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Simple Summary: Adrenocortical carcinoma (ACC) is a rare but aggressive cancer with a high rate
of fatality. Accurate prediction of cancer relapse following therapy and prognosis (fatality) is essential
to improve patient management. This research aims to significantly increase this prediction capacity.
We produced four multigene sets: Sig27var25, SigIQvar8, SigCmbnvar5, and SigCmbn_B. These
panels have not been studied in ACC and are thus novel. Importantly, they predict ACC’s relapse and
death risk with impressively high levels of accuracy. At the disease level, these multigene panels are
associated with critical ACC factors, including TP53 gene mutation and changes in immunological
processes. Furthermore, we discovered a new ACC factor in predicting ACC relapse and fatality:
mesenchymal stem cells (MSCs). Sig27var25, SigIQvar8, SigCmbnvar5, and SigCmbn_B all strongly
correlate with MSCs. Collectively, the identification of MSC association with ACC advances our
understanding of ACC; Sig27var25, SigIQvar8, SigCmbnvar5, and SigCmbn_B possess significant
potential in improving ACC management.

Abstract: Effective assessment of adrenocortical carcinoma (ACC) prognosis is critical in patient
management. We report four novel and robust prognostic multigene panels. Sig27var25, SigIQvar8,
SigCmbnvar5, and SigCmbn_B predict ACC relapse at area under the curve (AUC) of 0.89, 0.79,
0.78, and 0.80, respectively, and fatality at AUC of 0.91, 0.88, 0.85, and 0.87, respectively. Among
their 33 component genes, 31 are novel. They could be differentially expressed in ACCs from
normal tissues, tumors with different severity (stages and lymph node metastasis), ACCs with TP53
mutations, and tumors with differentially expressed immune checkpoints (CTLA4, PD1, TGFBR1, and
others). All panels correlate with reductions of ACC-associated CD8+ and/or NK cells. Furthermore,
we provide the first evidence for the association of mesenchymal stem cells (MSCs) with ACC
relapse (p = 2 × 10−6) and prognosis (p = 2 × 10−8). Sig27var25, SigIQvar8, SigCmbnvar5, and
SigCmbn_B correlate with MSC (spearman r ≥ 0.53, p ≤ 1.38 × 10−5). Sig27var25 and SigIQvar8
were derived from a prostate cancer (PC) and clear cell renal cell carcinoma (ccRCC) multigene
signature, respectively; SigCmbnvar5 and SigCmbn_B are combinations of both panels, revealing
close relationships of ACC with PC and ccRCC. The origin of these four panels from PC and ccRCC
favors their prognostic potential towards ACC.

Keywords: adrenocortical carcinoma; prognostic biomarkers; disease-free survival; overall survival;
immune checkpoint proteins; mesenchymal stem cells
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1. Introduction

Adrenocortical carcinoma (ACC) is an orphan disease with an annual incidence of
approximately 0.7–2 cases per million in adults [1,2] and 0.21 cases per million in chil-
dren [3], which accounts for 0.2% of childhood cancer [4]. The disease affects more women
than men with a bimodal age distribution, an early peak in the first decade and a late
peak in the fifth and sixth decades of life [2,5,6]. ACC is an aggressive endocrine carci-
noma. More than 50% of ACCs produce steroid hormones with clinical consequences;
patients with steroid hormone excess have high risks of disease progression and poor
prognosis [7]. The estimated 5-year survival rate is less than 50% [8], with median survival
around 3–4 years [9]. For patients with organ-confined disease, 5-year survival is 60–80%;
for patients with locally advanced ACC or metastatic ACCs, 5-year survival is 35–50% and
0–28%, respectively [10,11]. A recent epidemiological study of 2014 ACC cases in the USA
from 1973 to 2014 revealed the disease mortality is 52%, with a median survival time of
less than 2 years [5]. Surgical resection is the only curative treatment [12]. However, ACCs
show a high relapse rate, with 86% recurrence being reported in 133 ACC patients [13].
Local relapses are commonly associated with metastasis [8], to which therapeutic options
are less effective.

Despite being an aggressive carcinoma, ACC has a variable or heterogenous prognosis
with either no recurrence or slow metastatic progression in some tumors [9,14]. Effective
prediction of ACC prognosis or its clinical behavior at the time of diagnosis is critical
for patient management. Clinical outcomes can be estimated by the ACC staging system
modified by the European Network for the Study of Adrenal tumors (ENSAT) [8,15].
Other prognosis classifiers include the Ki67 index [8,16], Weiss score [16,17], CpG island
methylation, and transcriptome-based classification [8]. CpG island methylator phenotype
(CIMP) profile has been used to cluster ACCs into either non-CIMP and high CIMP groups,
with the latter being divided into CIMP-high and CIMP-low [18] or three groups consisting
of CIMP-high, CIMP-intermediate, and CIMP-low [19]. Increases in CIMP are associated
with poor prognosis [18,19]. Based on gene expression profiles, ACCs can be clustered into
C1A and C1B, with the former being more aggressive [20]. While CIMP-low ACCs largely
belong to the C1B group, both CIMP-intermediate and CIMP-high reside in the C1A group,
and CIMP-high show higher overlap with C1A compared to CIMP-intermediate [19]. Thus,
both methylation and transcription omics can classify low- and high-risk ACCs, with an
overlapping manner.

While both omics can stratify prognostic outcomes, the core events from either omics
need to be specified for clinical applications. Towards this goal, hypermethylation of the
G0S2 gene predominantly occurs in CIMP-high ACC and significantly predicts disease-
free survival (DFS) and overall survival (OS), with the prediction of DFS showing higher
efficiency [21]. With respect to gene expression, the disk large-associated protein 5 (DLGAP5
or DLG7) and PTEN-induced putative kinase 1 (PINK1) genes are predictive of worse
DFS, while benzimidazoles 1 homolog beta (BUB1B) and PINK1 expressions are the best
predictors of poor OS [20,22].

Even with the above tools, there are no molecular biomarkers in the clinic to evaluate
ACC progression and fatality risks [8,16]. The current diagnostic ability in these domains
needs to be significantly improved. In our recent effort to investigate prognostic multi-
gene panels for clear cell renal cell carcinoma (ccRCC) and prostate cancer (PC), a 9-gene
panel (SigIQGAP1NW) for ccRCC and a 27-gene signature (Sig27gene) for PC were formu-
lated [23,24]. Intriguingly, both signatures robustly predict progression-free survival (PFS,
relapse) and OS of ACC at levels exceeding their prognostic potential towards ccRCC or
PC, highlighting the credibility of both panels as effective prognostic multigene signatures
of ACC. Except for BIRC5 in Sig27gene, all other component genes in both signatures
have not been reported in ACC. From Sig27gene (n = 27 component genes) and SigIQ-
GAP1NW (n = 9 component genes), we have optimized a signature with 25 (Sig27var25)
and 8 (SigIQvar8) variables, respectively, that maintain the prognostic power of Sig27gene
and SigIQGAP1NW. Furthermore, from n = 6 component genes of Sig27var25 and SigIQ-
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var8, a combined (Cmbn) signature with five variables (SigCmbnvar5) was formulated;
SigCmbnvar5 robustly predicts relapse and fatality risk of ACC. In comparison to the
most potent published gene panel (BUB1B and PINK1 or BP), Sig27var25, SigIQvar8, and
SigCmbnvar5 hold superiority. These panels are associated with the exclusion of immune
cells and are highly correlated with the presence of mesenchymal stem cells (MSCs) in ACC.
Collectively, we report novel multigene panels that stratify ACC’s relapse and fatality risks
with high levels of certainty; these panels have great clinical potential in the management
of ACC.

