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Simple Summary: The Mediterranean, extra-virgin-olive-oil-rich diet ingredient S-(-)-oleocanthal
(OC) has emerged as a potential inhibitor for the growth and relapse of the most aggressive prostate
cancer type. This effect is mediated through suppression of important enzyme, SMYD2, that drives
the activation of several downstream protein effectors. OC treatments reduced SMYD2 downstream
substrates, which are critical for prostate cancer growth and relapse. OC is more advantageous than
other reported SMYD2 inhibitors because it has shown potent anticancer activity in animal models.
OC’s anti-prostate-cancer effect was prominent compared with some standard drugs currently used
to control prostate cancer. OC is a potential, novel natural compound appropriate for immediate use
by prostate cancer patients and survivors as a nutraceutical or dietary supplement product.

Abstract: Metastatic castration-resistant prostate cancer (mCRPC) is the most aggressive prostate
cancer (PC) phenotype. Cellular lysine methylation is driven by protein lysine methyltransferases
(PKMTs), such as those in the SET- and MYND-containing protein (SMYD) family, including SMYD2
methylate, and several histone and non-histone proteins. SMYD2 is dysregulated in metastatic PC
patients with high Gleason score and shorter survival. The Mediterranean, extra-virgin-olive-oil-
rich diet ingredient S-(-)-oleocanthal (OC) inhibited SMYD2 in biochemical assays and suppressed
viability, migration, invasion, and colony formation of PC-3, CWR-R1ca, PC-3M, and DU-145 PC cell
lines with IC50 range from high nM to low µM. OC’s in vitro antiproliferative effect was comparable
to standard anti-PC chemotherapies or hormone therapies. A daily, oral 10 mg/kg dose of OC
for 11 days effectively suppressed the progression of the mCRPC CWR-R1ca cells engrafted into
male nude mice. Daily, oral OC treatment for 30 days suppressed tumor locoregional and distant
recurrences after the primary tumors’ surgical excision. Collected OC-treated animal tumors showed
marked SMYD2 reduction. OC-treated mice showed significant serum PSA reduction. For the first
time, this study showed SMYD2 as novel molecular target in mCRPC, and OC emerged as a specific
SMYD2 lead inhibitor. OC prevailed over previously reported SMYD2 inhibitors, with validated
in vivo potency and high safety profile, and, therefore, is proposed as a novel nutraceutical for
mCRPC progression and recurrence control.

Keywords: castration-resistant; prostate cancer; extra-virgin olive oil; nutraceutical; oleocanthal;
progression; recurrence; SMYD2

1. Introduction

Prostate cancer (PC) is the most prevalent cancer among elderly men worldwide. It is
the second leading cause of cancer death in American men. In 2020, the global incidence
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of PC was 29.3 per 100,000 [1]. One man out of every eight men in the United States is
estimated to be diagnosed with PC during their lifetime [2]. About 268,490 new PC cases,
which may lead to 34,500 deaths, occur each year [2]. About six PC cases are diagnosed in
every 10 men 65 years old or older, while the disease is rare in men under the age of 40 [3].

The most common PC metastatic sites are bone (84%), distant lymph nodes (10.6%),
liver (10.2%), and thorax (9.1%) [3,4]. Overall, 18.4% of patients have multiple metastatic
sites involved [4]. Metastatic castration-resistant PC (mCRPC) is the most aggressive and
recurrent PC phenotype [5]. In May 2020, the US Food and Drug Administration (FDA)
approved two poly(adenosine diphosphate [ADP] ribose) polymerase (PARP) inhibitors
for the treatment of mCRPC [6,7]. Rucaparib approved for the treatment of BRCA-mutant
mCRPC after progression of the disease following prior androgen-receptor-directed therapy
and taxane-based chemotherapy. Olaparib was approved for the treatment of homologous
recombination repair gene-mutated mCRPC after progression following targeted treatment
with enzalutamide (ENZ) or abiraterone acetate plus prednisone [6,7]. Despite the progress
made toward androgen suppression, including the development of LH/FSH modulators,
anti-AR small molecules, CYP17A and 27A1 inhibitors, chemotherapy, and immunotherapy,
these treatments lack curative efficacy, especially in mCRPC patients, and have poor overall
survival rates [5–7].

Cellular lysine methylation is driven by protein lysine methyltransferases (PKMTs),
including those of the SET- and MYND-containing protein (SMYD) family. SMYD PKMTs
are critical for gene regulation, chromatin remodeling, transcription, signal transduction,
cell cycle control, and DNA damage response. The SET (suppressor of variegation, enhancer
of zeste, trithorax) and MYND (myeloid-nervy-DEAF1) domain-containing protein 2,
SMYD2, has emerged as an oncogenic protein lysine methyltransferase that methylates the
histones H3K4 and H3K36 correlated with epigenetic regulation [8]. Apart from histone
methylation, SMYD2 is implicated in the methylation of several important, non-histone
protein substrates such as the tumor suppressor p53, retinoblastoma tumor suppressor (Rb),
estrogen receptor α (ERα), PARP-1, and echinoderm microtubule-associated proteins, such
as the 4-ALK receptor tyrosine kinase fusion gene, heat shock protein 90, and β-catenin [9].
Lysine methylation by SMYD2 modifies protein substrates’ bulkiness, hydrophobicity,
and molecular recognition by methyllysine readers. Methyllysine-containing proteins are
recognized by downstream effectors possessing methyllysine reader domains, conferring
their biological effects. Given the implications of methylation of non-histone proteins as
some of the leading key players in the network of post-translational modifications, which
appear to be crucial for tumorigenesis, SMYD2 has been explored as a putative oncogenic
driver [10–18]. Accumulating evidence has highlighted the amplification of SMYD2 in
multiple malignancies, including esophageal squamous cell carcinoma, pancreatic cancer,
pediatric acute lymphoblastic leukemia, breast cancer, teratocarcinoma, and gastric, ovarian,
head and neck, and colorectal cancers [10–18]. SMYD2 amplification is a poor prognosis
marker for low overall patient survival. SMYD2 plays a pivotal role in cancer through the
induction of cell proliferation, migration, and invasion, as well as inhibition of apoptosis [8].
A few synthetic, small-molecule SMYD2 inhibitors have been developed with impressive
in vitro potency and selectivity but most of them did not show a good in vivo activity
profile or had no reported in vivo efficacy, and, therefore, none of them earned FDA
approval [19–21]. The literature has not addressed the role of SMYD2 in PC, but the
closely related SMYD family member SMYD3 proved a valid molecular target in PC since it
modulates transcriptional and key signaling pathways and orchestrates multiple oncogenic
inputs [22].

