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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers globally,
with a 5-year overall survival of less than 10%. The development and progression of PDAC are
linked to its fluctuating acidic tumor microenvironment. Ion channels act as important sensors of
this acidic tumor microenvironment. They transduce extracellular signals and regulate signaling
pathways involved in all hallmarks of cancer. In this study, we evaluated the interplay between
a pH-sensitive ion channel, the calcium (Ca2+) channel transient receptor potential C1 (TRPC1),
and three different stages of the tumor microenvironment, normal pH, acid adaptation, and acid
recovery, and its impact on PDAC cell migration, proliferation, and cell cycle progression. In acid
adaptation and recovery conditions, TRPC1 localizes to the plasma membrane, where it interacts
with PI3K and calmodulin, and permits Ca2+ entry, which results in downstream signaling, leading
to proliferation and migration. Thus, TRPC1 exerts a more aggressive role after adaptation to the
acidic tumor microenvironment.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies,
with a low overall survival rate of less than 10% and limited therapeutic options. Fluctuations in
tumor microenvironment pH are a hallmark of PDAC development and progression. Many ion
channels are bona fide cellular sensors of changes in pH. Yet, the interplay between the acidic tumor
microenvironment and ion channel regulation in PDAC is poorly understood. In this study, we
show that acid adaption increases PANC-1 cell migration but attenuates proliferation and spheroid
growth, which are restored upon recovery. Moreover, acid adaptation and recovery conditions favor
the plasma membrane localization of the pH-sensitive calcium (Ca2+) channel transient receptor
potential C1 (TRPC1), TRPC1-mediated Ca2+ influx, channel interaction with the PI3K p85α subunit
and calmodulin (CaM), and AKT and ERK1/2 activation. Knockdown (KD) of TRPC1 suppresses
cell migration, proliferation, and spheroid growth, notably in acid-recovered cells. KD of TRPC1
causes the accumulation of cells in G0/G1 and G2/M phases, along with reduced expression of
CDK6, −2, and −1, and cyclin A, and increased expression of p21CIP1. TRPC1 silencing decreases the
basal Ca2+ influx in acid-adapted and -recovered cells, but not in normal pH conditions, and Ca2+

chelation reduces cell migration and proliferation solely in acid adaptation and recovery conditions.
In conclusion, acid adaptation and recovery reinforce the involvement of TRPC1 in migration,
proliferation, and cell cycle progression by permitting Ca2+ entry and forming a complex with the
PI3K p85α subunit and CaM.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) accounts for up to 90% of pancreatic cancer
incidences, and is the seventh leading cause of cancer-related deaths worldwide [1,2]. The
poor prognosis of PDAC patients is mainly caused by late diagnosis, at a stage where the
disease is often advanced, metastatic, and non-resectable [3,4]. The cytotoxic therapies
available at present are modestly effective, and there is a compelling need to explore
underlying PDAC development and progression mechanisms to develop better treatment
options [3].

The development and progression of PDAC is linked to the physiology and microen-
vironment of the exocrine pancreas. Pancreatic epithelial and stromal cells are exposed to
cyclic changes in the extracellular pH (pHo) due to the production of alkaline pancreatic
juices rich in HCO3

−. The apical exposure to this alkaline pHo is coupled to the parallel
acidification of the basolateral membrane, leading to an acidic pancreatic interstitium [5,6].
Interestingly, extracellular acidification is one of the key characteristics of the tumor mi-
croenvironment, where it is caused by low perfusion in combination with high extrusion of
H+ from fermentative glycolysis and acid in the form of CO2 from oxidative phosphoryla-
tion [7–9]. While the interstitial space of solid tumors is generally acidic, and pHo values as
low as 5.6 have been measured, most values are in the range of 6.4–7. Where regions of
the tumor with poor vascularization will typically be acidic, well-vascularized areas will
exhibit a pHo closer to neutral [8,10–12]. The intracellular pH (pHi) is more alkaline than
the pHo in tumors, yet cancer cells in an acidic microenvironment still exhibit an acidic
pHi [13,14] compared to healthy cells in the normal pancreas.

Long-term acidosis acts as an evolutionary selection pressure. It causes adaptive
responses that can establish cancer cell populations with more malignant phenotypes in the
form of invasive and metastatic potential [8,15–17]. In addition, acidosis limits proliferation
by keeping the cancer cells in a dormant state [18]. This adaptation can be of particular
impact once the cancer cells encounter a more neutral microenvironment, as an increase
in pHi can further accelerate proliferation [8,9,19,20]. Changes in the pH can produce a
multitude of cellular physiological effects, as numerous proteins are sensitive to pH in
the range encountered in tumors [19–21]. Transmembrane proteins, such as ion channels,
can function as pH sensors and transduce extracellular signals as changes in pHo [19,22].
They can potentially regulate signaling pathways related to all hallmarks of cancer by
being affected by both pHo and pHi [19–21]. In recent years, the role of calcium (Ca2+)
channels as drivers of cancer mechanisms has been extensively investigated [23–25]. The
transient receptor potential canonical (TRPC) channel subfamily represents a group of
Ca2+-permeable non-selective cation channels [26]. Different physiochemical stimuli can
activate their gating mechanisms and affect their expression, thus being categorized as
cellular sensors [27]. The TRPC1 isoform is involved in various physiological and patho-
logical processes [27,28] through different stimuli. For instance, the expression of TRPC1
increases and modulates proliferation and migration via hypoxia-induced signaling in
breast and follicular thyroid cancer cells [29,30]. TRPC1 expression increases upon 24 h of
pressure in pancreatic stellate cells (PSCs) [31,32]. The ambient pressure activates TRPC1 to
form a complex with α smooth muscle actin (αSMA) and phosphorylated SMAD2. This
physical interaction between TRPC1/αSMA/SMAD2 is essential for activating two major
pathways underlying PSC activation, namely ERK1/2 and SMAD2 pathways, resulting
in IL-6 secretion and PSC proliferation [32]. Interestingly, the TRPC1 plasma membrane
expression decreases upon PI3K inhibition in glioblastoma cells, which is associated with
reduced chemotaxis and cell migration [33]. Although the response of TRPC1 to acidifica-
tion has, to our knowledge, not been reported, other TRPC channels have been shown to
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be affected by acidification [34]. For instance, TRPC4 and TRPC5 are activated by acidic
pH in HEK293 cell models. TRPC4 is activated by acidic pHi (6.75–6.25), in combination
with increased cytosolic Ca2+ levels and G-protein-coupled receptor activation [35], while
TRPC5 is activated both through G-protein activation and directly through protonation
(pH 6.5) [36].