2. Materials and Methods
2.1. cBioPortal Database

The cBioPortal [25,26] (http://www.cbioportal.org/index.do) (accessed on: 15 March
2022) database contains the most well-organized cancer genetics for various cancer types.
The TCGA PanCancer Atlas ACC dataset has n = 78 tumors. Tumors have been removed
by surgery resection with RNA expression profiled by RNA sequencing (RNA-seq). The
suitability of this ACC dataset for overall survival (OS)-related biomarker studies has been
demonstrated [27].

2.2. Model Size and Variable Optimization

Model size (number of component genes in a multiple gene signature) and variable
selection were performed using both the sequential and golden selection (gselection)
methods within the BeSS package in R (https://cran.r-project.org/web/packages/BeSS/
index.html) (accessed on: 21 March 2022).

2.3. Assignment of Signature Scores to Individual ACCs

Signature scores for individual tumors were given using the formula: Sum
(coef1 × Gene1exp + coef2 × Gene2exp + . . . . . . + coefn × Genenexp), where coef1 . . .
coefn are the coefs (coefficients) of individual genes, Gene1exp . . . . . . Genenexp are indi-
vidual gene expressions, and n is the number of component genes, which is n = 25 for
Sig27var25, n = 8 for SigIQvar8, and n = 5 for SigCmbnvar5. Individual coefs were derived
using multivariate Cox proportional hazards (PH) regression with the R Survival package.

2.4. Cutoff Point Estimation

Cutoff points for risk stratifications were determined using the cutpointr (https://
github.com/thie1e/cutpointr) (accessed on: 6 April 2022) R package and by Maximally
Selected Rank Statistics (the Maxstat package) in R.

2.5. Time-Dependent Receiver Operating Characteristic (tROC), ROC, and PR

Analyses of tROC were performed using the R timeROC package. ROC-based area
under the curve (AUC) and precision-recall (PR)-AUC were determined with the PRROC
package in R.

2.6. Examination of Gene Expression

The expression of component genes was determined using the GEPIA2 [28] and
UALCAN platform [29].

2.7. Correlation Analyses and Heatmap

Correlation (Pearson and Spearman) analyses were performed using tools provided by
the cBioPortal, R ggpubr package, and R corrplot packages. Correlations of component gene
expression with immune checkpoint protein expression were performed using TISIDB [30].
Oncoprint heatmaps were constructed using the ComplexHeatmap R package [31].

http://www.cbioportal.org/index.do
https://cran.r-project.org/web/packages/BeSS/index.html
https://cran.r-project.org/web/packages/BeSS/index.html
https://github.com/thie1e/cutpointr
https://github.com/thie1e/cutpointr
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2.8. Determination of Immune Cell Infiltration

ACC associated immune cells were profiled using multiple platforms, including
CIBERSORT [32], MCP-counter (microenvironment cell populations-counter) [33], Quan-
tiseq [34], xCell [35], and Epic [36] within both immunedeconv [37] and SMDIC R (https:
//cran.r-project.org/web/packages/SMDIC/index.html) (accessed on: 12 April 2022)
packages.

2.9. Statistical Analysis

Kaplan–Meier survival analyses and the logrank test were carried out using the R
Survival package. Univariate and multivariate Cox regression analyses were run with the
R Survival package. A value of p < 0.05 is considered statistically significant.

3. Results
3.1. SigIQGAP1NW and Sig27gene (Sig27) as Potent Prognostic Biomarkers of ACC and
Derivation of SigIQvar8 and Sig27var25

We have recently constructed a novel and effective multigene prognostic panel for
clear cell renal cell carcinoma (ccRCC) based on the network of IQGAP1 [23]. In our initial
screening for its prognostic potential across 33 TCGA cancer types using GEPIA2 [28],
SigIQGAP1NW displayed a strong prediction of prostate cancer (PC) relapse or biochemical
recurrence (p = 9.1 × 10−5) and poor OS of ACC (p = 1.7 × 10−4). The detected prognostic
potential in PC is consistent with both PC and ccRCC being urogenital carcinomas. In
view of the adrenal gland’s anatomical proximity to the kidney and the blood circulation
connections between the two organs, it is intriguing to see a strong prognostic value of
SigIQGAP1NW for ACC. The observed prognostic potential of SigIQGAP1NW towards
PC would suggest a prognostic value of Sig27gene (Sig27), a prognostic multigene panel of
PC constructed using the PC-associated IQGAP1 network [24] for ACC.

To examine the SigIQGAP1NW and Sig27 prognostic value toward ACC, we down-
loaded the TCGA pan-cancer ACC dataset [27] from cBioPortal. The patient population
has typical features of ACC, including the median age of 48.5 and 65% of patients being
women (Table S1), which is consistent with ACC’s peak incidence between 40 and 60 years
and 55–60% of patients being women [9]. SigIQGAP1NW and Sig27 scores for individual
tumors were generated according to the formula: ∑(coefi × Geneiexp)n (coefi: Cox coeffi-
cient of genei, Geneiexp: expression of Genei, n = 9 for SigIQGAP1NW and n = 27 for Sig27).
Cox coefs for individual component genes were generated by multivariate Cox analysis.
Both signature scores effectively predict poor OS (Figure 1A) and robustly stratify ACC’s
death risk (Figure 1B).

As SigIQGAP1NW and Sig27 were formulated for predicting the fatality risk of ccRCC
and recurrence possibility of PC, respectively [23,24], we have determined whether the
model or signature size can be optimized. Using both sequential and golden selection
(gselection) methods within the BeSS R package, we selected eight variables among the nine
component genes of SigIQGAP1NW to formulate SigIQvar8 (Figure S1A). For Sig27, the
sequential method selected 25 variables (Sig27var25) (Figure S1B). Importantly, both SigIQ-
var8 and Sig27var25 performed slightly better in predicting poor OS of ACC (Figure 1A)
and stratifying the fatality risk of ACC (Figure 1C,D). The retainment of 8 of 9 and 25 of 27
component genes in the respective optimized signature validates the prognostic potentials
of SigIQGAP1NW and Sig27 for ACC.

https://cran.r-project.org/web/packages/SMDIC/index.html
https://cran.r-project.org/web/packages/SMDIC/index.html
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Figure 1. Effective prediction of poor OS of ACC by Sig27var25 and SigIQvar8. (A) Hazard ratio
(HR), 95% confidence interval (CI), and p values for the indicated multigene signatures in predicting
poor OS. (B) Stratification of fatality risk by Sig27 and SigIQGAP1NW. Cutoff points were estimated
by Maximally Selected Rank Statistics. Kaplan–Meier curves were constructed using the R survival
package. Statistical analyses were performed using logrank test. (C,D) Separation of ACCs with
high fatality risk from those with low risk by SigIQvar8 (C) and Sig27var25 (D). Cutoff points were
estimated by Maximally Selected Rank Statistics. (E,F) Stratification of fatality risk with the indicated
gene panels using cutoff points estimated by maxstat (Maximally Selected Rank Statistics), empirical,
kernel, and normal methods using the R cutpointr package. (G,H) ROC and PR curves to evaluate
the performance of Sig27var25 and SigIQvar8 in fatality risk stratification. The curves were produced
using the PRROC package in R. (I) Time-dependent ROC-AUC for the indicated multigene panels.
Error bands are for standard error (SE). Time-dependent ROC-AUC values were obtained using the R
timeROC package.

