analyses. X-tile algorithm was
used for the estimation of optimal cut-off values [34]. Multivariate Cox proportional
regression analysis included i-tRF-GlyGCC levels, FIGO stage, tumor grade, residual tumor
size, response to chemotherapy and age. Patient death and progression were assessed
as clinical endpoint events for the overall survival (OS) and progression-free survival
(PFS), respectively. Bootstrap Cox proportional regression analysis based on 1000 bootstrap
samples was used for internal validation.

Ultimately, decision curve analysis (DCA), according to Vickers et al. [35], was per-
formed by the STATA 16 software to assess the clinical net benefit of multivariate prediction
models on the patients’ survival.

3. Results
3.1. i-tRF-GlyGCC Target Prediction and GO Analysis—Association with Adverse Clinical
Features in EOC

TCGA-OV analysis (Figure 1) highlighted that i-tRFs are extensively abundant in
ovarian tumors; 66% vs. 14% and 20% of 5′- and 3′-tRFs, respectively (Figure 1A), while

https://cm.jefferson.edu/MINTbase/
https://cm.jefferson.edu/MINTbase/
http://www.tsrbase.org/
http://www.rnanut.net/tRFTar/
https://david.ncifcrf.gov/summary.jsp
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tRNAGly-derived fragments revealed to be the second most abundant subgroup, displaying
a high proportion of i-tRFs (Figure 1B). Moreover, tRNAGlyGCC-derived i-tRFs (GCC anti-
codon) displayed the highest frequency (~50%) vs. tRNAGlyCCC- and tRNAGlyTCC-derived
i-tRFs (Figure 1C).
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Figure 1. i-tRF-GlyGCC is involved in tumor-promoting pathways in OC. (A–C) In silico analysis of
the TCGA-OV dataset through MINTbase reveals the profiling of tRFs in OC regarding the abundance
(A), the proportion of fragments derived from distinct tRNAs (B) and the frequency of diverse i-tRFs
derived from tRNAGly in OC (C). (D,E) Gene Ontology (GO) enrichment analysis of the predicted
i-tRF-GlyGCC targets displayed as a bubble (D) and chord (E) plot.

Target prediction analysis of i-tRF-GlyGCC by tRFTar enrichment tool identified
574 potential target genes, and GO functional enrichment analysis of the identified target
genes by DAVID functional annotation tool resulted in 23 annotation clusters. The distinct
terms are illustrated in Figure 1D as a bubble plot. Applying specific inclusion criteria of
GO biological processes, p-value < 0.05 and enrichment score > 1.3 (in compliance with
DAVID recommendations), the implicated genes and the enriched biological processes
are plotted as a chord diagram in Figure 1E. Interestingly, the analysis revealed that
among the most enriched biological processes are cell-cell adhesion (GO:0098609), mRNA
splicing (GO:0000398) and translational initiation (GO:0006413), whose loss of equilibrium
represents major hallmarks in ovarian tumorigenesis, disease progression and acquired
chemoresistance [36–38].
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To further explore the association of i-tRF-GlyGCC levels with clinicopathological fea-
tures of EOC, the GSE94533 dataset was utilized [39]. The analysis revealed the significantly
elevated serum i-tRF-GlyGCC levels in patients with EOC and benign ovarian lesions com-
pared to normal controls (p = 0.001; Figure 2A), as well as the association of i-tRF-GlyGCC
elevated serum levels with advanced FIGO stages (p = 0.026; Figure 2B). Ultimately, the
expression analysis of our screening cohort highlighted the elevated i-tRF-GlyGCC levels in
EOC patients with sub-optimal (R > 1 cm) tumor resection (p = 0.040; Figure 2C), compared
to those with optimal (R < 1 cm) debulking. In this regard, i-tRF-GlyGCC was further
targeted to evaluate its clinical value for disease prognosis and treatment outcome, utilizing
two institutionally-independent OC cohorts.
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Figure 2. i-tRF-GlyGCC is correlated with unfavorable clinicopathological features in OC. (A–C) Box-
plots presenting the correlation of i-tRF-GlyGCC serum levels in OC patients vs. benign/healthy
controls (A) and FIGO stages (B) in the GSE94533 dataset, as well as of i-tRF-GlyGCC tumor levels
with residual tumor size (R) in the screening cohort (C). p-values were calculated by Kruskal–Wallis
(A) and Mann–Whitney U (B,C) tests. R: residual tumor size.

3.2. Baseline Clinical Data

The screening and validation cohorts consisted of patients with median age 62.0 (range:
25–83) and 61.0 (range: 26–83), respectively, including mostly FIGO III/IV (screening:
85.7%, validation: 100%) and high-grade (screening: 83.4%, validation: 94.0%) tumors.
Within a median follow-up time (reverse Kaplan–Meier method) of 93.0 months (95% CI:
80.49–105.51), 98 patients were successfully followed-up in the screening cohort with a
median OS of 55.0 (95% CI: 41.52–68.48) and PFS of 22.0 months (95% CI: 16.28–27.72;
2 patients were excluded due to unclear monitoring data), respectively.