We have recently shown that TRPC1 is overexpressed in PDAC tissue and cell lines but
does not regulate either basal Ca2+ entry or store-operated Ca2+ entry (SOCE). However,
TRPC1 regulates PANC-1 cell proliferation by interacting with phosphoinositol-3-kinase
(PI3K) and calmodulin (CaM) and regulating AKT signaling in normal pH conditions [37].
In the present study, we demonstrate the role of the fluctuating acidic tumor microenvi-
ronment and TRPC1 in PDAC cell migration, proliferation, and cell cycle progression. We
showed that in acid-adapted PDAC cells, total TRPC1 expression decreased, but plasma
membrane localization increased. In acid-recovered cells, TRPC1 expression increased,
high plasma membrane localization of the channel was maintained, and Ca2+ influx in-
creased. As we have demonstrated before, TRPC1 formed a complex with PI3K/CaM,
activating the downstream serine/threonine protein kinase AKT, but in this study, TRPC1
also activated the extracellular signal-regulated kinase 1 and 2 (ERK1/2) that synergically
control cell migration, proliferation, and cell cycle progression, in acid adaptation and
recovery conditions.

2. Materials and Methods
2.1. Cell Culture and Experimental pH Setup

The normal duct-like cell line human pancreatic nestin-expressing cells (HPNE), im-
mortalized with hTERT, was purchased from the American Type Culture Collection (ATCC,
Molsheim, France). HPNE were grown in 75% DMEM without glucose (Sigma-Aldrich,
Saint-Quentin-Fallavier, France), 25% Medium M3 Base (Incell Corp. Cat#M300F-500), and
10% fetal bovine serum (Cat#P30-3031, PAN Biotech), 5.5 mM glucose, and 750 ng/mL
Puromycin. The human PDAC cell line PANC-1 cells were kindly provided by Prof.
Anna Trauzold (Institute of Experimental Cancer Research, Kiel University, Kiel, Ger-
many). PANC-1 cells were cultured in RPMI-1640 medium already containing glucose
(Sigma-Aldrich, Saint-Quentin-Fallavier, France) supplemented with 10% fetal bovine
serum (Cat#P30-3031, PAN Biotech), 1 mM sodium pyruvate (Gibco, Waltham, MA, USA),
and 1% Glutamax (Gibco). Cells were grown at 37 ◦C, 95% humidity, 5% CO2, and pas-
saged with trypsin-EDTA 0.25% (Sigma-Aldrich, Saint-Quentin-Fallavier, France) when
cells reached a confluency of 70–80%. Cell cultures were not used for more than 20 passages.
The medium pH was adapted to pH 6.5 by adjusting the HCO3

− concentration by adding
the appropriate amount of NaHCO3 and ensuring equal osmolarity by changing [NaCl] as
suggested by Michl et al., [38], and as performed previously by Flinck et al., Yao et al., and
Hagelund and Trauzold [39–41]. All cell lines were regularly tested for mycoplasma.

PANC-1 cells were thawed and grown under normal pH conditions (pH 7.4), then
transferred to medium with pH 6.5, and maintained in this medium for a period of 30 days.
These cells are referred to as acid-adapted cells (pH 6.5). The acid-adapted PANC-1 cells
were then reseeded in a pH 7.4 medium for 14 days and are referred to as acid-recovered
cells (pH 7.4R).

2.2. Live Imaging of Intracellular pH

As previously described, the pHi measurements of non-transfected PANC-1 cells were
performed [41,42]. In detail, 8 × 104 cells were seeded in WillCo glass-bottom dishes
WillCo Wells, Amsterdam, The Netherlands. After 48 h of seeding, cells were incubated in
a growth medium containing 4 µM 2,7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein
acetoxymethyl ester (BCECF-AM, Invitrogen) for 30 min in the dark at 37 ◦C, 95% humidity,
5% CO2. Cells were washed twice in HCO3

