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Simple Summary: Cancer stem cells (CSCs) in breast cancer have been identified for almost two
decades. Many outstanding discoveries have established the important functions of CSCs in breast
cancer progression, metastasis, and resistance to therapy. As the defining feature of CSCs, stemness
is induced and maintained by several important signaling pathways. Targeting these pathways is
inevitably challenging because they are also critically involved in normal stem cells. Here, we will
summarize the literature on breast cancer stem cells, including major signaling pathways, cellular
interactions within the tumor microenvironment (TME), and potential therapeutic implications.

Abstract: Breast cancer stem cells (BCSCs) constitute a small population of cells within breast cancer
and are characterized by their ability to self-renew, differentiate, and recapitulate the heterogeneity
of the tumor. Clinically, BCSCs have been correlated with cancer progression, metastasis, relapse,
and drug resistance. The tumorigenic roles of BCSCs have been extensively reviewed and will
not be the major focus of the current review. Here, we aim to highlight how the crucial intrinsic
signaling pathways regulate the fate of BCSCs, including the Wnt, Notch, Hedgehog, and NF-κB
signaling pathways, as well as how different cell populations crosstalk with BCSCs within the TME,
including adipocytes, endothelial cells, fibroblasts, and immune cells. Based on the molecular and
cellular activities of BCSCs, we will also summarize the targeting strategies for BCSCs and related
clinical trials. This review will highlight that BCSC development in breast cancer is impacted by both
BCSC endogenous signaling and external factors in the TME, which provides an insight into how to
establish a comprehensively therapeutic strategy to target BCSCs for breast cancer treatments.

Keywords: breast cancer stem cells; signaling pathways; cell interactions; clinical trials

1. Introduction

Breast cancer is the most common malignancy in women worldwide and the majority
of breast cancer patients (~70–80%) in the early stages are curable [1]. Currently, the
challenges for breast cancer patients are metastatic diseases and relapse after treatments,
both of which are directly correlated with an increased mortality rate in patients at late
stages (20–30% of patients at the early stage will die of relapse with metastasis) [2]. Apart
from breast cancer stage, another important factor for the prognosis of breast cancer is the

Cancers 2022, 14, 3287. https://doi.org/10.3390/cancers14133287 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14133287
https://doi.org/10.3390/cancers14133287
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-9198-222X
https://orcid.org/0000-0003-0673-9888
https://orcid.org/0000-0002-8236-0346
https://doi.org/10.3390/cancers14133287
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14133287?type=check_update&version=1


Cancers 2022, 14, 3287 2 of 27

cancer subtype, because breast cancer is a heterogeneous disease at both the pathological
and molecular levels [3]. The classic pathological classification of breast cancer is based on
the expression of hormone receptors and human epidermal growth factor receptor 2 (HER2):
luminal breast cancer (estrogen receptor and progesterone receptor, ER/PR-positive), HER2-
positive (HER2-positive, ER/PR-negative), and triple negative (ER-, PR-, HER2-negative)
breast cancer (TNBC). The classification is largely reflective of their gene signatures, which
further divide breast cancer into intrinsic molecular subtypes by PAM50 signature: luminal
A, luminal B, HER2-enriched, basal-like breast cancer (BLBC), and normal-like [4]. TNBC
and BLBC are largely overlapping with around 70% of BLBC being TNBC. The claudin-low
subtype introduces another level of complexity for subtyping breast cancer [5], which may
have a different cell-of-origin and reflect a poor prognosis [6]. To achieve better clinical
outcomes, therapeutic strategies based on stages and subtypes are considered the first
step toward precision therapy. The treatments for breast cancer patients in the early stage
are mainly surgery, radiotherapy, and chemotherapy. For luminal breast cancer, patients
are treated with hormonal agents or HER-2 antibodies to prevent further metastasis [7,8].
In metastatic breast cancer, targeted drug therapies, such as CDK4, mTOR, and receptor
tyrosine kinase (RTK) inhibitors, are used to treat some patients [9–11]. Additionally,
immunotherapy is a relatively novel and promising strategy to enhance the host immune
system to eliminate cancer cells. Thus far, pembrolizumab is the only FDA-approved
immune checkpoint inhibitor (ICI) for metastatic TNBC, which blocks programmed cell
death protein 1 (PD-1) to enhance the T-cell-mediated anti-tumor responses [12]. Even
though these treatments can be effective in controlling breast cancer, some cancer cells are
able to evade treatments and survive, leading to cancer relapse. Accumulating evidence
indicates that BCSCs are relatively resistant to current therapeutics and may play a pivotal
role in breast cancer progression and relapse after treatment [13]. Therefore, eliminating
BCSCs is an emerging effort for therapeutic development.

BCSCs are a small population of breast cancer cells with the abilities of self-renewal
and tumorigenesis [14]. The origin of BCSCs is controversial, echoing the ‘the chicken or
the egg’ causality dilemma in breast cancer. Currently, there are two different hypotheses.
One hypothesis is that BCSCs originate from more differentiated non-stem cells that are
undergoing epithelial-to-mesenchymal transition (EMT) [15]. The environmental stress
on differentiated non-stem cells induces genetic and epigenetic alterations resulting in
the emergence of BCSCs [16–19]. The other hypothesis is that BCSCs are the cancerous
mammary stem cells and progenitor cells that harbor the oncogenic somatic mutations
during non-malignant stem cell differentiation [20]. Notably, although tumor initiates from
different environments, one common feature of these two hypotheses is that BCSCs have
variable mutations. Distinct tumor environments shape the molecular regulations of BCSCs
and drive interactions between BCSCs and other cell populations [21].

BCSCs are identified from heterogeneous breast cancer cells by various cell surface
markers. Al-Hajj, et al. first identified and isolated CD44+CD24−/low-lineage− cancer
cells in breast cancer patients, and they found that this population of breast cancer cells
exhibited tumorigenic capacity [13]. Later on, a study showed that stem-like breast cancer
cells have a high expression level of aldehyde dehydrogenase (ALDH) which is correlated
with a poor prognosis [22]. Subsequent studies have proved that the CD44+CD24−/low and
ALDH1+ population has significant BCSC activity, including self-renewal, metastasis, and
drug resistance [23–26]. Apart from CD44+CD24−/low and ALDH1+, various markers have
been reported to identify and isolate BCSCs in human and mouse breast cancer, which
supports further research on BCSCs and provides a premise for clinical BCSC targeting
(Table 1).



Cancers 2022, 14, 3287 3 of 27

Table 1. BCSC Surface Markers.

Human

CD44+ [13]

Aldehyde dehydrogenase 1 (ADLH1) [22]

ATP-binding cassette subfamily G member 2 (ABCG2) [27]

CD133 [28]

CD49f [29]

Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) [30]

Stage-specific embryonic antigen 3 (SSEA-3) [31]

CD70 [32]

Protein C receptor (PROCR) [33]

Nectin-4 [34]

EpCAM [35]

CD90 [36]

Mouse
CD29 [37]

CD61 [38]

Here, we highlight the molecular signaling pathways that control the function of
BCSCs, such as self-renewal, and their involvement in tumorigenesis and metastasis. We
will also review the interactions between BCSCs and the other cell populations within the
TME. Furthermore, we will summarize relevant clinical trials and preclinical research that
are devoted to eliminating BCSCs.

