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Simple Summary: Lactosomes™ are biocompatible nanoparticles that can be used for cancer tissue
imaging and drug delivery. Lactosomes are amphiphilic micelles in which the particle size can be
controlled in the range of 20 to 100 nm. Lactosomes can also be loaded with imaging probes and
anticancer agents. Indocyanine green-loaded lactosomes accumulate in cancer tissues and function as
a photosensitizer, which simultaneously enables diagnosis and photodynamic therapy. This approach
can facilitate the treatment of cancers in unresectable tissues, which can lead to improved quality of
life for patients. This review provides an overview of lactosomes with respect to molecular design,
accumulation in cancer tissues, and theranostics applications. We also address some outstanding
questions and future directions in cancer theranostics.

Abstract: Lactosomes™ are biocompatible nanoparticles that can be used for cancer tissue imaging
and drug delivery. Lactosomes are polymeric micelles formed by the self-assembly of biodegradable
amphiphilic block copolymers composed of hydrophilic polysarcosine and hydrophobic poly-L-
lactic acid chains. The particle size can be controlled in the range of 20 to 100 nm. Lactosomes can
also be loaded with hydrophobic imaging probes and photosensitizers, such as indocyanine green.
Indocyanine green-loaded lactosomes are stable for long-term circulation in the blood, allowing for
accumulation in cancer tissues. Such lactosomes function as a photosensitizer, which simultaneously
enables fluorescence diagnosis and photodynamic therapy. This review provides an overview
of lactosomes with respect to molecular design, accumulation in cancer tissue, and theranostics
applications. The use of lactosomes can facilitate the treatment of cancers in unresectable tissues, such
as glioblastoma and head and neck cancers, which can lead to improved quality of life for patients
with recurrent and unresectable cancers. We conclude by describing some outstanding questions and
future directions for cancer theranostics with respect to clinical applications.

Keywords: indocyanine green lactosome; tumor accumulation; photodynamic diagnosis; photodynamic
therapy

1. Introduction

Molecular imaging and theranostic (a fusion of the words “therapy” and “diagnostic”)
nanoparticles are effective for the early diagnosis and treatment of cancers. Large-scale
industrial, governmental, and academic studies in the field of theranostics have been
conducted worldwide. Molecular probes are the cornerstone of imaging and enable early
diagnosis and treatment. Molecular probes can be delivered via the enhanced permeability
and retention (EPR) effect, which occurs in inflammatory and ischemic diseases as well
as in cancers [1]. The EPR effect is a phenomenon in pathological conditions in which
nanoparticles with sizes of 30–100 nm accumulate in the interstitium due to vascular
leakage [2]. Further, the lymph system surrounding the tumor grows too slowly to exclude
nanoparticles from tumor tissues [3]. Lactosomes™ are amphipathic polymers that can be
manufactured to exhibit particles of sizes in the range of 20 to 100 nm [4–6]. In addition,
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the shape of polymer micelles can be accurately controlled [7,8]. Lactosomes can be loaded
with labeling agents such as indocyanine green (ICG) [9]. ICG has been approved by the
Food and Drug Administration for clinical and research use in humans since 1956 [10].
ICG is widely used in ocular angiography and hepatic function assessment. Furthermore,
fluorescence imaging using ICG can delineate the area of the tumor and confirm residual
tumor after resection, and, subsequently, ICG can be used for photodynamic therapy (PDT).
PDT after surgical removal of most of the tumor is used for “tumor bed sterilization”, that
is, selective removal of the remaining tumor with minimal damaging of the essential tissue.
However, ICG in the blood tends to bind to albumin, which confines most of the bolus to the
intravascular space until albumin-mediated hepatic uptake and subsequent excretion into
bile [11,12]. Alternatively, ICG-loaded lactosomes remain stable during long-term blood
circulation and can accumulate in tumor tissues, where they can act as photosensitizers that
generate reactive oxygen species upon application of light of the appropriate wavelength
for ICG excitation, about 780 nm [13]. Furthermore, it is possible to label the surface of
lactosomes with antibodies to selectively deliver drugs and genes to cancer cells. Thus,
lactosomes may be used for both early diagnosis and subsequent treatment of cancers [14].
The aim of this review is to provide an overview of lactosomes with respect to molecular
design, accumulation in cancer tissue, and theranostics applications. We will also address
some outstanding questions and future directions for theranostic nanoparticles.