S-(-)-oleocanthal (OC) is a distinctive, monophenolic secoiridoid constituent of extra-
virgin olive oil (EVOO), possessing documented anti-inflammatory, antioxidant, antimi-
crobial, neuroprotective, and anticancer activities [23]. The Beauchamp group exhibited a
pivotal lead by identifying OC as the pungent and irritant, potent, anti-inflammatory EVOO
ingredient able to perform activity comparable to the non-steroidal, anti-inflammatory
drug ibuprofen by inhibiting COX-1 and COX-2 activity [24]. There is substantial evidence
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validating OC’s anti-inflammatory activity by modulation of IL-6 and 5-lipoxygenase
secretion [25]. Emerging evidence reported several mechanisms in which OC induces
apoptosis and inhibits migration, angiogenesis, and metastasis of breast, hepatocellular,
melanoma, non-melanoma skin, and colorectal cancers [23]. OC’s anticancer proper-
ties are facilitated by suppressing the mesenchymal–epithelial transition factor (c-MET)
receptor tyrosine kinase [26] and modulating its downstream signaling pathways [23],
cyclooxygenase-2 (COX-2) [26], phosphorylated mechanistic target of rapamycin (mTOR) [27],
and signal transducer and activator of transcription 3 (STAT3) levels [28]. In addition, this
study team showed earlier that oral OC treatments prevented both triple-negative and
luminal B breast cancer recurrences [29,30]. There are no current comprehensive reports
on the anti-PC effects of OC that include consideration of in vivo progression and recur-
rence suppressions, along with its molecular target(s). Considering the importance of the
pleotropic impacts of SMYD2 on cancer biology [15–18] and the hypothesis that targeting
SMYD2 may impair the PC recurrence, the current study reports the novel role of SMYD2
in mCRPC pathogenesis. In addition, the study highlights the ability of OC to control
mCRPC progression and recurrence by targeting SMYD2 in vitro and in vivo using nude
mouse xenograft models. The taxane microtubule depolymerization stabilizers paclitaxel
(PTX) and docetaxel (DTX), the FDA-approved, selective, second-generation androgen
receptor (AR), competitive antagonist enzalutamide (ENZ), and cisplatin (CPT) were used
as standard drug controls for the in vitro studies. These four chemotherapies or hormone
therapies are among the standard therapeutic options for the control of mCRPC [31].

2. Materials and Methods
2.1. Chemicals and Reagents

All chemicals were purchased from VWR International (Suwanee, GA, USA) unless
otherwise stated. S-(-)-oleocanthal (OC) was extracted from EVOO (The Governor, Corfu,
Greece), and a purity of >99% was established based on q1H NMR analysis [32]. OC
extraction, purification, and analysis followed the liquid–liquid extraction methodology
described earlier by this study team [32].

2.2. Cell Lines and Culture Conditions

The American Type Culture Collection (ATCC, Manassas, VA, USA) was the com-
mercial source for the human PC cell lines DU-145, PC-3, and PC-3M. Dr. Zakaria Abd
Elmageed, Department of Pharmacology, Edward Via College of Osteopathic Medicine,
Monroe, LA, USA, generously provided the CWR-R1ca cells [33]. Cells cultured in Roswell
Park Memorial Institute (RPMI-1640) or Dulbecco’s Modified Eagle’s medium (DMEM)
media were supplemented with 10% FBS (fetal bovine serum), penicillin G (100 U/mL),
and 100 ng/mL of the aminoglycoside antibiotic streptomycin. Cells were maintained
with 5% CO2 in a humidified incubator at 37 ◦C. Cells were washed with Ca2+ and Mg2+-
free phosphate-buffered saline (PBS) and incubated at 37 ◦C in 0.05% trypsin possessing
0.02% ethylenediaminetetraacetic acid (EDTA) for 3–5 min for subculturing.

2.3. Experimental Treatments

To prepare 25 mM stock solution, OC was dissolved in sterile dimethyl sulfoxide
(DMSO). This OC stock solution was used to prepare various treatment concentrations for
various experiments. The final concentration of DMSO was maintained at the same level in
all treatment groups within a given experiment and never exceeded 0.1% in sterile PBS.

2.4. Cell Viability Assay

About 1 × 104 cells/well, six replicates per treatment group, were seeded into 96-well
plates in 10% FBS RPMI-1-640 media and left overnight to attach. Cells were divided into
different treatment groups and exposed to respective control or experimental treatments
the next day with various OC or vehicle control concentrations for 24 or 48 h in media.
3-(4,5-dimethylthiazolyl2)-2,5-diphenyltetrazolium bromide (MTT) was applied to quantify
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the viable cell number at the end of experiment [34,35]. A final concentration of 1.0 mg/mL
MTT was added to each well. Following a 4 h incubation at 37 ◦C, media were removed,
and the formazan crystals solution in DMSO was added at 100 µL per well. The optical
density was measured at 570 nm on a microplate reader (BioTek, Winooski, VT, USA) for
quantification using a standard calibration curve, as previously described [25,32].

2.5. CRISPR-Cas9 SMYD2 Knockout (KO)

The executed procedure followed the manufacturer’s guidelines (Santa Cruz Biotech-
nology, Dallas, TX, USA). In brief, in a 6-well tissue culture plate, we seeded 1.5 × 105–
2.5 × 105 cells in 2 mL of standard growth medium per well 24 h prior to transfection.
Cells were grown to 40–80% confluency. Healthy and subconfluent cells are required for a
successful KO experiment. About 1 µg of SMYD2 plasmid DNA was diluted into plasmid
transfection medium (Santa Cruz Biotechnology, Dallas, TX, USA, sc108062) to bring the
final volume to 150 µL and was maintained for 5 min at room temperature (RT) (Solution
A). Next, 10 µL of diluted UltraCruz® Transfection Reagent (sc395739) was added with
enough plasmid transfection medium to bring the final volume up to 150 µL and left for
5 min at RT (Solution B). Further, the plasmid DNA solution (Solution A) was directly
added dropwise to the dilute UltraCruz® Transfection Reagent (Solution B). The mixture
was vortexed immediately and incubated for 20 min at RT. Prior to transfection, the cells
were washed with PBS and fresh, antibiotic-free growth medium. The 300 µL plasmid
DNA/UltraCruz® Transfection Reagent Complex (Solution A + Solution B) was added
dropwise to each well and gently mixed by swirling the plate. Cells were incubated for
24 h under conditions normally used to culture. No media replacement was necessary
during the first 24 h. Media were replaced as needed over the 24–72 h post transfection.
After incubation, successful transfection of CRISPR/Cas9 KO plasmid was confirmed by
Western blotting of wild CWR-R1ca versus CWR-R1ca-KO cells using SMYD2 polyclonal
antibody purchased from ProteinTech (Rosemont, IL, USA) at a dilution of 1:1000.

2.6. Wound-Healing Assay

The mCRPC CWR-R1ca and PC-3 cells were plated in sterile, 24-well, flat-bottom
plates (3 replicates/group). Cells were allowed to form a subconfluent monolayer per well
overnight. Wounds were inflected in each cell monolayer using a sterile pipette tip (200 µL).
Media were then removed and, using sterile PBS, cells were washed twice. Cells were then
incubated in 0.5% serum-containing culture media, to which various OC treatments were
added. Cells were incubated for 24 h or until the vehicle control (VC) wells’ wound closed.
The media were then removed and the cells washed with sterile, precooled PBS and fixed
with absolute ethanol and stained with Giemsa. The healing of each wound was visualized
at 0 and 24 h, or until the full closure of the VC wound, using Nikon ECLIPSE TE200U
microscope (Nikon Instruments Inc., Melville, NY, USA). Digital images of each wound
were captured and travel distance determined by comparing the wound width at 24 h or
ending the experiments’ hours with the wound width at the start of treatment (zero time).
The obtained % migration was calculated by setting the gap width at t0 as 100%. Each
experiment was conducted in triplicate to confirm reproducibility.

2.7. Colony Formation Assay

The mCRPC CWR-R1ca and PC-3 cells were seeded in 12-well plates (1000 cells/well).
Cells were treated with OC at different concentrations after 24 h. Media were replaced every
72 h with or without treatments. Experiment continued until the control had distinct colony
formation, mostly within 10–14 days. Each treatment colony was stained with crystal
violet and photographed. The number of colonies was scored by CFU Scope quantification
software [36]. Results were expressed as the number of colony-forming cells per well in
percentage and normalized to the control (VC represented 100%).
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2.8. Transwell Migration Assay

The Radius™ 96-Well Cell Migration Assay kit was used (Cell BioLabs, San Diego,
CA, USA). CWR-R1ca cells were seeded in each well’s upper chamber (5 × 105 cells/well),
containing either vehicle control or different OC concentration treatments. Ten percent
serum-containing media was added to each lower chamber well as a chemoattractant. After
24 h, all chambers were washed with PBS and fixed with cold methanol on ice for 10 min.
All chambers were then stained with Gemsia and washed with water. Finally, all chambers
were subjected to imaging using inverted Nikon microscope. For each chamber, multiple
images were captured randomly and further quantified. Results were expressed as the
percentage of migration and normalized to vehicle control treatments, which assumed
100% migration.