2. Intrinsic Molecular Activities of BCSCs
2.1. Signaling Pathways
2.1.1. Wnt Signaling Pathway

The Wnt signaling pathway regulates the self-renewal capacity and the differentiation
potential of normal mammary stem cells [39]. The Wnt signaling pathway is commonly
dysregulated in various cancers mostly due to loss of function mutation/deletion in the
tumor suppressor gene Adenomatous polyposis coli (APC). It has been shown that constitutive
activation of Wnt/β-catenin signaling transforms a population of luminal progenitor cells
and endows them with tumorigenic capacity [40]. Presumably, BCSCs can retain Wnt/β-
catenin activation to continuously fuel breast cancer progression [40–43]. Non-canonical
Wnt5A and Wnt5B have also been reported to have a significant function in maintaining
the stemness of BCSCs [44,45]. There have been studies supporting the idea that blocking
canonical Wnt/β-catenin signaling significantly reduces the number of BCSCs in breast
cancer [42,46,47].

Several proteins either involved in the Wnt signaling pathway or interacting with
proteins in the Wnt signaling pathway can mediate BCSC self-renewal and metastasis.
∆Np63 is a transcription factor that enhances normal mammary stem cell (MaSC) activities
by upregulating the expression of Frizzled Class Receptor 7 (Fzd7)—a Wnt receptor. BCSCs
utilize the same mechanism to promote tumorigenesis in TNBC [48]. Limb-Bud-and-
Heart (LBH) is a co-transcription factor of Wnt/β-catenin target genes that participates
in activating the stem cell transcription program in breast cancer cells, further leading to
cancer metastasis. Previous research has shown that inhibition of Cadherin 11 (CDH11)—
the expression of which is correlated with shorter survival in TNBC—can downregulate
β-catenin, which suppresses the canonical Wnt signaling pathway, thereby inhibiting the
cancer stem-like phenotype in TNBC [49–51]. Several recent studies have proved XB130
overexpression in malignancies. Functionally, XB130 promotes EMT—a prerequisite cellular
process for BCSC induction [52]—and accelerates tumor initiation via the Wnt/β-catenin
signaling pathway [53].
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The Wnt signaling pathway can also be regulated by dysregulation of micro-RNAs
(miR) in BCSCs. Lethal-7 (let-7) miRs are significantly reduced in the MCF-7 breast cancer
cell line and restoring them can inhibit breast cancer cell proliferation [54]. One recent
study has shown that let-7b and let-7c were inversely correlated with ERα expression
that stimulates BCSC self-renewal via the Wnt signaling pathway. The overexpression
of let-7c in MCF-7 cells significantly decreases tumor growth [55]. miR-600 can target
stearoyl-Coenzyme A desaturase 1 (SCD1), an enzyme required to activate Wnt signaling,
and previous research has found that silencing miR-600 results in BCSC expansion whereas
overexpressing it can reduce BCSC self-renewal [56]. miR-140 plays an important tumor-
suppressive role by regulating the Wnt signaling pathway. miR-140-5p is downregulated
in BCSCs and restoring miR-140-5p prevents the proliferation of BCSCs. Mechanistically,
miR-140-5p can suppress Wnt1 to prevent BCSC proliferation [57,58]. miR-125b is overex-
pressed in Snail-induced BCSCs and promotes BCSC propagation and chemoresistance by
upregulating the Wnt signaling pathway [59]. miR-142 effectively binds to APC mRNA and
restores the RNA-induced silencing complex, leading to the activation of the canonical Wnt
signaling pathway. Knockdown of miR-142 significantly inhibits the organoid formation
of BCSCs and delays tumor initiation [41]. Overexpression of miR-31 inhibits several
Wnt antagonists, such as Dickkopf-1(Dkk1), which helps BCSCs expand at the expense of
differentiation in vivo [60] (Figure 1a).
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Figure 1. Summary of important signaling pathways in BCSCs. (a) The Wnt signaling pathway is
activated when Wnt ligands bind to the receptor complex, which dissociates β-catenin from the
destruction complex and activates β-catenin as the transcriptional co-activator within the LEF/TCF
transcriptional complex. In BCSCs, several frizzled receptors are upregulated and several miRNAs
are altered in expression. (b) The Notch signaling pathway is induced by juxtacrine interactions
between Dll or JAG1/2 and Notch receptors, resulting in the release of NICD as the transcription
factor for activation of a panel of genes. The expression of Dll and JAG1/2 ligands can be elevated
from several cellular sources within the BCSC microenvironment to induce juxtacrine activation
of Notch signaling in BCSCs. MAP17 inhibits NUMB, the antagonist of NICD, to activate Notch
signaling pathway in BCSCs. (c) The activation of HH signaling pathway initiates from HHs binding
to the PTCH receptor, leading to the de-repression of SMO. The GLI 1/2/3 translocate to the nucleus
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and form the transcriptional complex to activate gene expression. In BCSCs, PTCH1, SMO, and
GLIs are upregulated to enhance the HH signaling pathway. (d) The canonical NF-κB signaling
pathway is initiated from various receptors including TNFR, which activates the trimeric IKK complex
via several steps. The IKK complex induces the ubiquitin-dependent degradation of IκBα, which
results in the nuclear translocation of canonical NF-κB dimer RelA/p50. The non-canonical NF-κB
signaling pathway can also be initiated by several TNFR superfamily members such as RANKL. NIK
and IKKα are required for propagating non-canonical signaling pathways. This process induces
the degradation of p100, leading to the generation of the RELB/p52 dimer that translocates to the
nucleus. In BCSCs, the activation of the NF-κB signaling pathway is associated with BCSC self-
renewal and the expression level of BCSC markers. Moreover, some crucial transcription factors,
such as Oct-4, Nanog, and SOX2, are consistently activated in BCSCs to maintain their self-renewal
capacity. Key abbreviations: APC, adenomatous polyposis coli; LBH, limb bud-heart; TCF/LEF, T-cell
factor/lymphoid enhancer factor; NICD, Notch intracellular domain; MAML1, mastermind-like
transcriptional co-activator 1; CSL, CBF1, suppressor of hairless, lag-1; GLI 1/2/3, GLI Family Zinc
Finger 1/2/3; FOXC1, forkhead box C1; NIK, NF-κB-inducing kinase; IKK, inhibitor of κB kinases.

2.1.2. Notch Signaling Pathway

The activation of Notch signaling pathways can be observed in normal and malignant
stem cells. By the crosstalk with other signaling pathways, such as the JAK-STAT pathway,
normal stem cells can maintain the homeostasis between self-renewal, differentiation, and
proliferation [61]. Similarly, the aberrant activation of Notch signaling pathways in BCSCs
supports their self-renewal, expansion, and metastasis [62]. Therefore, the Notch signaling
pathway is considered a critical signaling pathway that influences BCSC fate [63].

The Notch signaling pathway can be activated when Notch transmembrane receptors
bind with their ligands, such as Delta-like canonical Notch ligand (Dll) 1/3/4 and Jagged
(JAG) 1/2 that are secreted by neighboring cells or themselves. Treatment of breast cancer
cell lines with IgG-69, a Dll1 antibody, can effectively inhibit mammosphere formation [64].
Interestingly, the Notch signaling pathway seems to be quite specific to BCSCs for BLBC.
Physiological Notch activation leads to the differentiation of luminal progenitors, a process
that is tightly regulated by the breast cancer type 1 susceptibility protein (BRCA1) via
JAG1 expression [65]. The activation of Notch pathways seems to be suppressive for
spheroid formation within the luminal BCSCs, as knockdown of JAG1 leads to increased
tumorospheres [65]. In contrast, in BCSCs from BLBC, JAG1 can be included by a NF-κB-
dependent mechanism, leading to juxtacrine activation of Notch signaling and expansion
of BCSCs [66,67]. JAG2 can be strongly induced under a hypoxic environment, which
promotes EMT and increases the number of BCSCs [68].