− containing Ringer solution; 115 mM (for
pH 7.4) or 135 mM (for pH 6.5) NaCl, 24 mM (for pH 7.4) or 3 mM (for pH 6.5) NaHCO3,
5 mM KCl, 1 mM MgSO4, 1 mM Na2HPO4, 1 mM CaCl2, 3.3 mM 3-(-N-morpholino)
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propanesulfonic acid (MOPS), 3.3 mM 2 [Tris(hydroxymethyl)-methylamino]-ethanesulfonic
acid (TES), 5 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), adjusted with
NaOH or HCl to pH 7.4 or 6.5 at 37 ◦C. Then, the cells in the glass-bottom dish containing
Ringer solution adjusted to the respective pH were placed in a temperature-controlled
compartment (37 ◦C) equipped with gas. The steady-state pHi measurements were carried
out using a Nikon Eclipse Ti microscope equipped with a Xenon lamp for fluorescence
excitation, a 40× oil 1.4 NA objective, and EasyRatioPro imaging software (PTI), for 10 min.
Emission was measured at 520 nm after excitation at 440 nm and 485 nm. Calibration was
carried out using the high K+/nigericin technique [43], employing KCl solutions (156 mM
KCl, 1 mM MgSO4, 1 mM CaCl2, 1 mM K2HPO4, 3.3 mM MOPS, 3.3 mM TES, 5 mM HEPES)
of pH 6.6, 7.0, 7.4, and 7.8, and 10 µM Nigericin (Sigma-Aldrich), which generated a four-
point linear calibration curve to calibrate pHi values. Fluorescence measured from the two
excitation channels (440 nm and 485 nm) was corrected for their respective background
fluorescence during each experiment. The background fluorescence was assessed by
measuring in a cell-free area during the experiment. The ratio 485 nm/440 nm was then
calculated, and the calibration data were fitted to a linear function in the applied pH range.
The experimental data were inserted and converted to corrected steady-state pH values.

2.3. Transient Transfections

Cells were transfected with small interfering RNA (siRNA) by electroporation us-
ing nucleofection (Amaxa Biosystems, Lonza, Aubergenville, France) as previously de-
scribed [37]. Briefly, PANC-1 cells (1× 106) grown under either normal pH, acid adaptation,
or acid recovery conditions, were transiently nucleofected according to the manufacturer’s
protocol. To achieve this, 4 µg of scrambled siRNA (siCTRL, negative duplex control,
Eurogentec) or siRNA directed against TRPC1 (siTRPC1, ON-TARGET plus SMART pool
siRNA, Dharmacon Research, Chicago, IL, USA) were used. Experiments were performed
72 h after siRNA transfection unless otherwise indicated.

2.4. 3D Spheroid Growth and CellTiter-Glo Assay

Non-transfected or transfected PANC-1 cells grown under either normal or acid adap-
tation conditions were formed into spheroids in their respective medium or in normal pH
conditions following acid adaptation to simulate the 2D model of acid recovery conditions.
In total, 2000 PANC-1 cells were seeded in round-bottomed, ultralow attachment 96-well
plates (Corning, NY, USA) in 200 µL growth medium, supplemented with 2% GelTrex
LDEV-Free reduced growth factor basement membrane matrix (Thermo Fisher Scientific,
Waltham, MA, USA). After seeding, cells were spun down at 750 RCF for 20 min and were
grown for 9 days at 37 ◦C with 95% humidity and 5% CO2, and 100 µL of the respective
pH medium was exchanged every second day. Light microscopic images of the spheroids
at 10×magnification were acquired on days 2, 4, 7, and 9. On day 9, PANC-1 spheroids,
either non-transfected or transfected cells (in replicates of three) were transferred to a
black 96-well plate with 100 µL of the respective pH medium and 100 µL CellTiter-Glo®

3D Reagent (Promega, Madison, WI, USA). This plate was wrapped in aluminum foil,
shaken for 5 min, and then incubated without shaking for 25 min at room temperature.
The luminescence signal was recorded using a FLUOStar Optima microplate reader (BMG
Labtech, Ortenberg, Germany).

2.5. Western Blot Analysis

Proteins were extracted, determined, and separated by the SDS-page technique as
previously described [44]. The primary antibodies used were: anti-TRPC1 (1:1000, Abcam,
Waltham, MA, USA), anti-GAPDH (1:2000, Cell Signaling Tech., Danvers, MA, USA), anti-
CDK6 (1:500, Cell Signaling Tech., Danvers, MA, USA), anti-Cyclin A (1:500, Santacruz
Biotechnology, Dallas, TX, USA), anti-CDK2 (1:500, Cell Signaling Tech., Danvers, MA,
USA), anti-CDK1 (1:500, Cell Signaling Tech., Danvers, MA, USA), anti-p21CIP1 (1:500, Cell
Signaling Tech., Danvers, MA, USA), anti-PI3K p85α (1:500, Bioworld Technology, tebu-bio,
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France), anti-calmodulin (1:500, Santacruz Biotechnology, Dallas, TX, USA), anti-pAKT
(Ser473) (1:500, Cell Signaling Tech., Danvers, MA, USA), anti-AKT (1:500, Cell Signaling
Tech., Danvers, MA, USA), anti-pERK1/2 (Thr202/Tyr204) (1:500, Cell Signaling Tech.,
Danvers, MA, USA), and anti-ERK1/2 (1:500, Cell Signaling Tech., Danvers, MA, USA).
Secondary antibodies (1:4000, Cell Signaling Tech., Danvers, MA, USA) were coupled to
horseradish peroxidase, and proteins were detected using enhanced chemiluminescence
(Ozyme, Saint-Cyr-l’Ecole, France). Quantification was performed with the ImageJ software
1.53a (National Institute of Health, Bethesda, MD, USA) analysis tool. All experiments
were normalized to the level of GAPDH.

2.6. Cell Surface Biotinylation Assay

To determine the membrane fraction of TRPC1, 1× 106 HPNE cells or 8× 105 PANC-1 cells
grown in normal pH, acid adaptation, or acid recovery conditions were seeded in 60 mm
Petri dishes for 48 h and collected as previously described [45]. Briefly, cells were washed
three times with cold PBS, then incubated with 3 mg of sulfo-NHS-SS-biotin (Thermo Fisher
Scientific) and slightly shaken for 1 h at 4 ◦C. The reaction was interrupted by the addition
of cold PBS containing 10 mM glycine. Cells were scrapped with RIPA buffer, and ~ 10%
of the total lysate was saved as the total lysate fraction. The remaining lysate portion
(corresponding to the membrane fraction) was incubated with high-capacity streptavidin
agarose beads (Thermo Fisher Scientific, Waltham, MA, USA) with gentle rotation overnight
at 4 ◦C. After incubation, beads were washed four times with RIPA buffer. Proteins were
eluted from the beads with 50 µL of Laemmli buffer 2X and heated at 60 ◦C for 30 min. Both
total lysate samples and membrane fraction samples were used for Western blot analysis,
as described above.