2. Molecular Design of Indocyanine Green-Loaded Lactosomes

Polymers formed by ICG-poly-L-lactic acid (PLLA) and AB-type polysarcosine PLLA
are amphipathic [4–6]. PLLA has been used for therapeutic applications, such as in materials
for osteosynthesis, as a highly biocompatible and biodegradable hydrophobic polymer.
Polysarcosine is a highly hydrophilic polypeptide, with a base material that does not adsorb
non-specifically into tissues and cells, and is also biodegradable [15,16]. This amphipathic
polymer forms lactosomes in water by self-assembly of PLLA via intermolecular interaction
forces. The particle size of the resultant lactosomes can also be controlled. Figure 1 shows
the structure of the amphipathic block polymer and aggregates formed by self-assembly [9].
The size and pharmacokinetics of polymer micelles can be accurately controlled by adjusting
the numbers of hydrophilic and hydrophobic blocks as well as the amount of polylactic
acid. The micelles are formed by linear (AB-type) and trifurcated (A3B-type) polymers,
with diameters of 35 nm and 22 nm, respectively [7,8]. The half-lives of the AB-type and
A3B-type polymers in the bloodstream of mice were determined to be 17.2 and 4.3 h,
respectively [7]. The hydrodynamic diameters are tunable by varying the mixing ratio
of AB-type and A3B-type polymers [8]. Additionally, the sizes of micelles composed of
AB-type polymers can be adjusted to 100 nm by incorporating PLLA into the hydrophobic
core [5]. However, the production of anti-AB-type lactosome IgM significantly increased
at 52 nm, implying that the immune system was triggered [7]. Makino et al. carried out
chemical modification of the terminal end of PLLA with ICG (ICG-PLLA) [4]. Tsujimoto
et al. demonstrated that ICG-loaded lactosomes (ICGm) prepared from ICG-PLLA and AB-
type polysarcosine-PLLA, with particle sizes of 40–50 nm, selectively accumulated in tumor
tissues [9]. The photoacoustic signal originating from ICGm was increased at 18 h after
injection in a mouse model with subcutaneous tumors, indicating efficient accumulation of
ICGm in the tumor [13].

2.1. Accumulation of Lactosomes in Cancer Tissues

Recent research efforts have focused on the development of molecular probes based
on nanoparticles that rely on the EPR effect [2,3]. Nanoparticles containing therapeutic
agents such as radioactive and fluorescent agents, as well as magnetic substances, can
accumulate in cancer tissues and allow for molecular imaging to sensitively track the effect
of treatment. Makino et al. demonstrated the accumulation of ICG-loaded lactosomes in
cancer tissue using near-infrared fluorescence imaging in various mouse transplant models
of cancer (i.e., subcutaneous, liver, lung, large intestine, and brain) [4,5]. Figure 2 shows
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the results of fluorescence imaging of orthotopic transplantation and metastatic models of
various organs [4,17]. These fluorescence images were obtained at 24 h after intravenous
administration of ICG-lactosomes. The fluorescence signal from ICG-lactosomes was
detected in various solid tumors in which luceferin-luceferase-induced luminescence-
labeled tumor cells grew.

2.2. Theranostics Application with ICG-Lactosomes

Biodegradable nanoparticles (ICG-lactosomes) can carry biocompatible cyanine dyes
for high biopermeability, near-infrared fluorescence, and photosensitivity, which allows for
tumor selectivity and local retention. Combining ICG-lactosomes with a near-infrared light
camera allows for: (1) clear delineation of the tumor area during surgery, (2) confirmation
of residual tumor after resection to support additional resection if necessary, and (3) a shift
to photodynamic therapy to treat only the tumor site.