In addition to the direct ligand-receptor activation, other mechanisms have been
studied. One study demonstrated that bone morphogenetic protein 4 (BMP-4) activates
the Notch signaling pathway via a Smad4-dependent manner in MCF-10 cells, thereby
promoting the EMT and advancing the cancer stem cell properties [69]. MAP17, a small
protein overexpressed in cancer cells, can activate the Notch signaling pathway by hijacking
a Notch antagonist, NUMB, and subsequently elevates the stem gene expression and
tumorosphere number in breast cancer [70]. Similarly, miR-146a blocks the function of
NUMB to help generate BCSCs [71]. Alternatively, breast cancer stemness can be induced
by the interaction between the Notch signaling pathway and other signaling pathways. For
example, the Notch–CCR7 signaling axis promotes stemness in MMTV-PyMT breast cancer
cells [72] (Figure 1b).

2.1.3. Hedgehog (HH) Signaling Pathway

The HH signaling pathway facilitates embryonic development and cell differentiation.
The dysregulation of the HH signaling pathway is implicated in TNBC and HER2-positive
breast cancer [73] and is persistently activated in both normal mammary stem cells and
BCSCs [74–76].
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There are three HH homologs in HH signaling pathways, including Desert (DHH),
Indian (IHH), and Sonic (SHH). The Sonic HH signaling pathway is the most well-studied
in breast cancer. In the transgenic MMTV-ErbB2 (HER2-positive) mouse model, ∆Np63
supports breast cancer stemness by inducing the elevation of the SHH signaling cascade,
inducing the expression of Smoothened (SMO), Protein Patched Homolog 1 (PTCH1),
and GLI Family Zinc Finger 2(GLI2) [77]. The constitutive activation of the HH signaling
pathway results in breast tumorigenesis and invasiveness [78]. GLI Family Zinc Finger
1 (GLI1)-mediated signaling and VEGF receptor neuropilin (NRP2) signaling form an
autocrine loop to continuously promote tumor initiation in TNBC. NRP2 overexpression
stimulates the upregulation of α6β1 integrins and GLI1. GLI1 can induce polycomb
complex protein BMI-1, a stem cell regulator, which further increases NRP2 and α6β1
integrins activity, thereby accelerating tumor initiation [79]. SMO is a key receptor in the
SHH signaling pathway and regulates GLI proteins to promote BCSC differentiation. By
contrast, BCSC activity can also be regulated by SMO-independent HH signaling. Forkhead
box C1 (FOXC1), an EMT transcription factor specifically expressed in BLBCs, binds to and
activates GLI2, which regulates BCSC enrichment via the SMO-independent HH signaling
pathway [80] (Figure 1c).

2.1.4. NF-κB Signaling Pathway

The NF-κB signaling pathway plays a crucial role in cancer cell survival, inflammation,
and immunity [81,82]. In breast cancer, the activation of the NF-κB signaling pathway can
be used as a prognostic marker and it is involved in cancer cell proliferation, differentiation,
and invasiveness [83,84]. In addition, multiple studies have supported that the NF-κB
signaling pathway promotes the stemness of BCSCs and accelerates both tumorigenesis
and invasiveness by promoting the EMT process [85,86].

BCSC function and fate are regulated by both canonical and non-canonical NF-κB
signaling pathways. The canonical NF-κB signaling pathway can be stimulated by di-
verse tumor necrosis factor (TNF) superfamily members. Using TNFα as the prototypical
example for NF-κB activation, TNFα engagement with TNF receptors (TNFRs) induces
inhibitor-κ kinases (IKK) α/β/γ ternary complex activation that can induce subsequent
phosphorylation, polyubiquitination, and degradation of IκBα. Following degradation of
IκBα, the RelA/p50 dimer, otherwise sequestered by IκBα to the cytosol, is released and
translocated into the nucleus for transcriptional regulation of target genes. Dll1+ quiescent
BCSCs with activated canonical NF-κB signaling pathways drive resistance to chemother-
apy in breast cancer treatment. Inhibition of either Dll1 or NF-κB signaling can enhance
the sensitivity of breast luminal tumors to chemotherapy [87]. One study has shown that
the IKK complex-driven canonical NF-κB signaling pathway accelerates self-renewal in
BLBC. Inhibition of IKKβ or knockdown of different IKK and NF-κB subunits results in a
decreased tumorosphere formation of SUM149 [88]. Biglycan (BGN) regulates the activa-
tion of NF-κB signaling pathways. Knockdown of BGN in BCSCs has been shown to result
in the reduction of tumorigenic phenotypes, lower metastatic potential, and attenuation of
NF-κB signaling pathways [89].

The non-canonical NF-κB signaling pathway is also mainly initiated by TNF superfam-
ily members. Using the receptor activator of nuclear factor kappa-B ligand (RANKL) as the
prototypical example of a non-canonical NF-κB signaling pathway, RANKL—produced by
either luminal mammary epithelial cells [90] or tumor-infiltrating regulatory T cells [91]—
can lead to persistent activation of NF-κB-inducing kinase (NIK) via protein stabiliza-
tion [91,92]. NIK-mediated IKKα activation [92] induces several important signaling events
that are known to be important for BCSC self-renewal, expansion, and mammary tumorige-
nesis via the non-canonical NF-κB or other signaling pathways [91–93]. TNF-α upregulates
transcriptional co-activator with PDZ-binding motif (TAZ) via the non-canonical NF-κB
signaling pathway [94]. TAZ is a transcription factor that promotes BCSC self-renewal ca-
pacity in human breast cancer cell lines [95]. High levels of NIK expression increase breast
cancer cell tumorigenicity and upregulate BCSC markers, such as aldehyde dehydrogenase
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1 family, member A1 (ALDH1A1) [86]. Interestingly, both canonical and non-canonical
NF-κB signaling pathways have been implicated to activate the juxtacrine Notch signaling
pathway via elevating JAG1 expression, leading to an expansion of BCSC populations in
breast cancer [66,67] (Figure 1d).

2.1.5. Other Signaling Pathways

Recent research has discovered that other signaling pathways also play non-negligible
roles in BCSC development. Epidermal growth factor receptor (EGFR)-mediated PI3K/AKT,
MAPK, and STAT3 signaling pathways are hyperactivated in the CD44+/CD24− BCSC pop-
ulation in MDA-MB-231, a human triple negative breast cancer cell line [96,97]. Inhibition of
EGFR significantly induces the mesenchymal–epithelial transition and increases the cancer
cell sensitivity to chemotherapies. Among the HER family members, HER3 is typically
considered to mediate PI3K/AKT signaling and drive tumorigenesis [98]. Additionally,
HER2 drives BCSC self-renewal and tumorigenesis through the activation of PI3K/AKT sig-
naling with HER3-dependent or -independent mechanisms [99–101]. JAK/STAT3 signaling
regulates BCSC self-renewal and chemoresistance by activating fatty acid β-oxidation [102].
Transforming growth factor β (TGFβ) signaling has been reported in multiple breast
cancer subtypes, including claudin-low breast cancer, TNBC, and HER2-positive breast
cancer [103–105]. TGFβ signaling also increases the metastatic capacity of CD44+CD24−

BCSC rather than CD44+CD24− non-stem-like cells. Treating breast cancer cell lines with
TGFβ increases the expression levels of BCSC markers, including Nanog, Pou5f1, and
Sox2 [106].