2.7. Co-Immunoprecipitation

The 6 × 105 non-transfected or 1 × 106 transfected PANC-1 cells grown in the three
different pH conditions were seeded in 10 cm Petri dishes and collected after 72 h. As
previously described [37], 500 µg of proteins were used for co-immunoprecipitation with
SureBeads™ Protein A Magnetic Beads (Bio-Rad, France). Beads were washed thoroughly,
according to the manufacturer’s protocol. Then, 1 µg of either TRPC1 antibody (Abcam,
Waltham, MA, USA), PI3K p85α antibody (Bioworld Technology, tebu-bio, France), or a
control HRP-linked anti-rabbit IgG antibody (Cell Signaling Tech., Danvers, MA, USA)
were resuspended with the beads for 30 min. Protein lysates were subsequently washed
and added to the beads, which were slowly rotated for 2 h at room temperature. Af-
ter another sequential washing step of the beads, proteins were eluted according to the
manufacturer’s protocol. After denaturation, proteins were subjected to Western blot-
ting as described above. To detect the input, 50 µg of proteins from the corresponding
co-immunoprecipitation samples were used.

2.8. Immunofluorescence Assay and Analysis

The 8 × 104 non-transfected PANC-1 cells, grown under the three different pH condi-
tions, were seeded on coverslips for 48 h. Immunofluorescent staining was performed as
previously described [37]. Briefly, cells were washed in cold PBS and fixed for 20 min at
room temperature in 4% paraformaldehyde (PFA, Sigma, Saint-Quentin-Fallavier, France).
Cells were washed twice in PBS and permeabilized in 0.1% TritonTMX-100 (Sigma, Saint-
Quentin-Fallavier, France) for 10 min. Next, cells were blocked in 5% bovine serum albumin
(BSA, Sigma, Saint-Quentin-Fallavier, France) for 30 min, followed by the addition of pri-
mary antibodies overnight at 4 ◦C. The antibodies used were anti-TRPC1, (1:100, Santacruz
Biotechnology, Dallas, TX, USA), with Na+/HCO3

− co-transporter (NBCn1) used as a mem-
brane marker (1:400, Abcam, Waltham, MA, USA), and anti-PI3K p85α (1:100, Bioworld
Technology, tebu-bio, France). Secondary antibodies (AlexaFluor® 488/550 conjugated
antibody 1:600) were applied for 1 h at room temperature, followed by treatment with
4′,6-diamidino-2-phenylindole (DAPI; 1%) for 5 min to stain nuclei. Coverslips were
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washed three times and mounted on slides using Prolong® Gold antifade reagent. Images
were collected on an Olympus Cell Vivo IX83 with a Yokogawa CSU-W1 confocal scanning
unit. Z-stacks were deconvoluted in Olympus Cell Sens software using a constrained
iterative algorithm. No or negligible labeling was seen in the absence of primary antibodies.
Overlays and brightness/contrast/background adjustments were carried out using ImageJ
software. Mander’s overlapping R coefficient was calculated using the ImageJ software plu-
gin JACoP, which calculates the proportion of the green signal coincident with the magenta
signal over the total intensity [46]. The threshold setting was the same for both images.

2.9. Boyden Chamber Assay

Cell migration was evaluated using a Boyden chamber assay with 8 µm pore size
cell culture inserts (Falcon®, Corning, Boulogne-Billancourt, France), as previously de-
scribed [47]. Briefly, 4 × 104 non-transfected or transfected PANC-1 cells, grown under
the three different pH conditions, were seeded in the upper compartment of the chamber.
Both the upper and lower compartments were filled with the respective culture medium
containing 10% FBS. After 24 h of incubation at 37 ◦C, 95% humidity, and 5% CO2, inserts
were washed in PBS and fixed in methanol for 15 min at room temperature, followed by
staining with hematoxylin for 5 min. Inserts were washed in Milli-Q water and cleaned
with a cotton swab; 20 adjacent fields were counted per insert at ×400 magnification. The
number of migrating cells was normalized to their respective control (normal pH conditions
(pH 7.4) for non-transfected PANC-1 cells and siCTRL in normal pH conditions (pH 7.4)
for transfected PANC-1 cells). To ensure that there was no difference in viability between
the conditions after 24 h, the trypan blue assay (as described below) was performed.

To investigate the effect of extracellular Ca2+ concentrations on migration, we used the
same Boyden chamber procedure as described above, but after 8 h of seeding, medium in
the upper and lower chamber was changed to the respective medium, either with standard
conditions containing 1 mM Ca2+ (referred to as conditions with Ca2+) or containing
ethylene glycol tetraacetic acid (EGTA), to chelate Ca2+ and to end with a final concentration
of 30 µM (referred to conditions without Ca2+). Thus, cells were transfected for 72 h, where
Ca2+ where chelated for 24 h in total during the migration process.