Although fluorescence imaging has been used to assess the pharmacokinetics of ICG-
lactosomes in vivo, this method provides no depth-resolved information. As shown in
Figure 3, Tsunoi et al. applied photoacoustic imaging to visualize the depth distribution
of ICG-lactosomes in a mouse model of subcutaneous tumor [13]. ICG was illuminated
during photoacoustic imaging using a short laser pulse with a wavelength of 796 nm. The
laser light was absorbed by ICG, resulting in a rise in temperature and a subsequent initial
increase in pressure [18]. The rise in pressure propagated as a photoacoustic wave and
was finally detected by a single-element lead zirconate titanate film ultrasound sensor. The
depth profile is deduced from the temporal waveform, using the knowledge of the sound
velocity in the tissue. The photoacoustic signal originating from the ICG-lactosomes rapidly
decreased after PDT, indicating photobleaching by the PDT reaction in the tumor.
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Figure 1. The structure of indocyanine green (ICG)-loaded lactosomes (ICGm’s). ICGm’s are formed
by molecular assembly with hydrophobic helical poly-L-lactic acid (PLLA) and hydrophilic polysarco-
sine (PS) amphiphilic block polydepsipeptide, which include ICG-labeled PLLA in the hydrophobic
inner core. (Reprinted from Tsujimoto et al. [9]).
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Figure 2. Accumulation of ICG-lactosomes in mouse cancer models. Images were obtained at 24 h
after intravenous administration of ICG-lactosomes via the tail vein. The cancer cells carried the
luciferase reporter gene. The ICG fluorescence sites overlapped at the luciferin bioluminescence sites,
which are a marker of cancer cells. Cancer tissue was confirmed by luciferin bioluminescence and
macroscopic findings. (Reproduced from Ozeki and Hara [17]).
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Figure 3. Schematic of photodynamic therapy (PDT) and photoacoustic imaging with ICG-lactosomes.
Photoacoustic images (3.9 × 3.9 mm2) show the accumulation of ICG-lactosomes in the tumor
(before PDT). The photoacoustic probe was automatically scanned over a 3.9 mm × 3.9 mm region
of interest with a step size of 50 and 150 µm for imaging of blood vessels and ICG distribution,
respectively. The wavelength of the short laser pulse was 532 nm for photoacoustic imaging of
oxy- and deoxy-hemoglobin in blood vessels. The laser pulse at 796 nm was used for ICG imaging.
Results of the fluorescence imaging of ICG showed that the photoacoustic imaging decreased by
only 0.78% in average fluorescence intensity originating from ICG in the tumor (data not shown),
indicating a negligible photobleaching by the laser light for photoacoustic imaging. After PDT, the
photoacoustic signal was drastically decreased, suggesting photobleaching in the tumor. (Reprinted
from Tsunoi et al. [13] with permission from Elsevier).

The mechanism of the antitumor effects during PDT has previously been reported.
First, the photosensitizer, which accumulates in the cancer tissue, is irradiated with a laser
light. A photon of the right wavelength is absorbed by the photosensitizer, such as ICG,
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so that ICG passes from the singlet ground state to an excited singlet state. From there, it
passes to the lowest triplet state by intersystem-crossing. The lowest triplet state can then
transfer its energy to the surroundings in a collisional process involving molecular oxygen,
leading to the generation of reactive oxygen species. The presence of reactive oxygen
species may then lead to apoptosis as well as necrosis or other forms of cell death [19]. This
system is generally applicable to solid tumors, because it relies on the EPR effect in the
neovascularization but does not require a specific antibody for tumor cells. Therefore, the
approach can be used to treat cancer cells in unresectable regions, such as parts of the brain
in glioblastoma or the tissue near the carotid artery in head and neck cancer. Furthermore,
the drug can also be manufactured at a lower cost than antibody-based therapies. This
cancer treatment system using near-infrared light with ICG-lactosomes consists of the
following elements: (1) a near-infrared fluorescent agent such as ICG-lactosomes, which
can accumulate in the cancer and are composed of biodegradable molecules [9]; (2) a
near-infrared semiconductor laser irradiator device [9]; and (3) a device that can visualize
near-infrared light or a photoacoustic signal during surgery [4,13].