2.2. Other Transcription Factors

In addition to the transcriptional factors involved in the aforementioned signaling
pathways, some key transcription factors that can dictate stem cell fate include Oct-4,
Nanog, and Sox-2. These transcription factors are consistently activated in CSCs to maintain
their self-renewal capacity [107–109]. Comparing the Oct-4high cell population with the Oct-
4low cell population in the 4T1 mouse breast cancer model, researchers found that Oct-4high

4T1 cells prefer to form tumorospheres and have higher levels of stem cell markers [110].
Further evidence showed that isolated Oct-4high cells from murine MC4-L2 cells have
BCSC features [111]. Nanog is a known pluripotent transcription factor in embryonic stem
cells [112]. In an inducible Nanog transgenic mouse model, Nanog promotes breast cancer
tumorigenesis and metastasis [113]. High-level Nanog expression upregulates EMT-related
genes in BCSCs [109]. Sox-2 is another transcription factor that maintains stemness. Sox-2
activation is directly associated with the spheroid formation in BCSCs [114,115]. One
study has demonstrated that the FBXW2–MSX2–Sox-2 axis regulates the BCSC properties
and drug resistance [116]. Interestingly, tamoxifen resistance might be driven by Sox-2 in
BCSCs via downstream activation of Wnt signaling pathways [117]. The scheme of intrinsic
signaling pathways related to BCSCs is summarized in Figure 1.

3. Cellular Crosstalk between BCSCs and Different Cell Populations in the TME
3.1. Adipocytes

Adipocytes are the major cell type in the breast with roughly 90% of the organ con-
sisting of adipose tissue. In breast cancer, studies have highlighted the role of adipocytes
in promoting cancer progression by creating an inflammatory environment through the
release of cytokines, chemokines, and growth factors, enhancing the cancer cells to acquire
treatment resistance [118,119]. Previous research has shown that adipocytes play a role in
assisting breast cancer initiation, and they further accelerate breast cancer progression due
to their role under a hypoxic environment [120]. With a low oxygen level, adipocytes begin
to express Interleukin-6 (IL-6) to support BCSC survival by activating the Notch signaling
pathway [121]. Furthermore, adipocyte-derived IL-6 promotes the spheroid formation
of BCSCs by stimulating NF-κB and STAT3 signaling pathways in HER2-positive breast
cancer [122,123]. Adipocyte-derived chemokine (C-C motif) ligand 2 (CCL-2) plays dual
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functions in promoting breast cancer development by regulating breast cancer stemness
and creating an immunosuppressive environment via the recruitment of macrophages
through the CCL-2-IL-1β signaling axis [124–127].

Adipokines, such as leptin and adipsin, are correlated with breast cancer progression,
and as such, their expression levels are elevated in obesity-associated breast cancer [128,129].
Leptin promotes breast cancer development by stimulating breast epithelial cell stemness and
drives BCSC enrichment to promote tumorigenesis in an obesity-driven TNBC model [130,131].
Additionally, leptin has been shown to induce several transcription factors that promote the
stemness of BCSCs including Nanog, Oct-4, and Sox-2 [132–134]. Furthermore, leptin can
interact with the leptin receptor (LEPR) on BCSCs to activate the JAK/STAT3 signaling
pathway. Carnitine palmitoyltransferase 1B (CPT1B), a STAT3 target gene, is upregulated in
BCSCs and encodes a critical enzyme for fatty acid β-oxidation, which leads to self-renewal of
BCSCs and chemoresistance [102]. Adipsin, also known as complement factor D, can increase
the BCSC population in a breast patient-derived xenograft (PDX) model [135]. It functions as
a protease and converts complement C3 into small fragments C3a and C3b. With the blockade
of C3aR, the mammosphere formation induced by adipsin is abolished. Adipsin can also
stimulate the adipose tissue-derived stem cells to produce hepatocyte growth factor (HGF)
and promote the mammosphere formation of BCSCs [136]. Adipocytes play a critical role in
promoting BCSC formation through the secretion of multiple cytokines and adipokines.

3.2. Fibroblasts

Cancer-associated fibroblasts (CAFs) are a dynamic and abundant cell type in the TME
with diverse functions. They are involved in extracellular matrix remodeling, crosstalk
with the immune cells, and interactions with cancer cells. CAFs also promote BCSC
proliferation through either cell-to-cell contact or secreted factors. Co-culturing MCF-7
breast cancer cells with CAFs induces higher mammosphere formation and stem cell-related
gene expression including Wnt1, Notch1, β-catenin, chemokine receptor (Cxcr) type 4,
Sox-2, and aldehyde dehydrogenase 3 family member A1 (Aldh3a1), compared to those
with the MCF-7 breast cancer cells co-cultured with normal mammary fibroblasts [137,138].
Additionally, CAFs can be activated by HH ligand stimulation, and they provide a niche
for supporting BCSC function and growth in a mouse TNBC model [139]. When Hs-578Bst
cells, the normal mammary fibroblasts, are co-cultured with BCSCs, the fibroblasts secreted
an elevated amount of extracellular matrix metalloproteinase inducer (EMMPRIN), also
known as CD147 [140]. EMMPRIN can increase the number of CD44+CD24− BCSCs, and
the upregulation of EMMPRIN expression is positively correlated with STAT3 and Hypoxia-
inducible factors-1α (HIF-1α) levels. Knockdown of both STAT3 and HIF-1α reduces the
BCSC ability to form mammospheres. Certain subtypes of CAFs, including CD10+GPR77+

CAFs, can enhance the formation of ALDH1+ BCSCs through secreted IL-6 and IL-8 [141].
Additionally, CAFs with IL-7 expression can promote the clonogenic potential of E0771 cells,
suggesting that CAF-derived IL-7 is important for maintaining a niche for BCSCs [142].
Furthermore, miR-221 derived from CAF-secreted microvesicles is utilized by breast cancer
cells to ultimately transform non-cancer stem cells into CD133high BCSCs. The production
of miR-221 within CAFs is mediated by the IL6-STAT3 pathways [143]. Lastly, CAFs secrete
a high level of CCL2, which promotes BCSC formation via Notch signaling [144]. The
high plasticity of CAFs allow them to differentiate into multiple subtypes, which secret
cytokines to enhance the generation and maintenance of BCSCs.

3.3. Endothelial Cells and Vasculogenic Mimicry

Endothelial cells are traditionally known for their role in blood vessel formation, but
recent studies highlighted their involvement in enhancing the formation of BCSCs. Co-
culturing endothelial cells with breast cancer cells can significantly increase the number of
mammospheres [145]. Endothelial JAG1 activates the Notch1 receptor on breast cancer cells
to induce Zinc finger E-box-binding homeobox 1 (ZEB1) expression, which subsequently
leads to the expression of stem cell markers [146]. The loss of endothelial JAG1 attenuates
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their ability to induce BCSCs. Additionally, endothelial cells expressing mesenchymal
markers can enhance the tumor survival, stemness, and invasiveness of the breast cancer
cells [147]. When BCSCs interact with arteriolar endothelial cells via the lysophosphatidic
acid (LPA)/protein kinase D (PKD-1) signaling pathway, it strengthens both endothelial
cell differentiation and BCSC self-renewal by regulating CD36 transcription [148].