We further characterized SigIQvar8 and Sig27var25 scores in the stratification of ACC
poor prognosis. In addition to the derivation of cutoff points using Maximally Selected
Rank Statistics (see Figure 1B–D), we estimated cutoff points with the empirical, kernel, and
normal methods using the cutpointr (https://github.com/thie1e/cutpointr) (accessed on:
6 April 2022) R package. These estimations were performed using bootstrap (n = 1000), with
an average in-bag sample size being 63.2% of the full sample size. For the estimations of
SigIQvar8 score cutoff points, the median ROC-AUC for 1000 in-bag and out-of-bag samples
is 0.88 and 0.89, respectively, for the empirical methods and 0.89 (both in-bag and out-of-bag
samples) for both kernel and normal methods. Similar performances were also obtained
during cutoff point estimation for Sig27var25 scores. The good stratification of fatality
risk in out-of-bag samples supports the real-world applications of both signatures. This
possibility is in line with the effective stratification of the poor OS using a range of cutoff
points determined by the maxstat, empirical, kernel, and normal methods (Figure 1E,F).

We subsequently evaluated the performance of SigIQvar8 and Sig27var25 in discrimi-
nation of poor OS using both ROC (receiver-operating characteristic) and PR (precision-
recall) curves. SigIQvar8 and Sig27var25 discriminate OS at ROC-AUC 0.88 and 0.91
(Figure 1G) and PR-AUC 0.78 and 0.85, respectively (Figure 1H), revealing both signatures’
ability to effectively stratify ACC fatality risk with Sig27var25 showing slightly better per-
formance. This concept is supported by evaluating both signatures using time-dependent
ROC. While the tAUC values were within the 90% range from 18.7 to 71.1 months for
SigIQvar8, the tAUC values for Sig27var5 were around the 95% range and above (Figure 1I).
Collectively, both SigIQvar8 and Sig27var25 are effective and robust in assessing the fatality
risk of ACC.

3.2. Sig27var25- and SigIQvar8-Derived Prognostic Potential for PFS

To analyze the prognostic potential for progression-free survival (PFS), we assigned
individual tumors with Sig27var25 and SigIQvar8 scores based on an individual gene’s
prediction of disease progression using multivariate Cox analysis following the system
as described above. Both signatures separate recurrence well, with Sig27var25 showing
better performance (Figure 2A,B). Effective stratification of progression risk occurs in a
range of cutoff points, which were estimated with 1000 bootstraps (for empirical, kernel,

https://github.com/thie1e/cutpointr
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and normal cutoff point estimation), for both signatures (Figure 2C,D). Sig27var25 stratifies
ACC progression risk more effectively compared to SigIQvar8 (Figure 2C,D). Sig27var25
score showed superior performance compared to SigIQvar8 in discrimination of ACC
progression based on both ROC-AUC and PR-AUC curves (Figure 2E,F).
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Figure 2. Estimation of ACC progression by Sig27var25 and SigIQvar8. (A,B) Waterfall plots for 
Sig27var25 (A) and SigIQvar8 in stratification of ACC progression risk. The progression status, sen-
sitivity, and specificity of the risk separation are indicated. Cutoff points were estimated using the 
empirical methods with n = 1000 bootstraps and used as the baselines for waterfall plot generation 
using R. (C,D) Separation of ACCs with a high risk of progression from those with low risk by the 
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Figure 2. Estimation of ACC progression by Sig27var25 and SigIQvar8. (A,B) Waterfall plots for
Sig27var25 (A) and SigIQvar8 in stratification of ACC progression risk. The progression status,
sensitivity, and specificity of the risk separation are indicated. Cutoff points were estimated using the
empirical methods with n = 1000 bootstraps and used as the baselines for waterfall plot generation
using R. (C,D) Separation of ACCs with a high risk of progression from those with low risk by the
indicated signatures. Methods used in cutpoint estimation, cutpoints and the respective sensitivity
and specificity are indicated. (E,F) ROC and PR curves for the indicated multigene panels.

3.3. Characterization of Sig27var25 and SigIQvar8

Both Sig27var25 and SigIQvar8 predict ACC fatality and progression after adjusting
for age at diagnosis and tumor stages (Figure 3). We also analyzed individual component
genes’ association with ACC progression and poor prognosis. Five variables (LINC01089,
RGS11, MXD3, BIRC5, and RAB30) of Sig27var25 are risk factors of poor OS and three of
them remain risk factors of fatality after adjusting for age at diagnosis and tumor stages
(Table 1). A total of seven component genes, including four of the five genes above, are
risk factors for ACC progression even after adjusting for age at diagnosis and tumor stages
(Table 1).

For SigIQvar8, two genes (SNHG10 and RECQL4) are risk factors for ACC progression
after adjusting for age at diagnosis and tumor stage (Table 2). Long non-coding RNA
(lncRNA) LINC01089, lncRNA LOC100128288 are risk factors for poor OS and shortening
PFS with no adjustment for age at diagnosis and tumor stage (Table 2). LINC01089 is a
common component gene in Sig27var25 and SigIQvar8 (Tables 1 and 2).
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Table 1. Univariate and multivariate Cox analyses of Sig27var25 component genes in predicting ACC
poor OS and progression.

Univariate Cox Analysis Multivariate Cox Analysis 1

Gene 2 HR 95% CI p-Value HR 95% CI p-Value

Poor OS

LINC01089 1.002 1–1.003 0.0479 * 1.002 0.9997–1.003 0.101

RGS11 1 1–1.001 0.0291 * 1 1–1.001 0.0697

MXD3 1.003 1.002–1.004 8.53 × 10−7 *** 1.003 1.0016–1.004 2.75 × 10−5 ***

BIRC5 1.003 1.002–1.004 1.45 × 10−9 *** 1.002 1.0014–1.003 8.79 × 10−7 ***

RAB30 1.008 1.003–1.013 0.00283 ** 1.006 1.001–1.012 0.0122*

worse PFS

LCN12 1.007 1.001–1.013 0.0187 * 1.011 1.0004–1.018 0.00172 **

VGF 1 1–1 0.00124 ** 1 1–1 0.0463 *

RGS11 1.001 1–1.001 0.00271 ** 1.001 1.0001–1.001 0.0207 *

MXD3 1.002 1.001–1.003 0.000676 *** 1.0017 1.0005–1.003 0.00495 **

BIRC5 1.002 1.001–1.002 6.13 × 10−5 *** 1.001 1.0002–1.002 0.0196 *

RAB30 1.02 1.005–1.014 1.92 × 10−5 *** 1.0099 1.0053–1.014 1.94 × 10−5 ***

NOD2 1.007 1.001–1.014 0.0237 * 1.0064 1.0003–1.012 0.0394 *

ZFHX4 1 1–1.001 0.035 * 1.001 1.0001–1.001 0.0235 *
1: In analysis with age at diagnosis and tumor stage (stage 1 (3 + 4) vs. stage 0 (1 + 2)); 2: continuous gene
expression data were used in analysis; * p < 0.05; ** p < 0.01; *** p < 0.001.

Table 2. Univariate and multivariate Cox analyses of SigIQvar8 component genes in predicting ACC
poor OS and progression.