2.9. Invasion Assay

The BD BioCoat™ BD Matrigel™ Invasion kit (BD Biosciences, San Diego, CA, USA)
was used. CWR-R1ca cells were seeded in each upper chamber (5 × 105 cells/well) and pre-
coated with Matrigel with either the vehicle control or different OC treatments. Ten percent
of serum-containing media was added to the lower chambers as chemoattractant. After
24 h, all the chambers were washed with PBS and fixed with cold methanol on ice for 10 min.
All chambers were then stained with Gemsia and washed with water. Finally, all chambers
were imaged using inverted Nikon microscope (Nikon Instruments Inc., Melville, NY,
USA). For each chamber, multiple images were randomly captured and further quantified.
Results were expressed as the percentage migration normalized to the VC, which assumed
100% migration.

2.10. Western Blot Analysis

About 1 × 106 CWR-R1ca and PC-3 cells were plated in culture plates (10 cm) in RPMI
1640 containing 10% FBS. Cells were allowed to attach overnight. Cells were washed with
PBS and treated with media containing VC or various OC concentrations for 48 h. Cells
were then collected and washed twice with sterile, cold PBS. Cells were then resuspended
and lysed at 4 ◦C for 30 min in radioimmunoprecipitation assay (RIPA) buffer (Qiagen
Sciences Inc., Valencia, CA, USA). Cell lysates were centrifuged for 10 min at 14,000× g
and the supernatants stored at −80 ◦C as whole-cell extracts. For collected mouse tumor
samples, tumor tissue samples were collected at the primary tumor surgical excision time
or at sacrifice and immediately stored at −80 ◦C until protein extraction. Collected tu-
mor samples were homogenized by electric homogenizer in RIPA buffer. Each sample
protein concentration was calculated by the Pierce BCA Protein Assay (Thermo Fisher
Scientific Inc., Rockford, IL, USA). Sample proteins were separated on 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis gels and transferred to polyvinylidene difluoride
membranes. Membranes were blocked with EveryBlot blocking buffer (Biorad, Hercules,
CA, USA) and incubated with specific primary antibodies. The corresponding horseradish
peroxidase-conjugated secondary antibodies were used against each primary antibody. The
Chemi-Doc XRS chemiluminescent gel imaging system was used to detect and analyze sam-
ple proteins by applying Image Lab software (BioRad, Hercules, CA, USA). The β-tubulin
visualization was used to ensure equal sample loading to each lane. Each experiment was
repeated three times, and representative images were used in results figures.

2.11. Lentivirus Transduction-Aided Luciferase Labeling of CWR-R1ca Cells

CWR-R1ca cells were seeded into 12-well plates. When the cells reached 60% conflu-
ency, lentiviral particles carrying luciferase (Kerafast, Boston, MA, USA) were transduced
into the cells. Briefly, the lentivirus vector was added to OptiMEM®-reduced serum me-
dia (1.5 µL/100 µL) and mixed very gently on ice. Later, the media were aspirated, and
cells were washed with PBS. Then, 100 µL of OptiMEM® media, with or without viral
particles, was added to each well and incubated for 18 h. Later, the media were aspirated
and replaced with complete serum media for 2 days. Next, 0.15 µg/mL of puromycin
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was used for selection and maintenance of cells expressing the luciferase. Fresh media
containing puromycin replaced the old media every other day. Cellular luciferase activity
was measured by adding 25 µL of XenoLight D-luciferin K+ salt bioluminescent substrate
(PerkinElmer, Waltham, MA, USA) at a dose of 150 mg/kg in PBS into each well and
incubated for 5 min at RT [37]. Cells were then imaged using IVIS bioluminescence imaging
system (PerkinElmer’s IVIS® Lumina III imaging platform).

2.12. Animal Models and Treatment

Mice were acclimated and maintained under clean room conditions in sterile filter
top cages in the University of Louisiana at Monroe (ULM) vivarium using AlphaDri
bedding. Mice were housed at 25 ◦C and 55–65% relative humidity with high-efficiency
particulate air-filtered ventilated racks with 12 h light/dark cycle for a week before the
study’s experiments. Study mice had open access to water and pelleted rodent 5% fat
content diet chow (Cat #7012, Envigo-Teklad, Madison, WI, USA). Animal procedures were
preapproved by the ULM Institutional Animal Care and Use Committee (IACUC), protocol
number 21MAY-KES-01, and all experimentations were conducted in strict accordance with
NIH-guided good animal practices. The tumor volume (V) in each mouse was monitored
and calculated by the formula V = L/2 × W2, where L is the tumor length, and W is the
width. Mice clinical health profiles (food and water consumption, defecation, urination,
and physical activity) and body weights were carefully monitored on a daily basis over the
study course.

2.12.1. OC Suppressed mCRPC CWR-R1ca-Luc Cell Progression In Vivo in Nude
Mouse Model

The male athymic nude mice (Foxn1nu/Foxn1+, 4–5 weeks) were acquired from Envigo
(Indianapolis, IN, USA). Mice were housed in group cages, 5 in each. Live animal biolumi-
nescence imaging was conducted weekly, after anesthetizing mice with 2% isoflurane, on
IVIS Lumina series III (Perkin Elmer) imaging system 20 min after 150 mg/kg XenoLight
D-luciferin K+ salt bioluminescent substrate (PerkinElmer) intraperitoneal (i.p.) injection.
Emitted photons by CWR-R1ca-Luc luciferase-expressing cells, which transmitted through
animal tissues, were quantified using the Living Image software program (PerkinElmer).
Each mouse was injected at the suprascapular region with 2 × 106 CWR-R1ca-Luc cells.
Mice were randomized to two groups, 5 in each, once their tumors were palpable and reach-
ing 200–300 mm3. These groups were (i) placebo control and (ii) 10 mg/kg OC administered
orally daily by gavage. OC was formulated as powder formulation (PF) for oral dosing,
as previously described by this study team [35]. Briefly, 10 mg OC adsorbed on Aerosil
200 (3 mg) then mixed with Mg stearate (0.5 mg) and Na lauryl sulfate (2 mg). About
84.5 mg lactose was then added, and all ingredients were uniformly blended to afford
OC-PF [35]. This mixture was then passed over a 40-mesh screen to afford OC-PF [35].
Mice were treated orally with either OC-PF or placebo control for 11 days. OC-PF was
orally administered by using a flexible plastic (2 mm diameter) gavage tube with stainless
steel bite protector, 18 gauge, 3.81 cm long.