BCSCs can differentiate into endothelial-like cells or form blood vessels through vas-
culogenic mimicry to support tumor growth [149–151]. When human BCSCs are implanted
in severe combined immunodeficient (SCID) mice, intratumoral human CD31-positive cells
can be detected, indicating that the BCSCs may be able to differentiate into endothelial
lineages in vivo [149]. BCSCs can differentiate into endothelial cells with the addition of
vascular endothelial growth factors (VEGF) in vitro [149,152]. ZEB1 activation has been
shown to promote the trans-differentiation of BCSCs into endothelial-like cells [153]. The
knockdown of Zeb1 by siRNA or miRNA can inhibit the tube network formation by BCSCs.
Additionally, endothelial differentiation requires functional autophagy and the knockdown
of autophagy-related 5 (Atg-5) protein severely inhibits this process [154]. VEGF-treated
BCSCs can differentiate into endothelial-like cells through activation of ZBTB10, and the
differentiated BCSCs can secrete a higher amount of VEGF, resulting in enhanced blood
vessel formation. VEGF can bind to VEGF receptor 2 (VEGFR2) to activate the STAT3 path-
way as well as to increase Myc and Sox-2 expression to enhance the stemness of the breast
cancer cells [155]. NRP2 is a co-receptor of VEGF, and with VEGF activation, it can increase
the number of BCSCs through TAZ-mediated inhibition of Rac GAP β2-chimaerin [156].
The VEGF-A/NRP-1 axis can contribute to BCSC stemness, and it is highly dependent
on the Wnt/β-catenin pathway [157]. Both HIF-1α and VEGFR2 are important for the
hypoxia-induced differentiation of BCSCs into endothelial cells. Apatinib, a tyrosine kinase
inhibitor with high selectivity against VEGFR2, can significantly inhibit the vasculogenic
mimicry formation by the BCSCs [158]. Both CD133+ and ALDH1+ BCSCs have an en-
hanced vasculogenic mimicry function compared to traditional BCSCs [150,151,159,160].
Endothelial cells promote BCSC production through surface protein interactions with the
breast cancer cells. Even in the absence of endothelial cells, BCSCs can upregulate multi-
ple pathways to initiate vasculogenic mimicry and supply the growth of the tumor. The
crosstalk between stromal cells and BCSCs is illustrated in Figure 2.

3.4. Immune Cells

BCSCs use different mechanisms to drive their immune evasion. Similar to normal
stem cells, BCSCs can either maintain a quiescent status to avoid elimination by effector
immune cells or form an immunosuppressive TME by recruiting immunosuppressive
populations, such as regulatory T (Treg) cells, tumor-associated monocytes/macrophages
(TAMs), and tumor-infiltrated monocytic myeloid-derived suppressor cells (MDSCs)
(Figure 3) [161,162].

BCSCs develop multiple strategies to escape immune surveillance [163]. Natural killer
(NK) cells are a powerful group of innate immune cells with the anti-tumor surveillance
function. One mechanism by which NK cells recognize and kill cancer cells is through the
priming of NK cells via NK cell receptor-natural killer group 2, member D (NKG2D) [164].
The expression of MHC class I chain-related protein A and B (MICA and MICB), two ligands
of NKG2D, is reduced in BCSCs because of miR20a dysfunction. Thus, BCSCs can escape
the immune surveillance from NK cells, a process that is critical for lung metastasis [165].
BCSCs can slow the cell cycle by producing Dickkopf WNT signaling pathway inhibitor 1
(DKK1), which reduces the expression of UL16-binding protein 1 (ULBP) ligands for the
NKG2D receptor, helping BCSCs increase their resistance to NK cell killing [166]. Non-lytic
CD8 T cells fuel the self-renewal and tumorigenesis of BCSCs. One study has reported
that the cognate interaction between non-lytic CD8 T cells and BCSCs increases the stem
cell-like population in the MCF-7 breast cancer cell line [167]. Furthermore, BCSCs can
decrease their sensitivity to anti-tumor cytokines. BCSCs suppress the expression of ligand-
dependent nuclear receptor corepressor (LCOR), which can prime BCSCs to interferon
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(IFN) responses [168]. Moreover, effector T cells are inefficient in eradicating BCSCs due to
the higher expression of programmed death-ligand 1 (PD-L1) on BCSCs as compared to
non-stem-like breast cancer cells [169,170]. Myc expression positively correlates with the
expression of BCSC markers, and it upregulates the expression of PD-L1 and CD47 which
can both attenuate T-cell activity and circumvent the phagocytosis of macrophages [171,172].
In addition to inactivating T cells, PD-L1 and β-catenin signaling form a positive loop that
mutually upregulates the expression levels of each other, resulting in the maintenance and
expansion of BCSCs [173].
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Figure 2. Crosstalk between BCSCs and stromal cells in the TME. Within the TME, various cell
types are known to secrete various cytokines or chemokines such as IL-6, IL-8, CCL2, IL-7, VEGF,
etc., that can directly or indirectly influence BCSC function. In addition, different cells within the
TME also can promote BCSC expansion via lineage-specific factors. For example: adipocytes secrete
adipokine adipsin and leptin that are shown to promote BCSCs; Notch ligands can be produced
by endothelial cells, normal epithelial or non-CSC cancer cells, or other stromal cells to promote
juxtacrine activation of Notch pathway in BCSCs; and BCSCs can differentiate into endothelial-
like cells, which initiates blood vessel formation—a process known as vasculogenic mimicry—and
ultimately supports tumor growth.

Another way that BCSCs escape immune surveillance is by decreasing antigen-
presenting capacity to maintain their quiescence [174]. A genome-wide CRISPR/Cas9
screen discovered that the major histocompatibility complex (MHC-I) antigen processing
pathway is silenced in BCSCs, which blocks tumor antigen presentation and T-cell activa-
tion [175]. Ligand-dependent co-repressor (LCOR) is known to be involved in normal and
malignant breast stem cell differentiation. LCORlow BCSCs are resistant to ICIs because of
their reduced antigen presentation machinery [176].
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Figure 3. Crosstalk between BCSCs and immune cells in the TME. BCSCs can escape immune
surveillance by regulating their surface ligands to suppress the immune response. The expression
of ULBP and MICA/B is reduced to suppress the binding with NK cell receptors and evade NK
cell-mediated cell killing. Antigen-presenting capacity is decreased to prevent the effector T-cell
activation. PD-L1 and CD47 are overexpressed in BCSCs to suppress the anti-tumor effects of T cells
and macrophages respectively. Additionally, BCSCs can recruit nonlytic CD8 T cells, Treg cells, and
neutrophils to enhance self-renewal and metastatic abilities. Last but not least, an immunosuppressive
niche is constituted by recruiting and activating the immunosuppressive cell population, including
TAM, Treg cells, and neutrophils.