Univariate Cox Analysis Multivariate Cox Analysis 1

Gene 2 HR 95% CI p-Value HR 95% CI p-Value

poor OS

LINC01089 1.002 1–1.003 0.0479 * 1.002 0.9997–1.003 0.101

SNHG10 1.011 1.006–1.017 1.72 × 10−5 *** 1.01 1.004–1.016 0.000758 ***

RECQL4 1.002 1.001–1.002 9.26 × 10−8 *** 1.001 1.0004–1.002 0.00158 **

worse PFS

LOC100128288 0.9897 0.98–0.995 0.0392 * 0.993 0.981–1.005 0.2556

SNHG10 1.006 1.002–1.01 0.00175 ** 1.01 1.004–1.016 0.000758 ***

RECQL4 1.001 1.001–1.002 0.00015 *** 1.001 1.0004–1.002 0.00158 **
1: In analysis with age at diagnosis and tumor stage (stage 1 (3 + 4) vs stage 0 (1 + 2)); 2: continuous gene
expression data were used in analysis; * p < 0.05; ** p < 0.01; *** p < 0.001.

3.4. Construction of SigCmbnvar5

Sig27var25 and SigIQvar8 are highly effective at predicting ACC prognosis and pro-
gression; both signatures contain component genes predicting poor OS independently
of age and tumor stages, for instance SNHG10 and RECQL4 for SigIQvar8 (Table 2) as
well as MXD3, BIRC5, and RAB30 for Sig27var25 (Table 1). We noticed the significant
small p-values of MXD3, BIRC5, RAB30, SNHG10, and RECQL4 in predicting poor OS and
worse PFS (Tables 1 and 2). Despite the associated HRs being unimpressive when their
continuous gene expression data were used (Tables 1 and 2), the low p-values suggest the
variables’ potential in risk stratification. Indeed, MXD3, BIRC5, RECQL4, and SNHC10
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robustly separate ACCs with high risks of fatality and progression, while RAB30 effectively
stratifies progression risk (Figure S2). The HRs for fatality and progression in the stratified
group range from 3.2 to 14.3, p < 0.01 (Figure S2). As lncRNA LINC01089 is present in both
Sig27var25 and SigIQvar8 (Tables 1 and 2), we thus analyzed the signature potential of the
six combination (Cmbn) genes (LINC01089, MXD3, BIRC5, RAB30, RECQL4, and SNHC10)
of both Sig27var25 and SigIQvar8. When modeling their prediction of OS using the Cox
model within the BeSS R package, both sequential and gsection methods selected five
variables (SigCmbnvar5) among these six genes with MXD3 being excluded (Figure S3A).
The elimination of MXD3 from SigCmbnvar5 is supported by its high levels of correlation
with SNHG10, RECQL4, and BIRC5 (Figure S3B).

SigCmbnvar5 predicts ACC fatality and progression in comparable effectiveness to
Sig27var25 and SigIQvar8 (comparing Figure 4A to Figure 3) and stratifies the fatality risk in
a range of cutoff points at 85% sensitivity and 84% specificity (Figure 4B); the discriminative
value of poor OS is at ROC-AUC 0.85 (Figure 4D) and PR-AUC 0.77 (Figure 4E). SigCmbn-
var5 effectively stratifies poor PFS (Figure 4C–E). Collectively, SigCmbnvar5 predicts the
risk of ACC fatality and progression with high degrees of certainty.

Cancers 2022, 14, x  10 of 28 
 

 

 
Figure 4. Estimation of ACC progression and fatality risks by SigCmbnvar5. (A) HR, 95% CI, and 
the respective p-values for SigCmbnvar5-derived prediction of OS and PFS under both univariate 
(UV) and multivariate (MV) settings. MV includes age at diagnosis and tumor stages. (B,C) Stratifi-
cation of ACCs fatality (B) and progression risk (C) with the indicated cutoff points. (D,E) ROC (D) 
and PR curves (E) for discrimination of OS and PFS. 

3.5. Superiority of Our Prognostic Multigene Signatures to those Previously Reported 
There are a limited number of reports on ACC prognostic biomarkers. Based on mi-

croarray and reverse qPCR analyses, the gene pair DLG7 and PINK1 was the best predic-
tor of ACC progression, and the gene pair of BUB1B and PINK1 displayed the best pre-
diction of ACC poor prognosis [20,22]. We first evaluated both gene pairs for their predic-
tive values toward OS and PFS. Using our system, we confirmed both pairs to significantly 
predict ACC progression and fatality (Figure S4A); nonetheless, BUB1B-PINK1 (BP) and 
DLGAP5 (DLG7)-PINK1 (DP) predict poor OS and worse PFS with comparable efficiency 
(Figure S4A). Based on tROC, ROC, and PR curves, BP showed slightly better stratification 
for both worse PFS and poor OS (Figure S4B–F). We further noticed an exceptionally high 
level of correlation between BUB1B and DLGAP5 expressions with Spearman r = 0.92 and 
p = 1.61 × 10−31 (Figure S4G), consistent with their function in mitotic spindle organization 
[38–40]. Collectively, evidence supports that both BP and DP have a high level of similar-
ity and BP is a slightly better prognostic panel of ACC. 

Both Sibcmbnvar5 and the published BP signature (Sigpub_BP) display good prog-
nostic values (Figures 4 and S4) and are composed of a small number of component genes. 
We thus analyzed the six combination genes (LINC01089, MXD3, BIRC5, RAB30, 

Figure 4. Estimation of ACC progression and fatality risks by SigCmbnvar5. (A) HR, 95% CI, and the
respective p-values for SigCmbnvar5-derived prediction of OS and PFS under both univariate (UV)
and multivariate (MV) settings. MV includes age at diagnosis and tumor stages. (B,C) Stratification
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curves (E) for discrimination of OS and PFS.
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3.5. Superiority of Our Prognostic Multigene Signatures to Those Previously Reported

There are a limited number of reports on ACC prognostic biomarkers. Based on
microarray and reverse qPCR analyses, the gene pair DLG7 and PINK1 was the best
predictor of ACC progression, and the gene pair of BUB1B and PINK1 displayed the
best prediction of ACC poor prognosis [20,22]. We first evaluated both gene pairs for
their predictive values toward OS and PFS. Using our system, we confirmed both pairs to
significantly predict ACC progression and fatality (Figure S4A); nonetheless, BUB1B-PINK1
(BP) and DLGAP5 (DLG7)-PINK1 (DP) predict poor OS and worse PFS with comparable
efficiency (Figure S4A). Based on tROC, ROC, and PR curves, BP showed slightly better
stratification for both worse PFS and poor OS (Figure S4B–F). We further noticed an
exceptionally high level of correlation between BUB1B and DLGAP5 expressions with
Spearman r = 0.92 and p = 1.61 × 10−31 (Figure S4G), consistent with their function in
mitotic spindle organization [38–40]. Collectively, evidence supports that both BP and DP
have a high level of similarity and BP is a slightly better prognostic panel of ACC.

Both Sibcmbnvar5 and the published BP signature (Sigpub_BP) display good prog-
nostic values (Figure 4 and Figure S4) and are composed of a small number of component
genes. We thus analyzed the six combination genes (LINC01089, MXD3, BIRC5, RAB30,
RECQL4, and SNHC10) of Sig27var25 and SigIQvar8 as well as two component genes
(BUB1B and PINK1) of Sigpub_BP for their potential to form a multigene panel. The
BeSS-based model selected a panel of six genes with the exclusion of BIRC5 and PINK1
(Figure S5A); their elimination is largely attributable to their high levels of correlation
with other genes (Figure S5B), i.e., their presence does not add to the biomarker potential
of the resultant multigene panel (SigCmbn_B) in predicting ACC relapse and prognosis.
SigCmbn_B, thus, consists of LINC01089, RAB30, SNHC10, MXD3, RECQL4, and BUB1B
(Figure S5A,B). The panel robustly stratifies poor OS and worse PFS (Figure S5C–F).