2.12.2. Oral Treatments with OC-PF Effectively Suppressed mCRPC CWR-R1ca-Luc Cells’
Recurrence in Nude Mouse Model after Primary Tumor Surgical Excision

The primary tumors of the mice in the previous growth study were surgically ex-
cised and used for recurrence study. Prior to the surgical excision procedure, mice were
anesthetized by i.p. injection of ketamine/xylazine mixture (100 mg/kg + 15 mg/kg,
respectively) [25]. Nearly 15–20 min after injecting the anesthesia, animal reflexes were
tested by gently tapping the hind legs with a sterile syringe needle to confirm their full
anesthesia. The primary tumors were aseptically surgically excised, and each wound
stitched. A 1 mg/kg amount of ketoprofen was used 12 h before and after the surgery
for effective analgesia. Bupivacaine (0.25%, 1–2 drops) was used topically twice daily at
the excision wound site to prevent local infiltration along the surgery site during closure
with a maximum dose of 2 mg/kg. Collected primary tumors were stored at −80 ◦C. Mice
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continued to be subjected to daily, oral placebo control or 10 mg/kg OC-PF treatments for
30 days. Mice were subjected to weekly live imaging. Mice were monitored daily for new
tumors, body weights, and general health characters. Mice were regularly observed to
assure post-surgery wound healing. The results were presented as average ± SD. All mice
were sacrificed at the end of the experiments. Fresh blood samples were collected in mi-
crotainer tubes and immediately centrifuged at 4 ◦C for 10 min at 13,000 rpm to prepare
serum samples, which were stored at −80 ◦C until PSA quantification. Collected tumors
were stored at −80 ◦C until total protein was extracted for Western blot analysis. Collected
organs were imaged and stored in 10% formalin for 48 h, followed by storing in 70% ethanol
until histology processed [25].

2.13. Quantification of PSA Serum Levels Using ELISA Kit

Mice serum PSA levels were measured using an enzyme-linked immunosorbent assay
(ELISA) kit (MYBIOSOURCE, San Diego, CA, USA) according to manufacturer protocol.
Briefly, 50 µL sample was added to each well, followed by 100 µL HRP-conjugate reagent,
and incubated for 1 h at 37 ◦C. Then, 50 µL of each chromogen solution, A and B, was
added to each well and incubated for 15 min. Later, the reaction was stopped by adding
50 µL of stopping solution. OD was read at 450 nm using an ELISA plate reader (BioTek,
Winooski, VT, USA).

2.14. Immunohistochemistry (IHC) Study

The IHC slides prepared from paraffin-embedded tumor tissue samples were sectioned
to 5 µm thick sections at AML Laboratories (Jacksonville, FL, USA). IHC protocol followed
our earlier studies [35]. Following the de-paraffinization in xylene and graded ethanol,
sections were boiled in citrate buffer (10 mM sodium citrate, pH 6) for 20 min and then
permeabilized in TBST solution for 15 min at 25 ◦C. Sections were then stained with the
primary antibodies of ki67 (Cat #9129, 1:200, Cell Signaling, Boston, MA, USA) or CD-31
(Cat #3528, 1:200, Cell Signaling) and further diluted in blocking solution for 24 h at 4 ◦C. On
the following day, sections were washed, having been stained with the secondary antibodies
for 1 h prior. At the experiment end, slides were mounted. All images were captured at
the Research Core Facility, LSUHSC, Shreveport, LA, USA, with 10× magnification using
Olympus iXplore CSU W1 spinning disk confocal microscope (Center Valley, PA, USA).

2.15. Hematoxylin and Eosin Y (H&E) Staining

Tumor samples were fixed in 10% neutral buffered formalin for 48 h. This was followed
by transferring to 70% ethanol, and paraffin embedding was processed. Paraffin-embedded
tumor blocks were sectioned into 5 µm sections using a Leica RM2035 microtome by AML
laboratories (Augustine, FL, USA). Sections were mounted on positively charged slides,
dewaxed in xylene, rinsed with alcohol, rehydrated in water, and, finally, tumor slides were
stained with H&E [25,34].

2.16. Analysis of Clinical SMYD2 Gene Expression Data

The TCGA gene expression data were analyzed using UALCAN, which is a publicly
available web tool able to perform in-depth analysis [38,39]. The mRNA expression pat-
tern of SMYD family was analyzed. The gene expression profiling interactive analysis
(GEPIA) was used to explore RNA sequence expression difference between normal and
cancer samples [40]. GEPIA was used for differential expression analysis comparison
of SMYD family in various cancers versus normal organ tissues [41]. The cBioPortal for
Cancer Genomics is a widely used web platform for exploring, visualizing, and analyzing
multidimensional cancer genomics datasets [42–44]. cBioPortal was applied in this study
to explore expression of SMYD2 with defined parameter settings.
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2.17. Statistics

Data analysis was performed using GraphPad Prism software, version 8.4.3. (La Jolla,
CA, USA). Results were presented as mean ± standard deviation (SD) for continuous
variables. Differences among various treatment and control groups in the animal study
were determined by paired Student’s t-test, and p-value implications were: * p < 0.05,
** p < 0.01, and *** p < 0.001.

3. Results
3.1. Prognosis Analysis of SMYD Family mRNA Expression in Prostate Cancer Patients

The cBioPortal database was utilized to understand the link between the SMYD
family and PC prognosis. Regarding overall gene alteration, in the three different study
cohorts, SMYD2 and SMYD3, out of the five SMYD family members, had the biggest role
in amplification, deep deletion, and missense mutations, unlike the other SMYD family
members, which contributed minor roles (Figure S1A). Excluding SMYD4, the rest of
the SMYD family members were strongly linked with both primary and metastatic PC
(Figure S1B). SMYD2 was observable at high Gleason scores (Figure S1C). Unlike the rest
of the SMYD members, only SMYD2 expression was associated with high Gleason scores
(Figure S1C). Similarly, SMYD2 was associated with high radical prostatectomy Gleason
score PC, unlike other SMYD family members (Figure S1D). Overall, patient-based findings
clearly showed that SMYD family members are clinically relevant to PC progression. Out
of the SMYD family members, SMYD2 is the highest prognostic marker associated with
poor PC prognosis, aggressive progression, and metastasis profiles.

3.2. Prognostic Analysis of SMYD2 mRNA Expression in PC Patients

The Cancer Genome Atlas (TCGA) was analyzed through UALCAN’s GEPIA to
investigate the differential expression pattern of SMYD2 in various types of cancer and,
more specifically, PC types. Findings showed that SMYD2 is overexpressed in many cancer
types, including breast, lung, liver, and prostate adenocarcinoma (Figures S2A and S3A).
Further exploration also confirmed that, in one cohort, SMYD2 was more significant
(p = 1.46 × 10−11) in primary PC (n = 497) compared to in normal tissue (n = 52) samples
(Figure S2B). Similar observations were noted in another cohort using GEPIA 2, validating
the existence of SMYD2 overexpression in patient PC samples (n = 492) versus normal tissue
(n = 152) samples (Figure S3B). Further comparison among normal, primary, and metastatic
tumors showed the significant overexpression of SMYD2 in metastatic PC (Figure S3C).
Interestingly, TCGA sample analysis showed the high SMYD2 overexpression in nodal
prostate metastasis N1 (n = 79) compared to normal tissues (n = 52) and N0 samples
(n = 345) (Figure S3D). Regarding the PC patients’ Gleason score, SMYD2 was observable
at a Gleason score of 6 and higher (Figure S3C).