Tsukanishi et al. demonstrated that ICG-lactosomes exhibited effective antitumor
effects when combined with laser irradiation [20]. Microscopic examination revealed that
MDA-MB-231 cells, a human breast cancer cell line, disappeared after 48 h following
PDT [17] (Figure 4). Cell viability was significantly lower in the PDT group compared to
the laser-irradiated group.
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Figure 4. Tumor cell proliferation of the human breast cancer cell line MDA-MB-231 is suppressed
by ICG-lactosomes. ICG-lactosomes combined with laser irradiation abolished cells (lower panels).
Mean absorbance values indicate cell viability in the WST-1 assay. The laser-irradiated group (red)
showed significantly lower cell viability than the control and ICG-lactosome alone (green) groups.
The fluence rate and irradiation period were set to 298 mW/cm2 and 60 s, respectively, corresponding
to a fluence of 17.9 J/cm2. Furthermore, the photodynamic therapy (PDT) group (yellow) showed
drastically lower cell viability compared to the laser group [20]. n.s, not significant; * p < 0.01.
(Reproduced from Ozeki and Hara [17]).
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Funayama et al. also showed that semiconductor laser irradiation was able to treat
bone metastases in a mouse model [21] (Figure 5). Near-infrared light can penetrate deep
into living tissue. Irradiation by near-infrared light applied from outside the body had
antitumor effects on bone metastases. Furthermore, PDT with ICG-lactosomes has also
been shown to suppress tumor growth in bone metastatic tumors [17,21].
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Figure 5. Photodynamic therapy (PDT) in bone metastases. The photodynamic therapy group
underwent laser irradiation 24 h after ICG-lactosome administration at 1, 3, and 5 weeks after tumor
cell transplantation. The area of osteolysis was compared using computed tomography imaging at
7 weeks after tumor cell transplantation. The area surrounded by the dotted line indicates tumor
cells. The PDT group showed smaller tumor areas than the laser group. (Reproduced from Ozeki and
Hara [17]).

Tsujimoto et al. reported in vivo imaging using ICG-lactosomes to visualize peritoneal
dissemination through the abdominal wall in a mouse model of gastric cancer. While
a specific signal was not detected with ICG alone, PDT with ICG-lactosomes showed a
significant improvement in survival rate (Figure 6) [9]. The accumulation of ICG-lactosomes
was also confirmed in a mouse model of lymph node metastasis with gastric cancer [22]
(Figure 7). PDT with ICG-lactosomes was shown to induce apoptosis and inhibit growth of
metastatic cancer in lymph nodes. Moreover, our group previously demonstrated that PDT
exhibited toxic effects on HuH-7 cells, a human hepatocellular carcinoma cell line, upon
treatment with ICG-lactosomes but not ICG alone. Near-infrared fluorescence imaging
revealed that ICG-lactosomes accumulated in xenograft tumors and that tumor growth was
suppressed by PDT [23]. Furthermore, we confirmed that the fluorescence intensity of the
tumor immediately decreased after PDT and that subsequent PDT had greater antitumor
effects on a xenograft tumor of gallbladder cancer cells, suggesting that ICG-lactosomes
could be useful for theranostics applications [24] (Figure 8).

ICG-lactosomes were also examined for use in a combined tumor therapy system
using a combination of photothermal therapy and PDT treatment. Nomura et al. developed
a temperature-feedback laser system that maintained the temperature of the irradiated
target at a constant level during irradiation [25]. Using this system, the researchers demon-
strated complete eradication of the tumor at a surface temperature above 43 ◦C during
photothermal therapy with PDT, regardless of the fluence rate [26]. Furthermore, the
authors confirmed that the temperature increase in normal tissue was negligible with
photothermal therapy, indicating that ICG-lactosomes tended to accumulate in the tumor
(Figure 9).
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Figure 6. Photodynamic therapy of peritoneal dissemination in gastric cancer. (Left) Comparison
between ICG and ICG-lactosomes in terms of luminescence and ICG-fluorescence from tumors.
(Right) Survival rate after photodynamic therapy (PDT) in mice treated with ICG or ICG-lactosomes.
PDT with ICG-lactosomes resulted in significantly improved survival rates compared to that with
ICG alone. (Reproduced from Tsujimoto et al. [9]).
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in mouse subcutaneous tumors after administration of ICG or ICG-lactosomes was observed daily
using in vivo imaging systems. On the second day following administration, PDT was performed in
groups with ICG (n = 5, open circles) and single (ICG-Lact1, n = 5, closed squares) or double PDT
with ICG-lactosomes (ICG-Lact2, n = 5, closed triangles). The second irradiation was performed
on day 5. (B) Effect of PDT on tumor growth in mice with subcutaneous tumors treated with ICG
and ICG-lactosomes. On the second day following administration, PDT was performed in the ICG
(n = 8, open circles) and ICG-Lact1 (n = 8, closed squares) groups. The second PDT was performed
3 days after the first PDT in the ICG-Lact2 group (n = 8, closed triangles). * p < 0.001 between the
ICG and ICG-Lact2 groups. † p < 0.05 between the ICG and ICG-Lact1 groups. ‡ p < 0.05 between the
ICG-Lact1 and ICG-Lact2 groups. (Reproduced from Hishikawa et al. [24]).
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Figure 9. (A1) An increase in temperature at the near-infrared (NIR) irradiation spot on the tumor and
non-tumor sites in mice administered ICG-lactosomes. The irradiation points are indicated by black
circles. (A2) The increase in temperature at the tumor site was greater than that at the non-tumor site.
* p < 0.01. (B1) Black circles indicate the NIR irradiation points on the non-tumor site in mice with or
without ICG-lactosome administration. (B2) There was no difference in temperature increase at the
non-tumor site with or without ICG-lactosome administration. (Reprinted from Nomura et al. [26]).
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3. Discussion