Correspondingly, follow-up was achieved for 100 patients in the OVCAD validation
cohort, with a median OS of 45.4 (95% CI: 34.73–56.06) and PFS of 12.24 months (95%
CI: 9.36–15.11; 2 patients were excluded due to unclear monitoring data), respectively,
during a median follow-up time (reverse Kaplan-Meier method) of 75.56 months (95% CI:
71.76–79.36). Noteworthy, 29.6% of EOC patients in the screening cohort and 22.0% in
the OVCAD validation cohort died within the first two years since diagnosis, while 31.3%
and 50.0% relapsed within the first year after primary cytoreductive surgery, accordingly.
The clinicopathological characteristics of screening and validation cohorts are summarized
in Table 1, while the REMARK diagram of the study is presented in Figure 3A), and the
complete REMARK checklist is provided in Table S1.
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Figure 3. Increased i-tRF-GlyGCC levels predict poor overall survival and early progression of EOC
patients. (A) REMARK diagram of the study; (B–E) Kaplan–Meier survival curves plotted based
on i-tRF-GlyGCC levels for OS and PFS of the EOC screening cohort (B,C) and the SOC validation
cohort (D,E). p-values were calculated by log-rank test. HR: Hazard Ratio, 95% CI: 95% confidence
interval of the estimated HR.
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Table 1. Clinicopathological characteristics of the screening and validation cohorts.

Variable Screening Cohort
No. of Patients (n = 98)

OVCAD Validation Cohort
No. of Patients (n = 100)

Age
<65 57 (58.2%) 62 (62%)
≥65 41 (41.8%) 38 (38%)

FIGO stage
I 11 (11.2%) -
II 3 (3.1%) -
III 58 (59.2%) 87 (87%)
IV 26 (26.5%) 13 (13%)

Tumor
T1 14 (14.4%) 2 (2%)
T2 5 (5.2%) 3 (3%)
T3 78 (80.4%) 95 (95%)

Missing data 1 -

Lymph nodes
N0 32 (41.6%) 17 (24%)
N+ 45 (58.4%) 54 (76%)

Missing data 21 29

Metastasis
M0 62 (69.7%) 53 (83%)
M1 27 (30.3%) 11 (17%)

Missing data 9 36

Grade
G1 16 (16.5%) 6 (6%)
G2 8 (8.2%) 22 (22%)
G3 69 (71.1%) 71 (72%)

Undifferentiated 4 (4.1%) -
Missing data 1 1

Neoadjuvant
Yes 14 (14.4%) 14 (14%)
No 83 (85.6%) 86 (86%)

Missing data 1 -

Ascites
none 26 (29.9%) 17 (18%)

<500 mL 19 (21.8%) 31 (33%)
≥500 mL 42 (48.3%) 45 (48%)

Missing data 11 7

Residual tumor
No tumor 45 (47.4%) 68 (68%)

<1 cm 19 (20.0%) 24 (24%)
1–2 cm 17 (17.9%) 1 (1%)
>2 cm 12 (12.6%) 7 (7%)

Inoperable 2 (2.1%) -
Missing data 3 -

Response to chemotherapy
Progressive disease (PD) 46 (52.9%) 24 (26%)
Complete response (CR) 34 (39.1%) 62 (67%)

Partial response (PR) 7 (8.0%) 4 (4%)
Stable disease (SD) - 2 (2%)

Missing data 11 8

Overall survival
Follow-up patients 98 100

Alive 35 (35.7%) 29 (29%)
Dead 63 (64.3%) 71 (71%)
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Table 1. Cont.

Variable Screening Cohort
No. of Patients (n = 98)

OVCAD Validation Cohort
No. of Patients (n = 100)

Disease Progression
Follow-up patients 96 98

Progression 70 (72.9%) 87 (89%)
Event-free survival 26 (27.1%) 11 (11%)

Missing data 2 2

3.3. Elevated i-tRF-GlyGCC Levels Are Associated with Unfavorable Prognosis and Treatment Response

Survival analysis was performed using patient death and disease progression as clini-
cal endpoint events for the OS and PFS, respectively. Following the adoption of the optimal
cut-off (67th percentile) according to the X-tile algorithm, the screening cohort was divided
into the “i-tRF-GlyGCC high” and “i-tRF-GlyGCC low” groups. Interestingly, Kaplan–
Meier survival curves revealed a statistically significant correlation of i-tRF-GlyGCC high
levels with poor OS (p < 0.001; Figure 3B) and shorter PFS intervals (p = 0.015; Figure 3C),
compared to EOC patients with lower levels. Univariate Cox proportional regression analy-
sis confirmed the significantly higher risk for poor survival (HR: 2.507; 95% CI: 1.482–4.250;
p = 0.001) and short-term progression (HR: 1.830; 95% CI: 1.111–3.013; p = 0.018) of the
“i-tRF-GlyGCC high” patients.