We then compared the four multiple gene panels (Sig27var25, SigIQvar8, and SigCmb-
nvar5, and SigCmbn_B) with the published BP signature: Sigpub_BP. In reference to 95% CI
and the respective p-values, Sig27var25, SigIQvar8, SigCmbnvar5, and SigCmbn_B exhibit
better predictions of OS and PFS compared to Sigpub_BP (Figure S6). With empirically esti-
mated cutoff points, Sig27var25, SigIQvar8, SigCmbnvar5, SigCmbn_B stratify the fatality
and progression risk better than Sigpub_BP, as evident by the survival curves, sensitivities,
and specificities (Figure 5A,B). The superiority of Sig27var25, SigIQvar8, SigCmbnvar5,
and SigCmbn_B to Sigpub_BP is also supported by their ROC and PR curves of OS and
PFS (Figure 5C,D). Nonetheless, these five gene panels are related, as evident by their
high correlations (Figure S7A), with all signatures identifying events (poor prognosis and
progression) in a partially overlapping manner (Figure S7B). SigCmbn_B correlates more to
SigCmbnvar5 (r = 0.98) than to Sigpub_BP (r = 0.77) (Figure S7A), supporting both SigCmb-
nvar5 and SigCmbn_B being better multigene panels compared to Sigpub_BP. Collectively,
Sig27var25, SigIQvar8, SigCmbnvar5, and SibCmbn_B add significant clinical values in
assessing ACC recurrence and prognosis.

3.6. SigIQvar8, Sig27var25, SigCmbnvar5, and SigCmbn_B Being Novel to ACC

SigIQvar8 consists of eight component genes, including long non-coding RNA (lncRNA)
LINC01089, lncRNA LOC100128288, AI894139 pseudogene LOC155060, hect domain and
RLD 2 pseudogene 2 HERC2P2, a non-protein coding RNA SNHG10 and three protein-
coding genes (RECQL4, ATXN7L2, and THSD7A) (Table 3). LncRNAs are known to
regulate gene expression in part via their sponge actions towards miRNAs [41,42], and
miRNAs commonly regulate multiple targets [43].
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Figure 5. Comparison of progression and fatality risk stratification among Sig27var25, SigIQvar8,
SigCmbnvar5, SigCmbn_B, and Sigpub_BP. (A,B) Cutoff points for the indicated signature scores
were estimated by the empirical method. The individual survival curves, p-values, sensitivities, and
specificities for OS and PFS are shown. (C,D) OS ROC and PR curves (C) and PFS ROC and PR
curves (D) for the indicated signatures.

LINC01089 has been reported to negatively impact tumorigenesis and play a role
in the inhibition of the Wnt/β-catenin signaling (Table 3) [44,45]; this impact might be
in part via the targeting of miRNAs, including miR-3187-3p [46] and miR-27a [47]. β-
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catenin is a driver gene in aggressive ACC subgroups [19]. The positive correlation of
LINC01089 with poor OS (HR 1.002, p < 0.05; Tables 1 and 2) indicates that LINC01089
likely does not suppress β-catenin in ACC. However, LINC01089 also promotes gastric
cancer via sponging miR-145-5p [48] and resistance to sorafenib in hepatocellular carcinoma
cells by targeting miR-665 [49]. SNHG10 enhances hepatocarcinogenesis and metastasis
(Table 3) [50]. HERC2P2 was recently identified as a component gene in a 10-gene panel of
blood transcripts that classifies the risk of breast cancer (Table 3) [51]. RECQL4 is one of
five human RecQ helicases, with others being RecQ1, WRN, BLM, and RecQ5. Mutations
in WRN, BLM, and RECQL4 cause Werner syndrome (WS), Bloom syndrome (BS), and
Rothmund–Thomson syndrome (RTS), respectively, which are associated with premature
aging, cancer predisposition, and chromosome abnormalities [52]. Elevations in RECQL4
display oncogenic activities in prostate cancer [53] and promote chemoresistance in gastric
cancer (Table 3) [54]. The functionality of RECQL4 in regulating genome stability [52] is
in line with abnormalities in DNA damage response being detected in ACC [21] and the
typical chromosomal aneuploidy observed in ACC [55]. Collectively, evidence supports
the important roles of RECQL4 in promoting tumorigenesis. Importantly, none of these
genes have been reported in ACC (Table 3).

Table 3. Oncogenic role of the SigIQvar8 component genes.

Gene Oncogenic Role in
ACC

Oncogenic Role in
Others Reference

LINC01089 unknown inhibition of breast
cancer metastasis [44,45]

LOC155060 unknown unknown NA

LOC100128288 unknown unknown NA

SNHG10 unknown

promotion of
resistance to tyrosine
kinase inhibitors in

lung cancer

[50]

RECQL4 unknown promotion of gastric
cancer [54]

HERC2P2 unknown suppression of cell
proliferation [51]

ATXN7L2 unknown unclear NA

THSD7A unknown unclear NA
NA: not available.

Among the 25 component genes of Sig27var25, 18 genes show activities relevant
to oncogenesis and 7 genes with unknown tumorigenic roles (Table 4). VGF facilitates
resistance to tyrosine kinase inhibitors in lung cancer [56]. RGS11 is a biomarker of lung
cancer [57]. Evidence supports MXD3 in the promotion of medulloblastoma [58] (Table 4).
BIRC5, or Survivin, is a well-studied anti-apoptotic protein promoting tumorigenesis and
progression [59,60]. LTC4S is a component gene in an immune signature associated with
clinical response in breast cancer [61]. Evidence supports negative impacts on tumorigenesis
for FPR3 [62], RAB30 [63], RIPOR2 (FAM65B) [64], PLXNA4 [65,66], MCTP1 [67], and
KCNN3 [68] (Table 4).

NOD2 was implicated in the immunosuppression of gastric cancer [69]. Blood PI15
is a biomarker of cholangiocarcinoma [70]. LAMP3 is associated with aggressive breast
cancer [71]. Increases in HDAC9 were observed in basal bladder cancer [72]. ZFHX4 is
one of the nine under-expressed genes and is a susceptibility locus of cutaneous basal cell
carcinoma [73]. TFEC regulates mTOR activation via lysosome biogenesis [74] (Table 4).

Except for BIRC5, the remaining 24 genes are novel to ACC (Table 4). Upregula-
tion of BIRC5 was reported in ACC compared to benign adrenocortical adenomas and
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normal adrenal glands, and the upregulation may associate with poor ACC prognosis
(p = 0.053) [75]. Collectively, Sig27var25 is a novel prognostic panel for ACC.

Among its five component genes (LINC01089, SNHG10, RECQL4, BIRC5, and RAB30),
only BIRC5 is known for contributing to ACC [75], and thus, Sigcmbnvar5 is a novel
prognostic signature of ACC. In the same logic, SigCmbn_B is novel, evident by five of its
six component genes (LINC01089, RAB30, SNHC10, MXD3, RECQL4, and BUB1B) being
novel.