Treatment of maxillofacial tumors using a photosensitizer-labeled antibody with a
similar technology has been approved in the United States [27]. However, such antibody
treatments are costly and require antigens that are specific to cancer cells. The intraoperative
fluorescence diagnostic technique can accurately identify the excision range. Near-infrared
light allows for the diagnosis of deeper residual tumors and lymph node metastases. While
ICG has been used to identify sentinel lymph nodes and blood vessels in resected organs,
as well as to evaluate blood flow during surgery [28], it is, however, limited by poor
tumor accumulation.

ICG-containing nanoparticles that accumulate in the tumor tissue via the EPR effect are
excited by near-infrared light, which allows for the combination of photoacoustic diagnosis
with photodynamic and photothermal therapy for the treatment of cancer. This system
exhibits several features that warrant further discussion. First, ICG-lactosomes allow for
visualization of not only the surface layers of cancer tissue but also deeper regions to
a depth of a few millimeters [13]. While a depth of a few millimeters is too shallow for
clinical applications, the imaging depth can be increased to centimeters by sacrificing spatial
resolution [29]. Second, ICG-lactosomes are administered systemically via intravenous
injections or direct application to the lesion. The visualization of lesions facilitates accurate
operator guidance and fine manipulation, enabling less invasive treatments. Third, ICG-
lactosomes function as photosensitizers, which simultaneously enable not only fluorescence
diagnosis but also PDT, and this suggests the possibility of applying PDT immediately
following a diagnosis. Establishing a highly accurate diagnostic technique for cancer, as
presented in this review, enables further resection of marginally located cancers that are
not completely resected by surgery, thereby improving prognosis. Clinical studies have
confirmed that near-infrared fluorescence imaging with ICG is safe and efficient in pediatric
urology using laparoscopy with robotics [30]. The most common applications in pediatric
surgery include varicocele repair, difficult cholecystectomy, and partial nephrectomy as
well as lymphoma and ovarian tumors [31]. Finally, it has been suggested that the cancer
stroma acts as a barrier for drugs that leak from blood vessels. Thus, a therapeutic approach
targeting the cancer stroma using the anti-insoluble fibrin antibody may help to overcome
the insufficiency of the EPR effect for clinical applications to treat solid cancers [32].

4. Conclusions

The current review introduces efforts to develop a theranostic technique for cancer
using ICG-lactosome nanoparticles. Lactosomes are amphipathic polymers that can be
manufactured with accurate size control. Lactosomes may be loaded with hydrophobic
imaging probes and photosensitizers, such as ICG. ICG-loaded lactosomes remain stable
during long-term circulation in the blood; accumulate in the tumor tissue via the EPR effect;
are excited by near-infrared light; and allow for a combination of photoacoustic diagnosis
with photodynamic and photothermal therapy. Clinical studies have confirmed that near-
infrared fluorescence imaging with ICG is safe and efficient using laparoscopy with robotics.
A therapeutic approach targeting the cancer stroma using the anti-insoluble fibrin antibody
may help to overcome the insufficiency of the EPR effect for clinical applications to treat
solid cancers.
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