2.10. Trypan Blue Assay

Non-transfected (4 × 104) or transfected (8 × 104) PANC-1 cells were seeded in 35 mm
Petri dishes. Subsequently, 24, 48, 72, or 96 h after seeding, cells were washed in PBS,
trypsinized, and diluted (1:5) in trypan blue solution (Sigma, Saint-Quentin-Fallavier,
France). All conditions were counted six times using the standard Malassez cell method.
Proliferation was calculated as the total number of viable cells (alive/white cells) normal-
ized to the control. As previously described, we tested the effect of extracellular Ca2+

concentrations on proliferation [37]. Here, the same counting procedure as described above
was carried out, but after 24 h of seeding, the medium was changed to medium with stan-
dard conditions containing 1 mM Ca2+ (referred to as conditions with Ca2+) or containing
EGTA to chelate Ca2+ and to end with a final concentration of 30 µM (referred to conditions
without Ca2+). Cells were transfected for 72 h, and Ca2+ was chelated for 48 h.

2.11. Flow Cytometry

Flow cytometry was carried out as described previously [37]. Briefly, duplicates of
2 × 105 non-transfected or transfected PANC-1 cells were seeded in 60 mm Petri dishes and
collected after 72 h. Cells were washed in PBS, trypsinized, and collected in PBS + EDTA
(5 mM), followed by fixation with cold absolute ethanol (≥99.8%, Sigma, Saint-Quentin-
Fallavier, France). Cells were kept at 4 ◦C for at least 6 h post-fixation. To prepare for
analysis, cells were pelleted, resuspended in PBS + EDTA (5 mM), treated with 20 µg/mL
RNase A (Sigma-Aldrich, St. Quentin Fallavier, France) for 30 min at room temperature,
and stained with 50 µg/mL of propidium iodide (Sigma-Aldrich, St. Quentin Fallavier,
France). The cell cycle distribution of each sample was determined by flow cytometry
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analysis of nuclear DNA content using a flow cytometer (Accuri®, Dominique Deutscher,
Brumath, France). The cell percentage in different phases was calculated using Cyflogic
software and illustrated with FCS Express 7.

2.12. Proximity Ligation Assay

The 8 × 104 non-transfected or transfected PANC-1 cells grown in one of the three pH
media were seeded on coverslips 72 h before the proximity ligation assay (PLA) experiment.
As described before [47], cells were washed twice with PBS, then fixed with PFA (4%) at
room temperature for 20 min. Cells were washed twice in PBS and permeabilized with
0.1% TritonTM X-100 (Sigma, Saint-Quentin-Fallavier, France) for 10 min. The Duolink in
situ PLA detection kit (Sigma-Aldrich, Saint-Quentin-Fallavier, France) was used to detect
interactions between TRPC1 and the PI3K p85α subunit. Experiments were performed
according to the manufacturer’s protocol. Red fluorescent oligonucleotides produced as
the end product of the procedure were visualized using the Zeiss Observer Z1 microscope
60X oil objective (Carl Zeiss, Oberkochen, Germany). Images were analyzed using ImageJ,
where puncta per cell were counted and normalized to the respective control; normal
pH conditions (pH 7.4) for non-transfected cells, and siCTRL in their respective medium
(pH 6.5 or 7.4R). A total of 20 pictures per condition were captured and analyzed, and are
presented as relative number puncta/cell.

2.13. Manganese Quench Assay

To estimate divalent cation influx under basal conditions, we used the manganese
(Mn2+) quenching technique as previously described [47]. Briefly, 25 × 103 transfected
PANC-1 cells, grown under one of the three pH conditions, were seeded on glass coverslips
for 72 h. At the beginning of each experiment, cells were incubated with 3.33 µM Fura-
2/AM (Sigma, Saint-Quentin-Fallavier, France) at 37 ◦C, 95% humidity, 5% CO2 for 45 min
in the dark. Cells on the coverslip were washed twice with extracellular saline solution
(145 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 5 mM glucose, 10 mM HEPES, pH 7.4
or pH 6.5), and placed on the stage of a fluorescence microscope (Axiovert 200; Carl Zeiss,
Oberkochen, Germany). Cells were excited at 360 nm using a monochromator (polychrome
IV, TILL Photonics, Gräfelfing, Germany), and fluorescent emission was captured with
a Cool SNAPHQ camera (Princeton Instruments, Lisses, France) after filtration through
a long-pass filter (510 nm). Metafluor software (version 7.1.7.0, Molecular Devices, San
Jose, CA, USA) was used for signal acquisition and data analysis. After 1.5 min, the saline
solution (including 2 mM Ca2+) was replaced by 2 mM Mn2+ solution by perfusion. The
Mn2+ quenching extracellular solution contains 145 mM NaCl, 5 mM KCl, 2 mM MnCl2,
1 mM MgCl2, 5 mM glucose, and 10 mM HEPES, and was adjusted with NaOH or HCl
to pH 7.4 or 6.5. The Mn2+ influx, a corroborate of Ca2+ influx, was estimated from the
quenching rate of fluorescence at 360 nm by calculating the slope.

2.14. Statistical Analysis

All data are shown as representative images or as mean measurements with standard
error of means (SEM) error bars and represent at least three independent experiments. N
refers to the number of independent experiments performed, or to the number of cells
analyzed. Welch’s correction t-test or Tukey’s multiple comparison test was applied to test
for statistically significant differences between two groups. *, **, and *** denotes p < 0.05,
p < 0.01, and p < 0.001, respectively. All graphs and statistics were generated in GraphPad
Prism 9.0 software (San Diego, CA, USA).