Moreover, the immunosuppressive TME can be formed by the interaction between
BCSCs and specific immune cell populations. Treg cells increase the number of ALDH1+

BCSCs and promote cancer cell spheroid formation. Treg cells regulate Sox-2 overexpression
in BCSCs, which activates NF-κB-CCL-1 signaling that subsequently recruits more Tregs
to the TME [177]. Recently, a study has profiled the molecular portraits from normal stem
cells to CSCs by single-cell analysis during malignant transformation. This research has
found that immune cell infiltrations may contribute to immunosuppressive features during
tumorigenesis. One evidence to support their discovery is that the expression levels of
cytokines in BCSCs are positively correlated with their receptors in immune cells. For
example, high levels of chemokine (C-X-C motif) ligand (Cxcl) 1 and Cxcl16 in BCSCs
correlate with high expression of their corresponding receptors, Cxcr2 in macrophages
and Cxcr6 in T cells [178]. The upregulation of CD90 and EPH Receptor A4 (EphA4)
in BCSCs attracts TAMs, which creates a BCSC niche through juxtracrine signaling [36].
In the primary tumor site, MDSCs induce the EMT phenotype of BCSCs to promote
cancer cell dissemination. Subsequently, pulmonary granulocytic MDSCs reverse the EMT
phenotype to the MET phenotype for metastatic cancer cell proliferation in the lung [179].
MDSCs also endow stemness to breast cancer cells via IL-6/STAT3 and NO/Notch crosstalk
signaling [180]. Moreover, Lin 28 is highly expressed in BCSCs and promotes tumor
stemness, metastasis, and invasion [181]. A recent study has shown that Lin 28 not only
promotes the transformation of primary tumor cells to ALDH+ BCSCs but also recruits
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neutrophils and converts them to the N2 subtype, an immunosuppressive neutrophil
population, to further enhance the immunosuppressive TME for BCSCs [182].

Apart from quiescence and an immunosuppressive status, BCSCs can also convert
themselves to the metastatic cancer stem cells (MCSCs) by interacting with neutrophils.
Leukotriene receptor (LTR)-positive MMTV-PyMT cancer cells have BCSC properties, such
as high spheroid formation and tumorigenesis. LTR+ BCSCs respond to neutrophil-derived
leukotriene and transform into MCSCs. Experiments have shown that MMTV-PyMT tumor
cells cultured with the conditioned medium of lung infiltrating neutrophils have more
metastatic initiation potential [183].

4. Developing Therapeutics for Eliminating BCSCs in Clinical Trials

Classic chemotherapy or targeted therapies aim to kill bulk cancer cells but are not
ideal for eliminating BCSCs due to their slow propagation and/or resistance to those
therapeutics. Eliminating BCSCs is a promising therapeutic strategy to prevent cancer
relapse and overcome treatment resistance. However, specifically targeting BCSCs is still
a challenge in breast cancer treatment since BCSCs share many of the same features and
markers as normal mammary stem and progenitor cells. In the wake of developments in
breast cancer treatment, some therapeutic strategies have exhibited certain effects on BCSC
elimination. Multiple preclinical studies have shown initial promising results to eliminate
BCSCs and some of them are in clinical trials [184,185].

4.1. Targeting Surface Markers

Specific surface proteins on BCSCs provide potential targets to eradicate BCSCs.
In preclinical research, P245, a CD44 monoclonal antibody, effectively prevents TNBC
development and relapse by inhibiting CD44+ BCSCs [186]. CD44-binding peptide, CD44BP,
inhibits the formation of mammary stem cell spheres in a PEGDA gel culture system [187].
FK506-binding protein like (FKBPL) and its peptide derivative, AD-01, also exhibit anti-
BCSC activity via the modulation of CD44 signaling [188]. Bivatuzumab mertansine, a
CD44 monoclonal antibody–drug conjugate, has been tested in a phase I clinical trial
(NCT02254005) but the result is unknown. CD133 is another potential marker for targeting
BCSCs [189]. Using CD133-targeted nanoparticles (nanoparticles conjugated with anti-
CD133 antibody) loaded with paclitaxel represses local tumor recurrence in a mouse model
of breast cancer [190]. A clinical trial has been testing the expression of CD133 in mammary
invasive ductal carcinoma and exploring the correlation between CD133 and current
known clinicopathological parameters (NCT04873154). ALDH1 is a common BCSC marker,
and researchers have made efforts to target ALDH1+ BCSCs in the laboratory setting.
Quercetin inhibits BCSCs by downregulating ALDH1 [191]. Curcumin analogs target
ALDH1 and GSK-3β to overcome chemoresistance in breast cancer [192]. Similar to CD133,
clinical trials of ALDH-targeted therapies are also ongoing (NCT00949013, NCT01424865,
NCT04581967). HER2 drives breast cancer cell stemness in both luminal and HER2-positive
breast cancer [193–196], raising the potential to use anti-HER2 therapy in all breast cancers
where BCSCs express HER2. As such, one clinical trial is to examine the use of BCSC
markers as an indicator to evaluate the effectiveness of Trastuzumab, a HER2-specific
monoclonal antibody that has been approved by the FDA for patients with HER2-positive
cancers (Table 2).

4.2. Targeting the Crucial Signaling Pathway of BCSCs

The aberrant activation of signaling pathways in BCSCs is discussed in Section 2
(Intrinsic molecular activities of BCSCs). Targeting these aberrant signaling pathways has
shown some anti-tumor effects in breast cancer. Some studies and clinical trials have shown
that targeting aberrant signaling pathways also decreases the proportion of BCSCs and
their self-renewal capacity [197–199] (Table 3).
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Table 2. Targeting BCSCs in Clinical Trials.

BCSCs Marker Agent/Intervention Study
Phase

Clinicaltrials.gov
Identifier Study Status Type/Stage of

Breast Cancer

CD44 Bivatuzumab Mertansine
(CD44v6) I NCT02254005 Completed Breast Neoplasms

CD133 Other: Immunohistochemistry
Staining Method N/A NCT04873154 Recruiting Breast Cancer

ALDH1

Other: Immunohistochemistry
Staining Method and

Laboratory
Biomarker Analysis

N/A NCT00949013 Completed Early-Stage Breast
Cancer

Other: Immunohistochemistry
Staining Method and

Laboratory
Biomarker Analysis

N/A NCT01424865 Unknown Breast Cancer

Doxorubicin-
Cyclophosphamide

Regimen
N/A NCT04581967 Recruiting Breast Cancer

EGFR/HER2 Trastuzumab N/A NCT01424865 Unknown Breast Cancer

Table 3. Targeting the Signaling Pathways of BCSCs in Clinical Trials.