Table 4. Oncogenic role of the Sig27var25 component genes.

Gene Oncogenic Role in ACC Oncogenic Role in Others Reference

HAGHL unknown Unknow NA

LCN12 unknown Unknown NA

DCST2 unknown Unknown NA

VGF unknown promotion of resistance to tyrosine
kinase inhibitors in lung cancer [56]

RGS11 unknown a biomarker of lung cancer [57]

PRR7 unknown Unknown NA

LINC01089 unknown See Table 3 See Table 3

MXD3 unknow promotion of medullobastoma [58]

BIRC5 Upregulation in AC and association
with ACC poor prognosis [75]

promotion of cancer progression
and metastasis [59,60]

LTC4S unknown a component gene of an immune
signature of breast cancer [61]

FPR3 unknown sustain meiotic recombination
checkpoint actions [62]

RAB30 unknown association of good prognosis in
triple negative breast cancer [63]

RIPOR2 unknown
association of immune cell

infiltration and thus inhibition of
cervical cancer

[64]

NOD2 unknown immunosuppression of
tumorigenesis of gastric cancer [69]

PLXNA4 unknown

inhibition of tumor cell migration
and contribution to innate

immunity in working with Toll-like
receptor

[65,66]

TFEC unknown regulation of lysosome biogenesis
and mTOR activation [74]

PI15 unknown biomarker of cholangiocarcinoma [70]

ZFHX4 unknown a susceptibility locus of cutaneous
basal cell carcinoma [73]

LAMP3 unknown a hypoxia-induced gene associated
with aggressive breast cancer [71]

HDAC9 unknown increases in expression in bladder
cancer [72]

MCTP1 unknown
downregulation in

paclitaxel-resistant ovarian cancer
cells

[67]

KCNN3 unknown suppression of bladder cancer cell
migration and invasion [68]

PCDHB8 unknown Unknown NA

PCDHGB2 unknown Unknown NA

PCDHGA5 unknown Unknown NA

NA: not available.
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3.7. Differential Expression of Specific Component Genes during ACC Pathogenesis

The novelty of Sig27var25, SigIQvar8, and SigCmbnvar5, as discussed above, is rele-
vant to ACC, which is supported by differential expressions of their component genes fol-
lowing ACC tumorigenesis. Downregulations of three lncRNAs, LINC01089, SNHG10, and
HERC2P2, in ACCs were observed compared to normal adrenal gland tissues (Figure 6).
A significant reduction in LINC01089 in CIMP-high and CIMP-low ACC (Figure 6) is
in line with its observed negative impact on the Wnt/β-catenin [44,45]. On the other
hand, RECQL4 is significantly upregulated in CIMP-high and CIMP-intermediate ACCs
(Figure 6), two aggressive clusters of ACC [19]. Downregulations of Sig27var25 compo-
nent genes (FPR3, LCN12, RAD30, RGS11, TFEC, and VGF) occur in either CIMP-high,
CIMP-intermediate, or both (Figure 6). Along with confirmation of BIRC5 upregulation in
CIMP-high and CIMP-intermediate ACC, HAGHL, MXD3, and PRR7 are also upregulated
in either CIMP-high, CIMP-intermediate or both (Figure 6). The alterations of these com-
ponent genes in aggressive CIMP-high and CIMP-intermediate ACCs support the potent
biomarker potential of Sig27var25, SigIQvar8, and SigCmbnvar5 in the prediction of ACC
poor prognosis and progression.

Additionally, high levels of RECQL4, MXD3, and PRR7 mRNA expression are as-
sociated with advanced tumor stages (Figure 7A). Significant elevations of PRR7 mRNA
expression correlate with lymph node metastasis (Figure 7B). Intriguingly, elevations of
RECQL4, MXD3, BIRC5, and SNHG10 expression are associated with TP53 mutations
(Figure 7C). Considering TP53 mutations as a major genomic alteration in ACC [76,77],
these genes likely cooperate with TP53 mutations to facilitate ACC tumorigenesis. These
observations suggest a mechanistic correlation of Sig27var25, SigIQvar8, and SigCmbnvar5
with a key oncogenic process, i.e., TP53 mutations, of ACC.

3.8. Association of Multigene Panels with Immunosuppressive ACC Microenvironment

TP53 mutation is known for its correlations with the immunosuppressive microen-
vironment [78,79]. The above observations, thus, indicate correlations with immunosup-
pressive phenotype as a potential mechanistic association for our multigene panels. In line
with this inference, we observed a common correlation of BIRC5, MXD3, and RECQL4
with TGFBR1 (Figure 8). Together with the observed correlation of RGS11 with TGFB1
(Figure 8), evidence supports elevations in the TGFβ signaling in ACCs with increases in
Sig27var25, SigIQvar8, and SigCmbnvar8 scores. TGFβ signaling plays a major role in
shaping the immunosuppressive tumor microenvironment [80,81]. Through transduction
of IL10-induced signaling, IL10RB (IL10 receptor subunit beta) contributes to the immuno-
suppressive tumor microenvironment [82,83]. Consistent with this knowledge, BIRC5,
MXD3, and RECQL4 expressions positively correlate with IL10RB expression (Figure 8).
NOD2 expression positively correlates with the expression of a set of co-inhibitory receptor
or immune checkpoint receptors CTLA4, LAG3, PD-1 (PDCD1), and TIGIT (Figure 8).
These co-inhibitory receptors play an essential role in immune tolerance and the formation
of an immune permissive microenvironment [84]. The checkpoint inhibitor TIGIT (T cell
immunoreceptor with immunoglobulin and ITIM domain) plays a critical role in immune
evasion of cancers via binding CD112 (PVRL2 or nectin-2), one of two TIGIT ligands [85].
Intriguingly, VGF expression significantly correlates with PVRL2 expression (Figure 8). As
those component genes (Figure 8) are within Sig27var25, SigIQvar8, and SigCmbnvar5,
evidence thus supports a correlation of these signatures with immune escape in ACC.
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The major goal of immune evasion is to avoid CD8+ T cells and NK cell-mediated
killing of tumor cells. In line with this knowledge, Sig27var25 scores are significantly
correlated with reductions of CD8+ T cells and NK cells in ACC, determined by multiple
computation programs, including xCell, ssGSEA (Figure 9A,B), GIBERSORT, ssGSEA,
Epic, and MCP (Figure S8). Reverse correlations of Sig27var25 scores with both cytotoxic
cells (Figure 9C) and cytotoxic scores (Figure S8) were also observed. Correlations of
SigCmbnvar5 and SigCmbn_B with NK cells, CD8+ cells, and cytotoxic cells, correlation of
SigIQvar8 with NK cells, as well as correlations of Sigpub_BP with NK cells and cytotoxic
cells were also detected (Figure 9D). Collectively, the above results clearly reveal an associa-
tion of Sig27var25, SigIQvar8, SigCmbnvar5, and SigCmbn_B with the immunosuppressive
environment of ACC.
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Figure 9. Correlations of multigene signatures with reductions of CD8+ and NK cells in ACC.
(A) Immune cells were profiled using Xcell within the MSDIC R package, followed by the determi-
nation of the correlation of CD8+ T cells with Sig27var25 scores using the ggpubr R package (left
panel). The Sig27var25 negative and positive ACC (boxplot, right panel) were defined with the cutoff
point estimated using an empirical method (right panel). (B,C) NK CD56bright and cytotoxic cells
in ACCs were profiled using ssGSEA within the MSDIC R package. (D) Scores from the indicated
multigene signatures, NK CD56bright cells, CD8+ T cells, and cytotoxic cells were used to construct
the Spearman correlation image with the corrplot R package. Correlations with p < 0.01 are included.
* p < 0.05; ** p < 0.01.