3. Results
3.1. Acid Adaptation Promotes Membrane Localization of TRPC1 in PANC-1 Cells

Before investigating the impact of the acidic tumor microenvironment on the growth
and migration of PANC-1 cells, we studied the pHi values in different pHo conditions
buffered with HCO3

−/CO2. We observed that PANC-1 cells grown in normal pH conditions
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(pH 7.4) exhibited a pHi of 7.3. This value decreased to 6.9 in acid-adapted cells (pH 6.5),
and increased to 7.6 in acid-adapted cells measured at pH 7.4 (n = 6–11, p < 0.05, Figure 1A).
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Figure 1. TRPC1 protein expression is affected by acid adaptation and recovery and favors the
plasma membrane localization. (A) Steady state pHi in PANC-1 cells grown in normal pH or acid
adaptation conditions and measured in HCO3

− Ringer adjusted to pH 7.4 or 6.5 (X-axis). 6.5→ 7.4
indicate acid-adapted cells measured in pHe 7.4. (n = 6–11). (B) Western blot analysis (left panel) and
quantification (right panel) of TRPC1 expression in PANC-1 cells grown under normal pH (7.4), acid
adaptation (6.5) or acid recovery conditions (7.4R) (n = 3–4). (C) Western blot analysis (left panel) and
quantification (right panel) of TRPC1 expression in PANC-1 spheroids grown under normal pH (7.4),
acid adaptation (6.5), or acid recovery conditions (7.4R) for 9 days (n = 3–5). Welch’s correction
t-test was used to determine the significant difference between different conditions. *, ** and ***
indicate p < 0.05 and 0.01 and 0.001 respectively. (D) Representative immunofluorescent analysis of
TRPC1 and the membrane protein Na+/HCO3

− co-transporter (NBCn1, used as membrane marker)
in PANC-1 cells grown under normal pH (7.4), acid adaptation (6.5) or acid recovery conditions (7.4R)
(n = 3), scale bars = 20 µm. (E) Cell surface biotinylation followed by Western blotting indicating
membrane fraction or total lysate of TRPC1. The uncropped blots are shown in File S1.
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Recently, we have shown an overexpression of TRPC1 in human PDAC tissue and
the aggressive PANC-1 cell line [37]. Hence, we investigated the effect of the acidic tumor
microenvironment on the expression and the localization of TRPC1 in PANC-1 cells. The
protein levels of TRPC1 were significantly reduced by 37 ± 9% in acid-adapted PANC-1
cells compared to cells cultured in normal conditions (n = 3–4, p < 0.05, Figure 1B). Moreover,
TRPC1 protein expression in acid-recovered PANC-1 cells (pH 7.4R) was significantly in-
creased by 60± 16.9% compared to acid-adapted PANC-1 cells (n = 3–4, p < 0.05, Figure 1B).
The protein levels of TRPC1 in spheroid PANC-1 cells grown in different pH conditions
were comparable with those found in the 2D model (n = 3–5, p < 0.05, Figure 1C). Using
surface biotinylation and confocal imaging, we found that TRPC1 was expressed in the
plasma membrane of PANC-1 cells in all three pH conditions compared to a duct-like cell
line HPNE. However, the membrane fraction was increased in the majority of acid-adapted
cells (n = 3, Figure 1D,E). These results indicate that acid adaptation decreases the global
expression of TRPC1, but favors its plasma membrane localization.

3.2. The Knockdown of TRPC1 Inhibits Cell Migration and the Growth of PANC-1 Cells and
Spheroids under Acid Recovery Conditions

It is well known that the acidic tumor microenvironment can promote migration and
slow down the proliferation of cancer cells [8,41,48,49]. First, we investigated the effect of
pH on cell migration and viability. As expected, we found that acid-adapted PANC-1 cells
migrated more than cells grown in normal pH and acid recovery conditions (75 ± 11.4%,
n = 3, p < 0.001, Figure 2A), and showed a significant decrease in viability (25 ± 10.7% and
36 ± 6.3% for 72 h and 96 h of cell culture, respectively) when compared to cells cultured
in pH 7.4 (n = 3, p < 0.05, Figure 2B). Similar results were found in PANC-1 spheroids
(n = 4, p < 0.01, Figure 2C,D). Indeed, acid-adapted PANC-1 spheroids grown for 9 days
displayed lower viability by 25 ± 4% and by 43 ± 4.8% compared to normal pH and
recovery conditions, respectively (n = 4–5, p < 0.01, Figure 2C,D).