Targeted Signaling Pathway Agent Study
Phase

Clinicaltrials.gov
Identifier Study Status Type/Stage of Breast Cancer

Wnt Signaling Pathway

Vantictumab I NCT01973309 Completed Metastatic HER2-Negative
Breast Cancer

Foxy-5 I NCT02020291 Completed Metastatic Breast Cancer

Cirmtuzumab with
Paclitaxel I I NCT02776917 Active, not

Recruiting Breast Neoplasms

LGK974 I NCT01351103 Recruiting TNBC

Notch Signaling Pathway

MK-0752 (GSI) I NCT00106145 Completed Advanced Breast Cancer

MK-0752 (GSI)
with Docetaxel I/II NCT00645333 Completed Metastatic Breast Cancer

PF-03084014 II NCT02299635 Terminated Advanced-Stage TNBC

PF-03084014 with
Docetaxel 260 I NCT01876251 Terminated Advanced-Stage TNBC

Melatonin with
Vitamin D II NCT01965522 Completed Early-Stage Breast Cancer

Hedgehog Signaling pathway

Vismodegib with
Neoadjuvant Paclitaxel,

Cyclophosphamide,
and Epirubicin

II NCT02694224 Recruiting TNBC

Taladegib I NCT02784795 Completed Metastatic Breast Cancer

Itraconazole Unknown NCT00798135 Completed Metastatic/Non-Metastatic
Breast Cancer

Itraconazole with
Capivasertib I NCT04712396 Completed

Metastatic
TNBC/HR2-Positive

Breast Cancer

4.2.1. Targeting Wnt Signaling Pathway

Vantictumab is an antibody that can bind to frizzled receptors and suppresses the
canonical Wnt signaling pathway in cancer cells. Vantictumab is in clinical trial 1b and the
drug is used to treat patients with HER2-negative cancers. The result has shown an outcome
of 33% partial response (NCT01973309) [200]. Foxy-5, a Wnt-5a agonist shown to inhibit
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breast cancer metastasis in a mouse TNBC model [201], is undergoing a phase I clinical
trial for metastatic breast cancers (NCT02020291) [202]. Cirmtuzumab is a monoclonal
antibody that targets ROR1, a receptor involved in non-canonical signaling. Cirmtuzumab
has been shown to dedifferentiate cancer stem cells in leukemia [203]. Cirmtuzumab is also
undergoing a phase I clinical trial for breast cancer treatment (NCT02776917).

4.2.2. Targeting Notch Signaling Pathway

γ-secretase inhibitors (GSIs) are traditional Notch signaling inhibitors and have anti-
neoplastic activity in clinical applications. GSIs decrease the number of BCSCs in MC1 and
BCM-2147 PDX models by inhibiting the Notch signaling pathway [204]. In a clinical trial, a
GSI PF-03084014 has been used in TNBC and metastatic breast cancer treatment. However,
the outcome has shown only a small population with a complete response (CR) or partial
response (PR) (13–20%). Thus, a single inhibitor treatment might not be an ideal option
(NCT02299635). In another clinical trial, advanced breast cancer patients with a GSI MK-
0752 treatment plus docetaxel have shown decreased CD44+CD24− and ALDH+ BCSC pop-
ulations and lower mammosphere formation from their biopsies [204,205] (NCT00106145,
NCT00645333). In TNBC, Vitamin D compounds have been shown to eliminate BCSCs by
inhibiting Notch1, Notch2, Notch3, JAG1, and JAG2 [199]. In a clinical trial, Vitamin D has
been combined with melatonin to reduce the spread of cancer cells (NCT01965522).

4.2.3. Targeting Hedgehog (HH) Signaling Pathway

The HH signaling pathway plays a key role in regulating the stem cell program
and its dysregulation has been observed in CSCs to promote CSC self-renewal [206].
Taladegib is an antagonist of the HH-ligand cell surface receptor smothered (SMO) and has
shown potential antineoplastic activity. Taladegib has been tested in a clinical trial against
advanced and metastatic breast cancers (NCT02784795). However, Taladegib combined
with Crenigacestat, an oral Notch and gamma-secretase inhibitor, has been terminated in a
clinical trial because of its toxicity and the poor response from patients [207]. Itraconazole is
an FDA-approved antifungal drug and has recently been repurposed as an SMO inhibitor.
Itraconazole has been reported to increase the survival of TNBC patients (NCT00798135,
NCT04712396) [208]. One disadvantage of SMO inhibitors is the resistance observed in the
late stage of treatment [209]. GLIs are transcription factors downstream of the HH signaling
pathway. A preclinical trial has shown that targeting GLI1 exhibits an anti-tumor effect and
efficiently overcomes the tumor resistance caused by SMO inhibitors in breast cancers [210].
In terms of targeting HH signaling, although the current clinical activities are towards
broad therapeutic effects in TNBC or HER-2 positive breast cancer—two BCSC-enriched
breast cancer types—it is also promising to effectively eliminate BCSCs in metastatic and
relapsed breast cancer.

4.3. Targeting the Components in the BCSC Microenvironment—VEGF

VEGF signaling regulates cancer progression by enhancing angiogenesis and vascular
permeability [156], but has also been shown to drive BCSC self-renewal via VEGFR2/STAT3-
mediated upregulation of Myc and Sox-2 [155,211]. Bevacizumab is a monoclonal anti-
body that blocks angiogenesis by inhibiting VEGF-A [212]. Bevacizumab is used in both
research and clinical trials, but the treatment outcome is not consistent (NCT00016549,
NCT01190345). In another clinical trial, bevacizumab has been combined with conventional
chemotherapy to inhibit BCSC activity (NCT00095706). However, there is a study that has
highlighted the potential of how bevacizumab could induce a hypoxic environment and
further increase BCSC numbers (Table 4) [213].
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Table 4. Targeting the VEGF in the BCSC Microenvironment in Clinical Trials.

Components Agent/Intervention Study Phase Clinicaltrials.gov
Identifier Study Status Type/Stage of

Breast Cancer

Vascular
Endothelial

Growth Factor
(VEGF)

Bevacizumab II
NCT00016549 Completed

Breast Cancer
NCT01190345 Completed

Bevacizumab with
Herceptin I/II NCT00095706 Completed Breast Cancer

4.4. Immunotherapy
4.4.1. Vaccines

HIF-1α promotes cancer growth in low oxygen environments and the mechanisms
through which HIF-1α helps BCSCs are described in low oxygen environments through
mechanisms described in the previous section [141,158]. One recent study has shown that
mice immunized by a HIF-1α peptide pool, namely the HIF-1α vaccine, have a higher level
of HIF-1-specific IgG in sera, which neutralizes HIF-1α, enhances Th1 and Th2 immunity,
and reduces tumor growth in TNBC and activities of BCSCs [214]. Digoxin, which can
inhibit HIF-1α and block tumor growth [215], has shown therapeutic potential in a clinical
trial (NCT01763931) for breast cancer treatment. Brachyury is overexpressed in TNBC and
its expression is regulated by IL-8, a cytokine important to maintain BCSCs [216]. The
use of Brachyury as a target for vaccine design was proposed to treat TNBC, especially by
preventing the growth of stem-like cancer cells [217]. The Brachyury vaccine educates the
host immune cells to target the Brachyury protein, and there have been clinical trials to
test this vaccine against multiple subtypes of breast cancer (NCT02179515, NCT04296942,
NCT04134312, NCT03384316). Some other anti-tumor vaccines in clinical trials are also
optimized to enhance the immune response to specifically eliminate BCSCs. One clinical
trial evaluates the multiantigen DNA plasmid-based vaccine, which is a cocktail vaccine
including the proteins of BCSCs (NCT02157051). Another clinical trial examines the safety
of one CSC vaccine, which contains high levels of IgG binding to CSCs and subsequently
increases the immune response to CSC antigens (NCT02063893).

4.4.2. CAR-T Cell Therapy

CAR-T cells are engineered T cells with the expression of specific antigen receptors
which endows T cells with the capability to eliminate BCSCs by targeting their specific
proteins [218]. CD133+ breast cancer cells have stem-like properties and CD133 has also
been identified as a BCSC marker [189]. CD133 mRNA was transfected to dendritic cells
(DCs) to make an MHC-independent vaccine against BCSCs in TNBC (181). There are
reports that CAR-T-CD133 cell therapy presented favorable efficacy in the treatment of
human solid cancers, such as breast cancer, in a clinical trial (NCT02541370) [219,220]. The
overexpression of epithelial cellular adhesion molecule (EpCAM) in BCSCs provides a
potential target for engineering CAR-T-EpCAM cells [221,222]. CAR-T-EpCAM cell therapy
has shown significant anti-tumor activity in prostate cancer in a preclinical study [223]. In
a clinical trial, CAR-T-EpCAM cell therapy has been evaluated for its anti-tumor efficiency
and safety (NCT02915445).