3.9. Correlation of Multigene Signatures with Mesenchymal Stem Cells (MSCs)

MSCs migrate to tumor mass and contribute to cancer progression [86]. Nonetheless,
the association of MSCs with ACC remains unknown. By taking advantage of profiling the
MSC presence in ACC using the xCell program within the MSDIC R package, we noticed
the MSC content showed predictive power for ACC fatality (HR 301.5, 95% CI 27.89–3235,
p = 2.59 × 10−6) and progression (HR 249.2, 95% CI 24.77–2507, p = 2.81 × 10−6). ACCs
with high levels of MSCs are significantly associated with poor OS and rapid disease
progression (Figure 10A). Interestingly, these ACCs also have increased Sig27var25 scores
(Figure 10B). MSC content in ACC also significantly correlates with SigIQvar8, SigCmb-
nvar5, SigCmbn_B, and Sigpub_BP (Figure 10C). The observed prognostic potential of
MSCs in ACC is novel; the detected correlations of Sig27var25, SigIQvar8, SigCmbnvar5,
SigCmbn_B, and Sigpub_BP with MSCs provide additional support for their prognostic
potentials.
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Figure 10. Correlation of multigene signatures with MSC. (A) MSCs in ACC were profiled using
xCell within the MSDIC R package. Cutoff points for OS and PFS were estimated using Maximally
Selected Rank Statistics, which were used to construct the survival curves. (B) Correlation of MSC
with Sig27var25 score (left panel) and enrichment of MSCs in Sig25var25 positive ACCs (right panel).
The positive and negative statuses were defined according to the empirically derived cutoff point.
(C) Correlations of MSC with the indicated signatures were determined by Spearman correlation; all
correlations are at p < 0.01.

4. Discussion

Effective assessment of prognosis and prediction of cancer recurrence is essential in the
management of patients. This is particularly critical for ACC owing to its rarity, aggressive-
ness, and heterogeneous prognosis [16]. However, this clinical capacity remains generally
poor. ACC prognosis can be estimated with good accuracy by using (1) CIMP (CpG island
methylation phenotype) clustering [18,19,87], (2) gene expression profiles-based clustering
(C1A and C1B) [20], (3) COMBI score (combination of modified GRADE (Grading of Recom-
mendations Assessment, Development and Evaluation) score and genomic alterations) [88],
and (4) BUB1B-PINK1-based gene expression [20,22]. Nonetheless, there is no molecular
knowledge or biomarkers in clinical risk assessment being recommended by the European
Society of Endocrinology Clinical Practice Guidelines on ACC [9]. The current knowledge
and capacity in risk (progression and fatality) prediction remains insufficient. The set of
multigene prognostic panels reported here fulfills this gap.

The unique feature of this study is the derivation of ACC prognostic biomarkers from
the relevant knowledge of ccRCC and PC, two urogenital carcinomas. According to the
molecular knowledge obtained from pan-cancer studies, the CoC (cluster of cluster) I
ACCs, which have a good prognosis, share lower rank proliferative features with KIRC
(ccRCC) and PC [55]. This similarity may not underline the similar prognostic properties of
ccRCC and PC biomarkers for ACC. It is particularly intriguing considering PC’s generally
nonaggressive nature, Sig27′s predictive power for PC recurrence, and Sig27var25 being the
most robust multigene panel in predicting ACC prognosis and progression. The physical
location of the adrenal gland to the kidney might be partially attributable to the shared
prognosis features between ACC and ccRCC. The central role of the adrenal gland in
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hormone synthesis [89] might underline the relationship of PC Sig27 to ACC prognosis.
In this regard, it might be worthwhile exploring the clinical applicability of the standard
of care in ccRCC and PC in ACC therapy. For instance, will sunitinib (commonly used in
treating metastatic ccRCC) have clinical benefits toward advanced ACC? Will the second-
generation anti-androgens, abiraterone and enzalutamide, be effective in treating ACCs
producing adrenal androgens, the second most common hormone produced by ACC [16]?

Importantly, both the ccRCC and PC multigene panels, SigIQvar8 and Sig27var25, are
highly effective in assessing ACC prognosis and progression. Both panels together with
their combination signature, SigCmbnvar5, outperform one of the most effective ACC prog-
nostic panels, BUB1B-PINK1. Sigpub_BP was derived from an elegant microarray analysis,
including n = 34 ACCs [20]; these tumors were clustered into C1A and C1B subgroups
based on the expression profile of 746 prob sets [20]. ACCs in CIA (n = 23) and CIB (n =13)
are associated with high and low risks of progression (relapse/metastasis) and prognosis
(deaths), respectively [20]. This clustering system stratifies the relapse risk at 89.5% sensi-
tivity and 73.3% specificity, and prognosis at 94.1% sensitivity and 70.6% specific [20]. Our
panel Sig27var25 predicts ACC relapse at a sensitivity of 80% and specificity of 92.1%, and
prognosis at a sensitivity of 85.2% and specificity of 88.2% (Figure 5). Sig27var25 stratifies
relapse and prognosis risk with more balanced sensitivity and specificity compared to C1A-
C1B. Additionally, C1A-C1B consists of 746 genes, and Sig27var25 contains 25 component
genes. Evidence, thus, supports Sig27var25 at least matches the performance of C1A-C1B in
predicting ACC progression and prognosis and adds significant value to the current ACC
risk assessment. Sigpub_BP has been retrospectively validated by two groups [21,22]. The
high levels of correlation (spearman r ≥ 0.61) between Sig27var25, SigIQvar8, or SigCmbn-
var5 and Sigpub_BP (Figure S7A) and their partially overlapping manner in prognosis and
progression stratifications (Figure S7B) provide indirect validation of our multigene panels.
Additionally, all signatures performed exceptionally well in out-of-bag samples (n = 1000)
when cutoff points were estimated (see 3.1, paragraph 4). The combination of knowledge
generated in this study with knowledge previously published resulted in SigCmbn_B,
which performs equivalently or marginally better then SigCombnvar5 (Figure 5). The
availability of SigCmbnvar5 and SigCmbn_B offers options and cross validation in clinical
applications. For instance, situations may arise in which either or both panels can be
assessed.

While RNA-sequencing allows the detection of multiple genes to be highly feasible,
multigene panels with a small number of component genes might still offer unique advan-
tages. This feature is particularly relevant to ACC. Considering its rarity and the need for an
expert team in patient care, establishing a network of risk assessment will improve decision
making or personalized medicine. This might require an initial assessment from small and
not well-equipped centers using classic methodologies such as quantitative real-time PCR
to analyze a limited number of genes. SigCmbnvar5, SigCmbn-B, and SigIQvar8 are the
choice for initial risk (both progression and prognosis) assessment. This initial assessment
can be further simplified if necessary. For instance, RAB30 and RECQL4 predict relapse
and prognosis risk at HR 5.5 (p = 8.21 × 10−6) and HR 12.7 (p = 4.38 × 10−7) (Figure S2E,F)
respectively; both genes can be used for initial risk assessment. More thorough evaluations
can then be followed with Sig27var25. A range of cutoff points, which are defined in
this study (Figure 2C,D), are the starting points to stratify progression and prognosis risk.
Nonetheless, Sig27var25, SigIQvar8, SigCmbnvar5, and SigCmbn_B should be validated
both retrospectively and prospectively, along with polishing cutoff points in the future.
Furthermore, there exist needs to integrate our multigene panels with the current knowl-
edge (Weiss score, Ki67 index, C1A-C1B, CoC, CIMP, and COMBI score) to cover different
aspects relevant to ACC progression and prognosis to better serve the clinical needs.