Strikingly, multivariate Cox analysis unveiled the ability of i-tRF-GlyGCC upregula-
tion in predicting the worse survival of the patients, independently of FIGO stage, tumor
grade, residual tumor after surgery, response-to-chemotherapy and age (HR: 2.062; 95%
CI: 1.160–3.665; p = 0.014). Internal validation using bootstrap Cox regression models
strongly affirmed the powerful and independent unfavorable nature of i-tRF-GlyGCC
(Figures 4 and 5 and Table S2). To confirm our findings, we have assessed the clinical value
of i-tRF-GlyGCC in the OVCAD institutionally-independent cohort. Both Kaplan–Meier
curves (p = 0.053; Figure 3D) and univariate Cox regression analysis (HR: 1.596; 95% CI:
0.989–2.576; p = 0.055) highlighted a substantial trend between the elevated i-tRF-GlyGCC
levels and the inferior survival expectancy. No statistically significant association was
observed for PFS (Figure 3E).

3.4. i-tRF-GlyGCC Ameliorates Patients’ Risk-Stratification and Prognosis

The disclosed prognostic significance of i-tRF-GlyGCC led us to assess its impact
on improving the prognostic value of the established disease clinical markers (Figure 6).
The incorporation of i-tRF-GlyGCC levels with residual tumor size and response to first-
line chemotherapy unveiled a powerful risk stratification strategy for predicting EOC
patient treatment outcomes. Kaplan–Meier analysis revealed that optimally debulked
“i-tRF-GlyGCC high” patients are prone to worse survival expectancy (p < 0.001; Figure 6A)
and disease progression (p < 0.001 Figure 6B), compared to optimally debulked patients
with lower i-tRF-GlyGCC levels. Moreover, the elevated i-tRF-GlyGCC levels could effi-
ciently define patients with favorable response to first-line platinum-based chemotherapy
(CR/PR/SD) at higher risk for poor OS (p < 0.001 Figure 6C) and short-term progression
(p < 0.001 Figure 6D), similar to PD patients, highlighting the superior risk-stratification that
integration of i-tRF-GlyGCC can provide in EOC clinical management. Ultimately, DCA
was performed to evaluate the clinical benefit of i-tRF-GlyGCC evaluation in EOC prog-
nosis (Figure 7). In this regard, multivariate prognosis prediction model, in-corporating
i-tRF-GlyGCC with the clinical disease markers of FIGO stage, tumor grade, residual tumor
size and response to chemotherapy resulted in a higher net benefit for patient survival
outcome, compared to the model of the clinical markers alone (FIGO stage, tumor grade,
residual tumor and response to chemotherapy).
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Figure 5. i-tRF-GlyGCC in predicting early-progression in EOC. Forest plots of the univariate (A) and
multivariate (B) Cox proportional regression analysis for the PFS in the screening cohort. Multivariate
analysis was adjusted for i-tRF-GlyGCC levels, FIGO stage, tumor grade, residual tumor, response
to chemotherapy and age. Bootstrap Cox proportional regression analysis based on 1000 bootstrap
samples was used for internal validation. HR: Hazard Ratio, 95% CI: 95% confidence interval of the
estimated HR.
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Figure 6. i-tRF-GlyGCC assessment ameliorates patients’ risk-stratification. (A–D) Kaplan–Meier
curves of i-tRF-GlyGCC in compliance with residual tumor size (A,B) and response to chemotherapy
(C,D) for OS and PFS of the screening EOC cohort. p-values were calculated by log-rank test. R: residual
tumor size, CR: complete response, PR: partial response, SD: stable disease, PD: progressive disease.
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GlyGCC integration in multivariate strategies. Decision curve analysis of the multivariate prediction
models for EOC patients. Net benefit is depicted against various ranges of threshold probabilities
for OS.