4.4.3. Inhibition of Immune Signaling Receptors

CXCR1/2 are the receptors of IL-8 and can stimulate BCSC self-renewal. Addition-
ally, HER2 expression is regulated by CXCR1/2. Therefore, single CXCR1/2 inhibition
and combination therapy, along with HER2 inhibition, are potential treatment strategies
for breast cancer. Reparixin is a CXCR1/2 inhibitor that specifically targets BCSCs, and
has been shown to suppress metastasis in a human xenograft and metastatic TNBC in
a preclinical study when combined with paclitaxel [216]. There are two clinical trials in
which reparixin plus paclitaxel are used to treat HER2-negative breast cancer or TNBC
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(NCT02001974, NCT02370238). CD47 overexpression is regulated by HIF-1α and helps
BCSCs escape phagocytosis by macrophages [171,224]. Anti-CD47 plus trastuzumab ther-
apy can block HER2-positive breast cancer and overcome resistance to single trastuzumab
treatment [225]. There are several clinical trials ongoing that present well-tolerated safety
and good pharmacokinetics (NCT03990233, NCT04097769, NCT05076591) (Table 5).

Table 5. Immunotherapy in Clinical Trials.

Strategies Agent Study Phase Clinicaltrials.gov
Identifier Study Status Type/Stage of Breast

Cancer

Vaccine

Digoxin II NCT01763931 Completed Breast Cancer

MVA-brachyury-TRICOM I

NCT02179515 Completed

HER2-Positive; TNBC;
Metastatic Breast Cancer

NCT04296942 Terminated

NCT04134312 Completed

NCT03384316 Completed

Multiantigen DNA
Plasmid-based Vaccine

(CD105, Yb-1, SOX2, CDH3
and MDM2)

I NCT02157051 Recruiting

HER2-Negative Breast
Carcinoma; Recurrent

Breast Carcinoma; Stage
III/IIIA/IIIB/IIIC/IV III

Breast Cancer

DCs Pulsed with the Lysate of
Aldefluor-Positive Cells I/II NCT02063893 Completed Breast Neoplasms

Chimeric Antigen
Receptor (CAR)

T cells

Anti-CD133-CAR
Vector-Transduced T cells I/II NCT02541370 Completed Breast Cancer

Anti-EPCAM I NCT02915445 Recruiting Recurrent Breast Cancer

Chemokine
Inhibitors

Reparixin and Paclitaxel I NCT02001974 Completed HER2-Negative
Metastatic Breast Cancer

Reparixin and Paclitaxel with
Placebo II NCT02370238 Completed Metastatic TNBC

Anti-CD47

BI 765063 and BI 754091 I NCT03990233 Recruiting Solid Breast Cancer

HX009 I NCT04097769 Active, Not
Recruiting Advanced Malignancies

IMM2902 I NCT05076591 Active, Not
Recruiting Advanced Breast Cancer

5. Conclusions and Perspectives

The accumulative studies have shown that BCSCs are responsible for treatment re-
sistance, cancer relapse, and metastasis. At the molecular level, BCSCs are governed
by multiple signaling pathways, including the Wnt signaling pathway, Notch signaling
pathway, HH signaling pathway, NF-κB signaling pathway, and others. These pathways
maintain persistent and aberrant activation in BCSCs to support their self-renewal, dif-
ferentiation, and dissemination abilities. At the cellular level, BCSCs can interact with
different cell populations in the TME, including adipocytes, fibroblasts, endothelial cells,
and immune cells. The cell populations and their derived cytokines/chemokines can either
contribute to BCSC activity or be influenced by BCSCs to form an inflammatory, hypoxic,
and immunosuppressive TME from which BCSCs can benefit.

Although most breast cancer patients in the early stages show a good prognosis, some
patients experiences drug resistance and cancer relapse [226,227]. Even worse, breast cancer
dissemination is a possibility because quiescent metastatic BCSCs escape treatment [228].
The metastatic BCSCs exhibit great plasticity between epithelial cells and mesenchymal cells,
providing them with the unique capability to survive, expand, self-renew, and differentiate,
all of which contribute to breast cancer progression. Cancer cells undergoing EMT seem to
be a prerequisite for BCSC induction, with increased frequency of CD44+CD24− cells. After
BCSCs finish disseminating and reseeding to secondary organs, they can revert to transform
into an epithelial-like phenotype (MET) for colonization and macrometastasis or remain
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dormant for decades to evade drug treatment, likely in the mesenchyme-like form [229].
This unique plasticity of BCSCs hides them from treatment and causes a lower response to
treatments for metastatic/distant relapse [230]. Furthermore, there is still no clear boundary
to distinguish the change in signaling pathways between BCSCs and non-stem-like breast
cancer cells [231]. A lot of studies have proved that the main signaling pathways, Wnt
signaling, Notch signaling, and HH signaling, are overall activated in breast cancer. This
means under a stressful environment, non-stem-like breast cancer cells may transform into
BCSCs to promote tumorigenesis [232–235]. Additionally, based on the theory that BCSCs
originate from cancerous normal stem cells, BCSCs also share similar features with normal
stem cells, such as quiescence and immune tolerance. Therefore, developing therapeutic
strategies to specifically track and target BCSCs is one of the pressing needs in breast
cancer treatment.

In terms of therapeutic strategy development, early intervention is more efficient in
eliminating bulk cancer cells. The data from the last 10 years has shown that around 10% of
women with early-stage breast cancer experience a late recurrence after treatment [236,237].
Hence, the optimization of current therapies is urgently needed. First, strategic combination
therapies should be considered in preclinical and clinical research. BCSC numbers and
functions are regulated by different mechanisms. Some of the signaling pathways have
overlapping functions in BCSCs and may compensate each other. Research is warranted to
understand how these signaling pathways work in BCSCs, which will provide a rationale
to target various key signaling pathways in BCSCs. For example, only using anti-HER2
therapy, Trastuzumab, for HER2-positive breast cancer patients fails to eradicate all BCSCs
and ultimately leads to the development of therapeutic resistance [238,239]. Some studies
have shown that Trastuzumab can overcome the resistance and prevent BCSC self-renewal
when combined with other drug treatments, such as Imetelstat—a telomerase inhibitor,
NVP-BKM120—a PI3K inhibitor, and deBouganin—a protein synthesis inhibitor [240–242].
Secondly, developing immunotherapy is a promising direction to specifically target BCSCs,
such as the CAR-T cell therapy. For example, γδ T cells upregulate the antigen-presenting
ability of BCSCs and thereby increase their sensitivity to CD8 T-cell killing via an MHC-
restricted manner in a mouse model [243]. This study inspires the development of γδ
T-cell therapy to eliminate BCSCs in the future. In summary, aberrant molecular signaling
pathways and cellular interactions support BCSC activities and help BCSCs to survive
under an immune surveillance environment. Therefore, developing specific therapeutic
strategies to eliminate BCSCs will be a promising direction in breast cancer treatment.
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