To investigate the role of TRPC1, we validated our knockdown (KD) model. In normal
pH, TRPC1 protein expression was reduced by 44 ± 10% 72 h post-transfection [37] and by
46 ± 3% and 59 ± 6.6% in acid adaptation and recovery conditions, respectively (Figure S1C).
Similar results were found at the transcriptional level after 48, 72, and 96 h (Figure S1A,B).
Silencing of TRPC1 reduced cell migration by 25 ± 6.8% in normal pH, 43 ± 5.1% in
acid adaptation, and 49 ± 3.7% in acid recovery conditions (n = 3–4, p < 0.05 and 0.001,
Figure 3A). We did not observe a significant effect of TRPC1 KD on viability after 24 h of
seeding (Figure S2A). KD of TRPC1 in PANC-1 cells in normal pH conditions inhibited
cell proliferation by 48 ± 17.4% and 38 ± 17.6% after 72 and 96 h, respectively [37], and
spheroid growth by 22 ± 2.3% [37]. KD of TRPC1 decreased the viability of acid-adapted
and -recovered cells by 31.5± 12.2% (n = 3–4, p < 0.05, Figure 3B) and 33± 12%, respectively
72 h post-transfection (n = 5, p < 0.01, Figure 3C). In addition, the annexin-5 analysis did not
show any significant effect on apoptosis or necrosis (Figure S2E,F). To investigate whether
the acid adaptation and recovery emphasize the involvement of TRPC1 in spheroid growth,
we developed a siRNA-based KD of TRPC1 in spheroids. First, we confirmed the KD of
TRPC1 after 9 days, where TRPC1 protein levels were decreased by 27 ± 16% and 41 ± 8%
in acid adaptation and recovery conditions, respectively (Figure S1D). This KD of TRPC1
significantly decreased the viability of spheroids by 38 ± 6.5% in acid recovery conditions
(n = 3, p < 0.05, Figure 3D,E). However, the silencing of TRPC1 did not affect the viability of
acid-adapted spheroids (n = 3, Figure 3D,E). These results indicate that TRPC1 contributes
to cell migration and proliferation of PANC-1 cells considerably in acid recovery conditions.
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Figure 2. Acid adaptation promotes PANC-1 cell migration but attenuates proliferation, which is
restored upon acid recovery. (A) Cell migration of PANC-1 cells grown under normal pH (7.4),
acid-adapted (6.5), or acid recovery conditions (7.4R) analyzed by Boyden chamber assay (n = 3).
(B) Trypan blue analysis of PANC-1 cells grown under normal pH (7.4), acid-adapted (6.5), or acid
recovery conditions (7.4R) shows the relative number of viable cells after 24, 48, 72, and 96 h after
seeding (n = 3). (C) Representative images of PANC-1 spheroids grown for 9 days and (D) viability
quantification performed with CellTiter-Glo® assay (n = 4–5), scale bar = 400 µm. Welch’s correction
t-test was used to determine the significant difference between different conditions. ns indicates
non-significance. *, **, and *** indicate p < 0.05, 0.01, and 0.001, respectively.

3.3. Knockdown of TRPC1 Accumulates Cells in the G0/G1 Phase and Decreases the Number of
Cells in the G2/M Phase

To investigate the mechanism by which pH and TRPC1 KD affect PANC-1 cell prolifer-
ation, we examined the cell cycle distribution by flow cytometry. First, we discovered that
non-transfected cells grown in both acid adaptation and recovery conditions accumulated
in the G0/G1 phase compared to cells cultured under normal pH conditions by 13.8 ± 4%
and 10.7 ± 2.2%, respectively (n = 3, p < 0.01, Figure 4A). Furthermore, the number of
cells in the S phase decreased significantly by 21 ± 6.4% in acid adaptation conditions. It
increased significantly by 17 ± 5% in acid recovery conditions when compared to cells in
normal pH conditions (n = 3, p < 0.01, Figure 4A). In the G2-M phase, the number of cells
were decreased by 26 ± 5.8% and 26 ± 3.8% in acid adaptation and recovery conditions,
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respectively, compared to normal pH conditions (n = 3, p < 0.01 and 0.001, Figure 4A). These
results indicate that acid adaptation of PANC-1 cells arrests them in the G0/G1 phase. In
contrast, when they recover from this acid adaptation, they accumulate in the S phase and
proliferate to a greater extent than cells grown in control conditions.
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Figure 3. TRPC1 silencing inhibits cell migration, proliferation, and the growth of PANC-1 spheroids
under acid recovery conditions. (A) Cell migration of siTRPC1 cells grown under normal pH (7.4),
acid adaptation (6.5), or acid recovery conditions (7.4R) analyzed by Boyden chamber assay (n = 3–4).
Tukey’s multiple comparison test was used to determine significant differences between conditions.
(B) Trypan blue analysis of siTRPC1 PANC-1 cells grown under acid adaptation (6.5), or (C) acid
recovery conditions (7.4R), showing the relative number of viable cells 24, 48, 72, and 96 h post-
transfection (n = 3–5). (D) Representative images of siTRPC1 transfected PANC-1 spheroids grown for
9 days, and (E) viability quantification performed with CellTiter-Glo® assay of siTRPC1 transfected
spheroids grown under acid adaptation (6.5) or acid recovery (7.4R) (n = 3), scale bar = 400 µm.
Welch’s correction t-test was used to determine the significant difference between siCTRL and siTRPC1
conditions. ns indicates non-significance. *, **, and *** indicate p < 0.05, 0.01, and 0.001, respectively.
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Figure 4. TRPC1 silencing accumulates cells in the G0/G1 phase and reduces the number of cells in
the G2/M phase in both acid adaptation and recovery conditions. (A) Quantification of cell cycle
analysis representing the percentage of cells in each cell cycle phase of non-transfected PANC-1 cells
grown under normal pH (7.4), acid adaptation (6.5) or acid recovery conditions (7.4R) (left panel) and
representative data from FACS acquisition (right panel). (B) Quantification of cell cycle analysis rep-
resenting the percentage of cells in each cell cycle phase of siTRPC1 transfected PANC-1 cells grown
under acid adaptation (6.5) or (C) acid recovery conditions (7.4R) (left panel), and representative data
from FACS acquisition (right panel). Welch’s correction t-test was used to determine the significant
difference between different conditions. *, **, and *** indicate p < 0.05, 0.01, and 0.001, respectively.

In addition to the effect of pH, we investigated the role of TRPC1 in the cell cycle
distribution in acid-adapted and -recovered cells. We have previously shown that silencing
of TRPC1 accumulated cells grown in normal pH conditions in the G0/G1 phase and
decreased the number of cells in the S phase [37]. Here, we show, in the acid adaptation
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conditions, that TRPC1 silencing resulted in a slight accumulation (10 ± 4.3%) of cells in
the G0/G1 phase and a decrease in the number of cells in the G2/M phase by 17 ± 7.4%
(n = 4, p < 0.05, Figure 4B). This profile was maintained upon TRPC1 KD in acid recovery
conditions; with an increase in the number of cells by 9.4 ± 4% in the G0/G1 phase and a
decrease of 15.1 ± 4% in the G2/M phase (n = 4, p < 0.05 and 0.01, Figure 4C). These results
suggest that TRPC1 is involved in G0/G1 progression, regardless of the pH condition.
Furthermore, the role of TRPC1 in cell cycle progression shifts from the S phase in normal
pH conditions to the G2/M phase in acidic and recovery conditions.