3.3. Exploration of SMYD2 Expression Pattern in PC and Non-Tumorigenic RWPE-1 Prostatic
Epithelial Cells

This study explored the expression level of SMYD2 in diverse PC cell lines. West-
ern blotting analysis indicated that SMYD2 excessively dysregulated the highly recurrent
castration-resistant PC (mCRPC) CWR-R1ca cells, as well as the androgen-independent PC-3,
PC-3M, and DU-145 PC cells (Figure 1A). Western blotting comparison of the expression
level of SMYD2 indicated 1.8-fold the SMYD2 expression level in the mCRPC CWR-R1ca
cells compared to the non-tumorigenic RWPE-1 prostatic epithelial cells (Figure 1B). The
mCRPC cell lines CWR-R1ca and PC-3 expressed the highest SMYD2 levels, followed by
the AI PC-3M cells, which expressed half the SMYD2 level of the mCRPC cells. DU-145 cells
showed the lowest SMYD2 expression level compared to other PC cell lines (Figure 1A).
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Figure 1. The SMYD2 expression pattern in PC and non-tumorigenic prostate cell lines and its critical
contribution to the mCRPC CWR-R1ca cells’ proliferation, migration, invasion, and colony formation.
(A) Expression pattern of SMYD2 in mCRPC and AI PC cell lines. (B) Comparison of the expression
levels of SMYD2 in the non-tumorigenic RWPE-1 prostatic epithelial cells versus the mCRPC CWR-
R1ca cells. Immunoblots show the upregulation of SMYD2 in CWR-R1ca cells compared to RWPE-1
cells. Bar graph represents the densitometric analysis of SMYD2 expression level normalized to
β-tubulin in both cells. (C) CRISPR-Cas9-aided successful SMYD2 knockout evidenced by comparing
the Western blot of the wild type versus SMYD2-KO CWR-R1ca cell lysates. All raw immunoblots are
included in Figure S7. (D) Comparison of the viability of the wild CWR-R1ca versus CWR-R1ca-KO
cells in MTT assay over 24 and 48 h. (E) Comparison of the migration ability of the wild CWR-R1ca
versus CWR-R1ca-KO cells in wound-healing assay. (F) Comparison of the invasiveness of the wild
CWR-R1ca versus CWR-R1ca-KO cells in Matrigel invasion assay. (G) Comparison of the colony
formation of the wild CWR-R1ca versus CWR-R1ca-KO cells in colony formation assay. SMYD2
knockout conferred significant viability, migratory, invasiveness, and colony formation suppression
compared with the wild CWR-R1ca cells. Vertical bars indicate the percentage relative to that in
the vehicle control. Data represent the mean ± SD (n = 3); Student’s t-test; * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001, ns refers to non-statistical significance at p < 0.05 relative to control cells.
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3.4. SMYD2 Is Essential for mCRPC Cell Survival and Motility

To determine whether SMYD2 is essential for the viability and motility of the mCRPC
cells, a CRISPR-Cas9 methodology was successfully used to knock out (KO) SMYD2 in
the CRPC CWR-R1ca cells (CWR-R1ca-KO), evidenced by comparing the wild-type and
KO cells by Western blotting (Figure 1C). SMYD2 KO significantly reduced (>90%) the
CWR-R1ca cells’ viability over 24 and 48 h post transfection (Figure 1D). Cancer cells
possess broad-spectrum migration and invasion mechanisms, which aid the motility and
subsequent metastasis to distant organs [45]. Results showed that the CWR-R1ca-KO
cells more significantly suppressed the migration and invasion ability of cells over 24 h
(Figure 1E,F, respectively) than the wild-type CWR-R1ca cells. Meanwhile, the colony
formation assay is an in vitro alternative cell survival assay based on the ability of a single
cell to adhere and form a viable colony. It is a good in vitro experimental approach to mimic
the in vivo recurrence in which the circulating tumor cell adheres to a distant organ, forms
a colony, and develops subsequent, metastatic foci [46]. SMYD2-knockout-I CWR-R1ca
cells (CWR-R1ca-KO) significantly suppressed the colony formation ability compared to the
wild-type cells (Figure 1G), allowing us to better understand the role of SMYD2 in tumor
cell colony formation. Collectively, these results indicate that SMYD2 is a major contributor
to the cell viability and motility of the CRPC, as represented by the CWR-R1ca cells.

3.5. OC Inhibited SMYD2 Monomethylation in Biochemical Assays

The methyltransferase activity assays performed at the Eli Lilly Open Innovation Drug
Discovery (OIDD) Program. The assays included the monitoring of 3H-labeled methyl
groups incorporated into a peptide residue, 361–380 of p53, using scintillation proximity
assay [47]. A single 10 µM dose of OC inhibited 90.8% of SMYD2 ability in monomethylate
p53 Lys370 [47].

3.6. OC Treatments Selectively Suppressed the Viability of PC Cells by Reducing SMYD2
Expression but Did Not Adversely Affect the Non-Tumorigenic RWPE-1 Prostatic Epithelial Cells’
Viability at Therapeutic Doses

Earlier studies reported the activity of OC against PC-3 PC cell proliferation and
migration by targeting c-MET receptor tyrosine kinase [48]. The antiproliferative activity of
OC was evaluated against the mCRPC CWR-R1ca and PC-3 cells, as well as the androgen-
independent/indifferent (AI) PC-3M PC cells (Figure 2A and Table 1). OC treatments
showed significant dose- and time-dependent inhibition of the proliferation of all PC
cells with an 0.58–3.59 µM IC50 range in MTT assay (Figure 2A and Table 1). The in vitro
antiproliferative activity of OC against PC cell lines was compared with a panel of standard
anti-PC chemotherapies or hormone therapies, including ENZ, PTX, DTX, and CPT, over
a 48 h treatment period. The taxanes PTX and DTX were the most potent against PC cell
lines, with IC50 in a low nM range (Figure 2B and Table 1). ENZ and CPT were far less
active with IC50 at a high µM range. Meanwhile, OC only affected the non-tumorigenic
RWPE-1 prostatic epithelial cell viability at high µM doses, with IC50 in the range of
25 µM (Figure 2C,D). This profile indicated high OC selectivity for malignant versus non-
tumorigenic cells, which was adversely affected at 10-fold OC therapeutic concentration,
implying a potential high selectivity and safety profile. Treatment of CWR-R1ca cells
with 0.5–2 µM OC for 48 h notably suppressed the SMYD2 expression, as evidenced
by Western blotting assessment (Figure 2E), further validating SMYD2 as a prospective
molecular target in these cells. Comparison of the SMYD2 expression level suppression
of OC versus ENZ, DTX, and CPT anticancer therapeutics in CWR-R1ca cells showed the
effective downregulation of SMYD2 in CWR-R1ca cells in response to 2 µM OC treatment.
Meanwhile, treatments of CWR-R1ca cells with concentrations slightly above the IC50
values of the standard anticancer drugs ENZ (100 µM), DTX (5 nM), and cisplatin (30 µM)
did not significantly affect the expression level of SMYD2 in comparison to untreated control
cells (Figure 2F). This clearly validated the selective OC SMYD2 expression suppression
effects in mCRPC cells.
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PC-3M, and DU-145 cells over 24 h and 48 h treatment periods. (B) The effects of enzalutamide,
paclitaxel, docetaxel, and cisplatin on the growth of PC cell lines over 24 h and 48 h treatment periods.
(C) Effects of OC treatment on the viability of the non-tumorigenic immortalized prostatic epithelial
RWPE-1 cells. Bar graph represents the mean cell viability (±SD) at indicated concentrations relative
to untreated control cells. (D) Microscopic photographs showing healthy cells in control and at
10 µM OC, while showing a significant cell toxicity at 25 µM OC. (E) Western blot showing the
suppressive effect of OC treatments on the SMYD2 expression in the mCRPC CWR-R1ca cells over
48 h culture period. (F) Comparison of the SMYD2 expression level suppression of OC versus
ENZ, DTX, and CPT anticancer therapeutics in CWR-R1ca cells. Immunoblots show the effective
downregulation of SMYD2 in CWR-R1ca cells treated with 2 µM OC. Meanwhile, treatments with
standard anticancer drugs ENZ (100 µM), DTX (5 nM), and cisplatin (30 µM) did not significantly
affect the expression level of SMYD2 in comparison to untreated control cells. Bottom bar graph
represents the densitometric analysis of SMYD2 expression levels normalized to β-tubulin in control
and treated cells. All raw immunoblots are included in Figure S7. (G) The effect of OC treatments
on the migration and invasion of CWR-R1ca cells over 24 h treatment period. (H) The effect of OC
treatments on the colony formation of wild CWR-R1ca cells. (I) The effect of OC treatments on the
colony formation of CWR-R1ca-KO cells. Vertical bars indicate the percentage relative to that in the
vehicle control. Data represent the mean ± SD (n = 3); one-way ANNOVA; ** p < 0.01, *** p < 0.001;
ns refers to non-statistical significance at p < 0.05 relative to control cells.