Future validation is supported by the novelty of our multigene panels. Except for
BIRC5, all component genes are novel to ACC (Tables 3 and 4). Particularly appealing is
the high stratification potential of SNHG10, RECQL4, MXD3, BIRC5, and RAB30 towards
prognosis and progression as individual genes (Figure S2). RECQL4 is particularly robust
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in assessing poor prognosis and RAB30 is highly effective in predicting rapid progression
(Figure S2). The observed differential expressions of signature component genes in ACC
and tumors with adverse features (high stage and lymph node metastasis) support the
relevance of these panels as valuable prognostic biomarkers of ACC.

The effectiveness of Sig27var25, SigIQvar8, SigCmbnvar5, and SigCmbn_B might be
attributable to their association with important oncogenic processes of ACC. RECQL4,
MXD3, BIRC5, and SNHG10 are significantly associated with TP53 mutations, a key molec-
ular feature of ACC [16,55]. RECQL4′s role in DNA repair [52] may in part contribute to its
association with TP53 mutations in ACC. The underlying mechanisms for the associations
of MXD3, BIRC5, and SNHG10 with TP53 mutations require further investigations. Despite
these uncertainties, their relationship with TP53 might contribute to the biomarker poten-
tial of the multigene panels in which they are involved. Consistent with this possibility,
RECQL4, MXD3, BIRC5, and SNHG10 are presented with different combinations in all
multigene panels. For instance, MXD3 and BIRC5 are in Sig27var25 (Table 1); RECQL4
and SNHG10 are component genes of SigIQvar8 (Table 2); SNHG10, RECQL4, and BIRC5
are major component genes of SigCmbnvar5 (see Section 3.4); and MXD3, SNHG10, and
RECQL4 are included in SigCmbn_B (see Section 3.5). TP53 mutation is an established
risk factor for ACC; the mutation was observed in 50–80% of childhood ACCs [90–92] and
approximately 10% of adult ACC [19]. TP53 is one of the driver genes in CoC (cluster
of cluster) II and III ACCs, which are C1A ACCs and have a high risk of tumor progres-
sion [19,20]. Evidence, thus, supports the associations of RECQL4, MXD3, BIRC5, and
SNHG10 with TP53 mutant (Figure 7C) as a contributing factor to their potential in predict-
ing ACC progression and prognosis. However, the biomarker potentials of these four genes
and the individual multigene panels in predicting ACC relapse and prognosis are likely
attributable to multiple factors in addition to TP53 mutations. The same scenario may also
apply to the association of individual multigene panels with an immunosuppressive mi-
croenvironment of ACC. Nonetheless, it will be interesting to investigate the contributions
of TP53 association to multigene panels’ biomarker potential and their correlation with
ACC evasion of immune attacks.

A typical mechanism for ACC to evade immune reactions is to exclude immune
cells [55]. Consistent with this knowledge, Sig25var25 component genes associate with
TGFβ signaling (Figure 8), a critical contributor to T-cell exclusion [81]; Sig27var25, SigIQ-
var8, SigCmbnvar5, SigCmbn_B, as well as Sigpub_BP significantly associate with reduc-
tions of CD8+ T and/or NK cells in ACC (Figure 9). In view of hypercortisolism being
the most common clinical feature in ACC patients with hormone excess [16] and the well-
established anti-inflammatory roles of corticosteroids, there is a clear need to select the right
ACC patients for immunotherapy [93]. In this regard, it will be interesting to investigate
the potential association of multigene panels reported here with cortisol levels in ACC
patients. This knowledge will be useful in improving immunotherapy in ACC patients.

A novel association is between these signatures with MSCs (Figure 10), a key player
that promotes cancer progression [86] with an important function in shaping the immuno-
suppressive microenvironment [94]. Nonetheless, MSC’s role in ACC remains unknown.
We demonstrated a significant stratification potential of ACC progression and poor prog-
nosis by MSCs, and high levels of correlation of all signatures, including Sigpub_PB with
MSC (Figure 10). This knowledge is not only novel but also highly relevant to ACC.

The multigene panels reported here are based on the gene expression profile. In view
of the critical contributions of other omics to ACC progression, including epigenetics (non-
coding RNA and DNA methylation), genomic alterations (mutations and copy number
changes), and protein profile alterations, the relationship of our panels to these omics
can be explored in the future; this will not only advance our knowledge on ACC but
also improve the assessment of relapse and prognosis. In this regard, the three omics
(gene expression, copy number alterations, and mRNA profile) have been integrated
according to the knowledge of Nottingham Prognostic Index (NPI) of breast cancer [95].
Modeling of the gene similarity network (GSN) of the three omics, which were produced
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by t-distributed stochastic neighbor embedding (t-SNE), using the visual geometry group
at the 33 layer (VGG-33) and residual neural network consisting of 112 layers (ResNet-112)
can predict breast cancer OS following surgery with an AUC of 0.9999 (VGG-33) and 0.9991
(ResNet-112) [95]. In principle, a similar approach can be explored for our multigene
panel-produced risk scores. This potential research direction is further supported by NOD2
being a component of the genes included in the above breast cancer models [95] as well
as in our panel Sig27var25 (Table 4). Additionally, NOD 2 independently predicts ACC
relapse after adjusting for age at diagnosis and tumor stage (Table 1).

This work is not without limitations. The TCGA pan-cancer ACC population contains
only primary tumors, and more than 50% of these cases are stage I and stage II tumors
(Table S1). This may not reflect the current clinic situation in which most tumors are
diagnosed as advanced tumors at stage III and stage IV [12,16]. However, this situation
will likely change as early diagnoses become more prevalent in the future. Nonetheless,
the robustness of the panels is evident as Sig27var25, SigIQvar8, and SigCmbnvar5 (as well
as SigCmbn_B, data not shown) and even some component genes predict ACC fatality and
progression independently of tumor stages (Figure 3 and Tables 1 and 2).

5. Conclusions

We report a set of novel and highly robust multigene panels for prediction and stratifi-
cation of ACC recurrence and poor prognosis. These panels were not directly formulated
based on ACC features but on the prognosis of ccRCC and recurrence of PC. This indirect
approach significantly validates the clinical potential of Sig27var25, SigIQvar8, SigCmb-
nvar5, and SigCmbn_B. These panels correlate with the key processes of ACC, including
TP53 mutation and lymphocyte exclusion. We detected a novel prognostic feature of
MSCs in ACC. In view of the demonstrated importance of MSCs in cancer progression,
the observed prognostic values of MSCs in ACC are likely highly relevant. Furthermore,
our multigene panels display high correlations with ACC-associated MSCs. Our panels
outperform the available or published ACC prognostic biomarkers. The combination of
Sig27var25, SigIQvar8, SigCmbnvar5, and SigCmbn_B, along with published signatures,
including Sigpub_BP, will likely advance the current clinical capacity in risk prediction and
stratification.

6. Patents

This research has resulted in a USA provisional patent application.
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