4. Discussion

In spite of the major advances in the dynamic field of precision medicine, EOC remains
characterized by a high death-to-incidence rate and poor 5-year survival, owing to tumor
molecular/histological heterogeneity and chemotherapy resistance [40,41]. The absence of
predictive molecular markers that could provide information on the differential clinical
benefit in diverse subgroups and allow patient-centric strategies strongly contribute to
less personalized treatment decisions [9]. In this context, the quick development of high-
throughput technologies, in the last decade, has revealed a novel group of ncRNAs, derived
by tRNAs, whose abundance has been documented to vary across tissues and diseases
of the same tissue, remaining, however, substantially unchanged within corresponding
samples [28]. Unsurprisingly, numerous research groups have identified tRFs as potential
prognostic molecular markers in various cancer types [42,43]. Particularly, a high ratio of
5′-tRF-LysCTT/3′-tRF-PheGAA has been correlated with a worse prognosis in prostate
cancer [44], while increased 5′-tRF-LysCTT levels were strongly linked to a poor disease
outcome in bladder cancer [45]. Additionally, the reduced serum levels of 5′-half-ValCAC
were associated with adverse clinicopathological characteristics [46], whereas the elevation
of two i-tRFs derived from tRNACysGCA was correlated to trastuzumab resistance and
worse prognosis of breast cancer patients [47]. Ultimately, increased i-tRF-GlyGCC levels
have been linked to shorter OS in patients with chronic lymphocytic leukemia [48].

In the present study, the analysis of the TCGA-OV dataset revealed the abundance of
i-tRFs and the high proportion of fragments derived from tRNAGlyGCC in ovarian tumors,
while GO analysis of i-tRF-GlyGCC predicted targets resulting in enriched key signaling
pathways in OC onset and progression, including cell-cell adhesion, mRNA splicing and
translational initiation. Additionally, the analysis of the GSE94533 dataset and our screening
cohort unraveled the elevation of i-tRF-GlyGCC levels in EOC patients and the association
with advanced FIGO stages and suboptimal debulking and prompted us to evaluate its
prognostic value in EOC, using our two institutionally-independent cohorts.
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Strikingly, i-tRF-GlyGCC emerged as an independent and powerful prognostic indica-
tor in EOC. In particular, the survival analysis of our screening cohort demonstrated that
increased i-tRF-GlyGCC levels were significantly correlated with worse survival and higher
risk for disease progression in patients that underwent cytoreductive surgery followed by
first-line platinum-based chemotherapy. Aiming at reaffirming our findings, we evaluated
its clinical significance in the institutionally-independent OVCAD multicenter validation
cohort, which highlighted a strong trend between i-tRF-GlyGCC increased levels and the
poor survival expectancy of the patients. Moreover, multivariate prognosis models high-
lighted that i-tRF-GlyGCC evaluation ameliorates the prognostic power of widely-used
clinical variables and offers superior risk-stratification of the EOC patients. Remarkably, op-
timally debulked patients or favorable responders to first-line chemotherapy with elevated
i-tRF-GlyGCC levels displayed poor OS and PFS intervals, resembling those of sub-optimal
or cPD groups. Ultimately, DCA elucidated the significantly enhanced clinical benefit of
the multivariate models combining i-tRF-GlyGCC levels along with disease-established
markers in EOC prognostication.

The implication of tRFs in ovarian tumorigenesis has been minimally reported. In par-
ticular, a tumor-suppressive role has been documented for 5′-tRF-GluCTC, which inhibits
cell proliferation by directly targeting BCAR3 3′-UTR [49]. On the contrary, the oncogenic
tRNAGly-derived 5′-tRF (tRF-03357) downregulates HMBOX1 levels and promotes cell
proliferation, migration and invasion in HGSOC in vitro [20]. Herein, we have studied, for
the first time, the clinical utility of tRFs in EOC, highlighting the unfavorable prognostic
value of i-tRF-GlyGCC for EOC patient treatment and survival outcome. Further research
of i-tRF-GlyGCC is of utmost importance, as it would uncover its function in ovarian tumor
cells and possibly define this tRF as a key effector in EOC tumorigenesis. Identifying
i-tRF-GlyGCC deregulation as a driver or downstream event in EOC onset and progression,
as well as implementing it in large-scale clinical studies, would undeniably, further unveil
its utility as a novel therapeutic target and molecular marker for personalized EOC man-
agement and identify the adequate cut-off values for bench-to-bedside approaches. Beyond
doubt, the i-tRF-GlyGCC independent predictive value in two institutionally-independent
cohorts, with median follow-up time that exceeds five years, as well as the elucidated
clinical benefit that can offer in EOC disease prognosis, supports i-tRF-GlyGCC vigorous
clinical utility in EOC.

5. Conclusions

In conclusion, we have studied, for the first time, the prognostic potential of i-tRF-
GlyGCC in two institutionally-independent EOC cohorts. Our data highlighted the unfa-
vorable and independent value of increased i-tRF-GlyGCC levels in predicting short-term
progression and poor treatment outcomes of EOC patients. Finally, multivariate prediction
models incorporating i-tRF-GlyGCC levels with the established and clinically used disease
markers resulted in improved patient risk-stratification, most importantly within the highly
heterogeneous groups of optimally debulked patients and chemotherapy responders, and,
thus, to superior clinical benefit in EOC prognostication.
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