Table 1. Comparison of OC in vitro antiproliferative activity against PC cell lines versus enzalutamide
and standard chemotherapeutic drugs.

Cell Line

Oleocanthal Paclitaxel Docetaxel Enzalutamide Cisplatin

IC50 µM IC50 nM IC50 nM IC50 µM IC50 µM
(24 h) (48 h) (48 h) (48 h) (48 h) (48 h)

CWR-R1ca 3.59 1.08 4.9 2.2 84.2 24.3
PC-3 0.64 0.58 6.6 2.0 70.1 6.1

PC-3M 1.03 0.80 3.7 2.8 90.1 50.8
DU-145 5.35 3.32 5.7 2.6 47.0 15.3

3.7. OC Treatments Suppressed the Migration and Invasion of the CRPC CWR-R1ca Cells

The Radius™ migration kit was used to assess the antimigratory activity of OC against
CWR-R1ca cells (Figure 2G). OC 0.5, 1.0, and 2.0 µM treatments showed significant and
dose-dependent inhibition CWR-R1ca cell migration over the 24 h treatment period. Further,
the BD Biocoat Matrigel invasion chamber, containing an 8 µm pore size PET membrane
with a thin-layer Matrigel basement membrane matrix, was used to assess the anti-invasive
effect of OC against CWR-R1ca cells. The number of migrated/invaded cells in each well
was counted visually. Each experiment was performed in triplicate for reproducibility
and statistical relevance confirmation. OC treatments significantly and dose-dependently
inhibited CWR-R1ca cells’ invasiveness (Figure 2G).

3.8. OC Treatments Inhibited the Colony Formation of the Wild but Not the SMYD2-KO
CWR-R1ca Cells

The CWR-R1ca-KO cells showed reduced colony formation after the KO of SMYD2 in
these cells. The effect of OC treatments on the colony formation of the wild CWR-R1ca and
CWR-R1ca-KO PC cells was assessed. The number of colonies in each well was manually
counted. Each experiment was performed in triplicate for reproducibility and statistical
relevance confirmation. OC treatments dose-dependently suppressed the colony formation
of the wild-type CWR-R1ca cells. In contrast, the colony formation ability of the CWR-
R1ca-KO cells was notably suppressed by SMYD2 KO. The CWR-R1ca-KO cells’ colony
formation was not affected much by OC treatments (Figure 2H,I).
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3.9. Oral OC-PF Treatments Suppressed the Progression of CWR-R1ca-Luc Cells Engrafted into
Nude Mice

The antitumor activity of 10 mg/kg oral OC powder formulation (OC-PF) admin-
istered daily for 11 days was assessed in orthotopic athymic nude mice bearing a CWR-
R1ca-Luc tumor cells xenograft. OC-PF-treated mice showed a mean tumor volume of
119.7 ± 77.89 mm3 versus 713.6 ± 211.5 mm3 tumor volume in the placebo control-treated
mice (Figure 3A). The mean tumor weight was 0.12 ± 0.09 g and 0.55 ± 0.18 g for OC-
PF-treated and placebo control-treated mice, respectively (Figure 3B–D). The mice mean
body weight in placebo control- and OC-PF-treated groups was not significantly different
over the experiment course (Figure 3E). Histological investigation of the collected primary
tumors showed moderately to poorly differentiated tumor cells, which exhibited a glandu-
lar pattern with areas of necrosis more abundant in the OC-PF-treated group (Figure 3F).
Tumor cells exhibited hyperchromatic, pleomorphic nuclei with highly proliferative mitotic
figures. It was possible to tentatively conclude that there was no significant variation
between the OC-PF and placebo control-treated tumor histology.
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Figure 3. In vivo mCRPC suppressive effects of daily OC 10 mg/kg oral treatments against CWR-
R1ca-Luc cells engrafted in male nude mice. (A) Comparative monitoring of the mean CWR-R1ca-Luc
cells tumor volume for the OC-PF-treated daily oral 10 mg/kg mice versus the placebo control-treated
group over the experiment duration (11 days). Points represent the mean tumor volumes, and error
bars represent the SED for each experimental group. (B) The mean tumor weights in OC-PF-treated
versus placebo control-treated mice at the experiment end. (C) Comparison of the mean tumor volume
for OC-PF-treated versus placebo control-treated mice on the last study day. (D) Mice body weights
monitoring over the experiment course. Points represent the mean body weight for animals in each
group. (E) Representative primary tumors of each experimental group collected after surgical excision
surgeries. Top row is the collected placebo control-treated primary tumors. The bottom row is the
OC-treated collected primary tumors. Error bars indicate SD. (F) Histopathological evaluation of OC-
PF treatment versus placebo control at 20× magnification. (G) Comparison of OC-PF-treated versus
placebo control-treated primary tumor immunofluorescence expression of ki67. (H) Comparison
of OC-PF-treated versus placebo control-treated primary tumors immunofluorescence expression
of CD31. * p < 0.05 for statistical significance compared to the placebo control group. ns refers to
non-statistical significance at p < 0.05 relative to control cells.



Cancers 2022, 14, 3542 14 of 21

3.10. Immunofluorsence Expression Comparison of ki67 and CD31 in OC Versus Placebo Control
Treatments in Collected mCRPC Primary Tumors

An IHC study was used to evaluate the effects of OC-PF treatments on the expression
level of ki67 as a tumor progression marker and the vascular endothelium marker CD31.
Results showed the significant reduction of both ki67 and CD31 expression levels in OC-PF-
treated primary tumor sections, unlike in the placebo control-treated tumors (Figure 3G,H).

3.11. OC Treatments Reduced the Expression of SMYD2 and Downstream Signals in Collected
mCRPC Primary Tumors

Western blotting analysis of collected primary tumor lysates confirmed the reduction
of the SMYD2 expression level in OC-PF-treated primary tumors compared to in the
placebo control-treated group (Figure 4). Collected tumors treated with OC-PF also showed
suppressed levels of the SMYD2 protein substrates EZH2 and p65 and the EMT marker
vimentin and lowered the activated mTOR and MAPK activities compared to the placebo
control-treated group (Figure 4).
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Figure 4. OC treatments reduced the expression levels of SMYD2, and downstream proteins in
collected mouse primary tumors excision. Left panel: Western blot showing the expression of SMYD2,
p65, EZH2, vimentin, p-mTOR, and p-MAPK. Right panel: Densitometric analysis of Western blots,
quantifying the levels of SMYD2, p65, EZH2, the EMT marker vimentin, p-mTOR, and p-MAPK.
Scanning densitometry obtained for all blots, carried out in triplicate, and the integrated optical
density of each band was normalized with the corresponding density found for β-tubulin. Results
shown in the bar graphs under their respective Western blot images. Vertical bars in the graph indicate
the normalized integrated optical density of bands visualized in each lane. All raw immunoblots are
included in Figure S8. ** p < 0.01 compared to their respective placebo control-treated mouse tumors.
ns refers to non-statistical significance at p < 0.05 relative to control cells.

3.12. Oleocanthal PF Treatment Inhibited Locoregional Recurrence of the mCRPC CWR-R1ca Cells
in Nude Mice after Primary Tumor Surgical Excision

Mice were subjected to primary tumor surgical excisions (n = 10) in a previous exper-
iment and used to test the ability of OC to prevent mCRPC recurrence. Mice continued
to receive daily oral OC-PF treatments for an additional 30 days (Figure 5A). Since the
parent tumor cells engrafted into the mice were luciferase-tagged, we used weekly luciferin-
aided live animal imaging to confirm the efficiency of tumor surgical excision and to trace
locoregional and distant recurrences [26]. IVIS bioluminescence live animal imaging of
mice subjected to primary tumor surgical excision showed low luminescence, confirming
the effective surgical removal of primary tumors (Figure 5B). All mice were healthy af-
ter surgery and, therefore, could be randomly parsed into two groups, n = 5 each. One
group was treated with the placebo control and the other group treated with 10 mg/kg
oral OC-PF by gavage, as detailed in the Methods. At the end of the study, four out of
five mice treated with the placebo control developed distal tumor recurrence in multiple
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organs, including lung, kidney, liver, and bone. Meanwhile, only two out of five mice in
the OC-PF-treated group developed distal recurrent tumors. One tumor developed in the
liver and one in bone. More importantly, three out of five mice did not develop any sign of
distant recurrence (metastasis, Figure 5C–E). All animals completed the whole experiment
course until the study terminated 30 days after the excision surgery. The average body
weights of the OC-PF-treated mice did not differ significantly from the placebo-treated mice
(Figure 5F). Mice organs treated with placebo control and OC-PF showed no significant
statistical difference (Table S1). OC-PF treatments significantly decreased the recurrence
marker PSA level in mice serum, with an average of 1.64 ± 0.17 ng/mL in OC-PF-treated
mice compared to 1.95 ± 0.13 ng/mL in the placebo control-treated group, representing a
15.9% reduction (Figure 5G).
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Figure 5. The mCRPC recurrence suppressive activity of OC-PF treatments in nude mice engrafted
with CWR-R1ca-Luc cells and subjected to primary tumor surgical excision. (A) Experimental
design layout. (B) Live animal bioluminescence comparison of OC-PF-treated versus the placebo
control-treated mice before and after surgical excision. (C) Comparison of bioluminescence images of
OC-PF-treated versus placebo control-treated representative mice at the study end, 60 days after first
tumor xenografting or 30 days after primary tumor surgical excision. (D) Bioluminescence images
of collected organs on the last study day comparing the distant recurrence suppressive effects of
OC-PF versus the placebo control treatments. (E) Comparison of the distant recurrences (metastatic)
burden for OC-PF versus placebo control-treated mice using quantitative bioluminescence imaging
at the study end. (F) Comparison of the mice serum PSA levels for OC-PF versus the placebo
control at the study end. * p < 0.05 and ** p < 0.01 for statistical significance compared to placebo
control-treated group.

3.13. In Vivo Safety of OC-PF Treatments

Daily OC-PF 10 mg/kg oral dosing produced no gross adverse and/or behavioral
responses in male athymic nude mice over 41 dosing days. OC-PF-treated mice showed
no significant change in the weight of various collected organs compared to the placebo
control group (Table S1). The collected organs, including brain, heart, lung, liver, spleen,
and kidney, were sectioned and stained to study any histopathological changes (Figure S4).
No histopathological changes were observed in organs of either placebo control or OC-PF-
treated mice (Figure S4).
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4. Discussion

Despite the progress made towards androgen suppression, including LH/FSH mod-
ulators, anti-androgen receptor (AR) small molecules, CYP17A and CYP27A1 inhibitors,
chemotherapies, and immunotherapy, these treatments lack absolute curative efficacy, espe-
cially in mCRPC patients, and have poor overall survival and high recurrence incidence [1–4].
Androgen deprivation therapy (ADT) is the standard of care for initial management of
advanced or metastatic PC cases, but progression to CRPC occurs within 2–3 years of initia-
tion of ADT. The microtubule depolymerization disruptor taxane docetaxel has historically
been the first-line treatment for mCRPC, along with the androgen signaling antagonist
enzalutamide and CYP17A1 inhibitors such as abiraterone acetate. Over a short period
of therapeutic use, these agents fail to suppress mCRPC pathogenesis [31,49]. The Na-
tional Comprehensive Cancer Network guidelines for PC control recommend combination
platinum-based (carboplatin or cisplatin) chemotherapy as a first-line therapy for primary
poorly differentiated small-cell or neuroendocrine PC (SCPC/NEPC) [31]. mCRPC is a het-
erogeneous phenotype with diverse progression and mechanisms of therapeutic resistance
drivers [31]. Thus, it is imperative to target new pathways contributing to mCRPC recur-
rence and to develop novel interventions for the effective control of mCRPC progression
and recurrence.

Cellular lysine methylation is driven by protein lysine methyltransferases (PKMTs),
including the SET- and MYND-containing protein (SMYD) family. SMYD PKMTs are
critical for gene regulation, chromatin remodeling, transcription, signal transduction, cell
cycle control, and DNA damage response [17–21,50–52]. Disruption of SMYD1 perturbs
cardiac morphogenesis and can induce embryonic lethality [53]. SMYD3 is associated with
cancer cell proliferation and was reported to be overexpressed in hepatocellular, colorectal,
prostate, and breast carcinomas [54]. SMYD4 is a tumor suppressor that plays a critical role
in breast carcinogenesis, at least in part, through inhibiting the expression of PDGFRA [55].
SMYD5 is a negative regulator of inflammatory response genes [56]. SMYD5 is recruited to
a subset of TLR4-responsive promoters via association with NCoR corepressor complexes,
trimethylating histone H4K20 [56]. SMYD2 (KMT3C) methylates H3K36 and H3K4, in
presence of HSP90, along with several histones, including H3, H4, and H2B and non-
histone proteins such as EZH2 and p53, the retinoblastoma protein (RB), ERα, PARP1,
MAPKAPK3, PTEN, and many others [15–20]. Lysine methylation by SMYD modifies the
protein substrates’ bulkiness, hydrophobicity, and molecular recognition by methyllysine
readers [21]. Methyllysine-containing proteins are recognized by downstream effectors
possessing methyllysine reader domains, conferring their biological effects. The SMYD2
gene resides in 1q32–q41, a chromosomal region mostly amplified in esophageal and renal
cell carcinoma, gastric, colon, pancreatic, lung, bladder, TNBC, and PC [10–22]. Targeting
tumor SMYD2 is of high oncological therapeutic value [14–21]. Tumor cells heavily depend
on SMYD2, unlike normal cells, justifying the SMYD2 inhibitors’ high therapeutic potential.
A few small-molecule SMYD2 inhibitors that have been developed are LLY-507, AZ505,
A-893, and BAY-598 [10–18,21]. They showed exceptionally high potency and selectivity
in vitro but did not have a compelling effect on in vivo antitumor potency, and none of
them earned FDA approval, justifying the continued need for the discovery of novel,
SMYD2-modulating lead entities [19,20,47]. The SMYD family member SMYD3 proved a
valid molecular target in PC since it modulates transcriptional and key signaling pathways
and orchestrates multiple oncogenic inputs [20,22]. Dysregulated SMYD2 is linked with
higher tumor recurrence rate [10–20].

This study analyzed the TCGA data and highlighted the dysregulation of the SMYD
family in patient PC clinical samples, unlike in normal tissue samples (Figure S5). SMYD
family dysregulation was notable in nodal prostate metastasis and patients with high
Gleason score and shorter overall survival (Figure S6).

A Western blotting study indicated that SMYD2 is excessively amplified in the mCRPC
cells CWR-R1ca, as well as in the AI PC-3, PC-3M, and DU-145 PC cells (Figure 1A). The
Western blotting study also indicated the SMYD2 expression level in the mCRPC CWR-R1ca
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cells is 1.8-fold its level in the non-tumorigenic RWPE-1 prostatic epithelial cells. Thus,
the mCRPC cells CWR-R1ca were selected for subsequent studies since they dysregulated
SMYD2 and had a very high recurrence rate [33]. CWR-R1ca cells are aggressive, fibroblast-
free, highly recurrent, metastatic CRPC cells with human origin [33]. CWR-R1ca cells are
androgen-sensitive, express full-length AR and PSA, and represent the most aggressive
CRPC phenotype with dysregulated SMYD2 pattern [33]. CRISPR/Cas9-aided KO of
SMYD2 in CWR-R1ca cells (CWR-R1ca-KO) showed ~90% reduced proliferation, colony
formation, migration, and invasion versus the wild-type CWR-R1ca cells, indicating the
critical importance of SMYD2 for mCRPC viability and motility.

Epidemiological studies validated the Mediterranean diet’s ability to reduce the inci-
dence of some tumor types [23–30,32,34]. Olive oil is a key fat source in the Mediterranean
diet [23–30,32,34]. This study team previously reported the ability of OC to inhibit mCRPC
PC-3 cell viability, migration, and invasion by competitive inhibition of c-MET receptor
tyrosine kinase [3,26,32,34,48,57]. In this study, results acquired through collaboration with
Eli Lilly OIDD indicated that OC inhibited the monomethylation of p53 Lys370 using scintil-
lation proximity assay [47]. OC showed potent, dose-dependent, antiproliferative activities
against the mCRPC/AI cell lines CWR-R1ca, PC-3, PC-3M, and DU-145. Interestingly, OC
only adversely affected the non-tumorigenic RWPE-1 prostatic epithelial cells’ viability at
nearly 10-fold its therapeutic concentrations. This clearly highlighted the high selectivity
of OC to PC cells and reflected its high safety and therapeutic profile. OC showed potent,
antimigratory, anti-invasive, and colony formation inhibitory activities in wound-healing,
Matrigel invasion, and colony formation assays, respectively, against CWR-R1ca cells at
subtoxic treatment doses. OC treatments in the range of 0.5–2 µM effectively reduced the
SMYD2 expression in the mCRPC CWR-R1ca cells, as evidenced by Western blotting. Mean-
while, treatment of the mCRPC CWR-R1ca cells with the standard FDA anticancer drugs
ENZ, DTX, and CPT at doses slightly higher than their IC50 values did not affect the SMYD2
expression level. This clearly proved the OC SMYD2 expression suppression in mCRPC is a
selective pharmacological effect rather than a downstream effect due to cytotoxicity. Over-
all, these in vitro results indicate the prosurvival and pro-motility importance of SMYD2
in mCRPC. The results also validated the potential of OC to suppress the progression and
motility of mCRPC, at least in part, via the downregulation of SMYD2 level.

Unlike the known, reported SMYD2 inhibitors, OC-PF showed impressive in vivo
antitumor potency at a modest 10 mg/kg daily oral dosing regimen. Over 11 days of oral
dosing, OC inhibited the progression of the mCRPC CWR-R1ca cells engrafted in nude
mice by more than 83%. Immunofluorescence assessment of CWR-R1ca primary tumor
sections proved OC-PF effectively suppressed the tumor cells’ proliferation marker ki67
and the endothelial vasculogenesis marker CD31 compared to the placebo control-treated
group. These results confirmed the in vivo pharmacodynamics effects of OC-PF against
mCRPC. This conclusion was further confirmed by Western blotting analysis of the primary
tumors, which revealed a significant reduction of SMYD2 protein expression level. This
was associated with decreased expression of the SMYD2 protein substrates EZH2, p65,
p-mTOR, and p-MAPK in OC-PF-treated primary tumor samples compared to in the
placebo control-treated animal tumors.

A comparison of OC anti-PC in vitro potency and standard anti-PC drugs indicated
OC’s superior activity over enzalutamide and cisplatin (Figure 2A,B and Table 1). Despite
the fact that the taxane drugs docetaxel and paclitaxel outscored OC in MTT, its in vitro
antiproliferative potency, the high safety profile, lack of neuropathic side effects associated
with the use of taxanes, and in vivo oral potency qualify OC as a viable mCRPC therapeutic
option individually or in combination with standard PC therapies.

Invisible tumor stem cells and resistant, dying, or dormant tumor cells in microenvi-
ronment contact with host mouse tissue are likely the tumor repopulation origin [58,59].
A 30-day continued oral OC dosing regimen after surgical excision of the mCRPC primary
tumor prevented 100% of locoregional recurrence in nude mice. OC treatments prevented
the mCRPC CWR-R1ca distant recurrences in the lung and kidney compared to the placebo
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control-treated group. OC treatments significantly suppressed the distant recurrence in
liver (1/5 versus 4/5 for placebo control). OC treatments also effectively suppressed the
distant mCRPC recurrence at the bones (1/5 versus 3/5 for placebo control).

The main PC biochemical recurrence marker is the PSA serum levels. PSA level drops
to zero in treated PC patients, while the detection of 0.2 ng/mL PSA level in a PC survivor
is a relapse marker. OC-PF-treated animal sera showed significant reduction in the PSA
level compared to in the mice treated with the placebo control, highlighting the potential
of OC as a prospective, novel, small-molecule PC recurrence suppressor via modulating
SMYD2 expression level.

5. Conclusions

This study reported, for the first time, the importance of SMYD2 for mCRPC patho-
genesis. The study showed the EVOO phenolic OC as a novel, first-in-class lead for the
control of mCRPC progression and recurrence. Unlike the previously reported SMYD2
small-molecule inhibitors, OC-PF showed powerful in vivo oral potency against mCRPC
progression and recurrence in nude mouse xenograft models at a modest therapeutic dose
level [25,29,30,32,34,35]. OC’s expected long-term safety profile is based on the EVOO
historical human food consumption, high selectivity for malignant tumor cells, and low
toxicity for non-tumorigenic prostatic epithelial cells at therapeutic doses [60]. A single-
dose safety study in Swiss albino mice suggested a high safety profile for OC [60]. OC
is a cost-effective lead with its ample and sustained plant supply and readily scalable
purification methodology [32]. OC can potentially be developed as a nutraceutical for the
use in mCRPC patients and survivors without the need for FDA approval. OC in vivo
activity was associated with reducing the main PC biochemical recurrence marker PSA,
validating its potential as an mCRPC recurrence suppressor. This study validated that the
EVOO secoiridoids represented by OC are a novel lead scaffold class that can be optimized
to create clinically useful and active in vivo SMYD2 inhibitors for application to prevent or
suppress the mCRPC recurrence and extend the disease-free survival of PC survivors. OC
is a novel SMYD2 modulatory nutraceutical appropriate for near-future clinical application
to control mCRPC.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14143542/s1, Figure S1: Clinical contribution of SMYD
family members to PC prognosis; Figure S2: The role of SMYD2 in PC pathogenesis; Figure S3:
SMYD2 expression profile in various organ tumors and comparison of its expression in prostate
normal tissues versus PC nodal metastasis; Figure S4: Toxicity evaluation of OC-PF treatments
on different nude mouse organs; Figure S5: TCGA expression profile of SMYD family members
in PC patients; Figure S6: Correlation of SMYD family members’ expression profile with Gleason
score and PC progression-free survival; Figure S7: Raw Western blotting gels of β-tubulin and
SMYD2 in different prostate cancer cells and RWPE-1 prostate epithelial cells with and without OC
treatment; Figure S8: SMYD2 and downstream substrate proteins raw Western blotting gels. Table S1:
Comparison of the effects of OC treatments versus the placebo control on various mice organ weights.
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