3.4. TRPC1 Strongly Modulates the Expression of CDKs and Cyclin A in Acid Adaptation and
Recovery Conditions

In normal pH conditions, the KD of TRPC1 reduced the expression of CDK6, CDK2,
and cyclin A and increased p21CIP1 expression [37]. We investigated the effect of siTRPC1 on
the expression of these proteins in both acid-adapted and -recovered cells. Our immunoblot
analysis showed that the expression of CDK6 and CDK2 was more affected in acid-adapted
and -recovered cells depleted of TRPC1. CDK6 protein expression was decreased by
53 ± 5.3% and 73 ± 1.5% and CDK2 expression was decreased by 43 ± 1.3% and 70 ± 1.5%
in acid-adapted (n = 3–4, p < 0.01 and 0.001, Figure 5A,B) and -recovered cells (n = 3–6,
p < 0.05 and 0.01, Figure 5A,C), respectively. A similar profile was observed for cyclin
A and p21CIP1 expression. The expression of cyclin A was reduced by 45 ± 7.8% and
44 ± 4.2%, and the expression of p21CIP1 was upregulated by 31% ± 6.2% and 34% ± 2.7%,
in acid-adapted and -recovered cells, respectively (n = 4, p < 0.05 and 0.01, Figure 5A,E,F).
The expression of CDK1, the regulator driving cells through the G2/M phase, was not
affected by TRPC1 KD in normal pH conditions [37]. In this study, the silencing of TRPC1
decreased CDK1 expression by 20 ± 4.9% and 45 ±1.4% for cells grown in acid adaptation
and recovery conditions, respectively (n = 3–5, p < 0.05, Figure 5A,D). Moreover, TRPC1
KD failed to affect the expression of cyclin B1, D1, D3, and E, along with CDK4 in both
acid-adaptated and -recovered cells (Figure S3A). Collectively, these results suggest that
the depletion of TRPC1 has a stronger effect on the expression of the cell cycle regulating
proteins, CDK1, -2, and -6, cyclin A, and p21CIP1 in acid-recovered PANC-1 cells than in
normal pH and acid-adapted cells.

3.5. TRPC1 Interacts Strongly with the PI3K p85α Subunit and CaM under Acid Adaptation and
Recovery Conditions

The PI3K signaling cascade is a regulator of cell cycle progression, as it activates
transcription of cell cycle regulating proteins [50]. TRPC1 has been shown to be involved in
activating the PI3K signaling pathway [30,33,51], and we have recently demonstrated that
TRPC1 formed a complex with the PI3K p85α subunit and its associated connecting protein
CaM, thereby regulating PANC-1 cell proliferation under normal pH conditions [37]. Thus,
we aimed to investigate the role of the acidic tumor microenvironment and TRPC1 in
association with PI3K signaling. Through confocal imaging, we found that TRPC1 also
co-localized with the PI3K p85α subunit in acid-adapted PANC-1 cells, and that this was
maintained under acid recovery conditions (Figure 6A). This co-localization was illustrated
by the calculation of Mander’s overlapping R coefficient, which was 0.13, 0.58, and 0.48 in
normal pH, acid adaptation, and acid recovery conditions, respectively (Figure 6A). We
further investigated the protein interaction between the PI3K p85α subunit and TRPC1.
With PLA analysis, we found an increase in the proximity between the PI3K p85α subunit
and TRPC1 in acid-adapted cells by 43.8 ± 5.6% and by 28 ± 7.2% in acid-recovered
cells, compared to cells grown under normal pH conditions, respectively (n = 3, p < 0.01
and 0.001, Figure 6B,C). The proximity was decreased by 21 ± 6.7% in acid-recovered
cells compared to acid-adapted cells (n = 3, p < 0.01, Figure 6B,C). The protein–protein
interaction was then confirmed by co-IP analysis, where we found similar results with the
pull-down of both TRPC1 and PI3K p85α (Figure 6D). In addition, we investigated the
interaction between CaM and TRPC1. Indeed, CaM can function as a connecting protein
between TRPC1 and the p85α subunit of PI3K [51]. We found that CaM interacted with
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TRPC1 and the PI3K p85α subunit in all three pH conditions (Figure 6D). To strengthen the
indication of a complex between TRPC1, PI3K, and CaM, we first performed PLA analysis
on PANC-1 cells upon the silencing of TRPC1. We observed that the protein interaction
between the PI3K p85α subunit and TRPC1 was decreased by 50.7 ± 6.2% and 34.2 ± 8.0%
under acid adaptation and recovery conditions, respectively (n = 3, p < 0.001, Figure 7A,B).
Next, we determined the protein–protein interaction upon the KD of TRPC1 by co-IP.
Compared to siCTRL conditions, the interaction between TRPC1 and the PI3K p85α subunit
was significantly decreased in siTRPC1 conditions by 79.8 ± 8.5% and 47.2 ± 14.5% in
acid-adapted and -recovered cells, respectively (n = 4, p < 0.05 and 0.01, Figure 7C,D).
Furthermore, a significant decrease in protein–protein interaction by 40.3 ± 10.8% and
23.0 ± 6.0% was observed between TRPC1 and CaM in acid-adapted and -recovered cells,
respectively (n = 4, p < 0.05 and 0.01, Figure 7C,E). Collectively, these results indicate that
TRPC1 interacts strongly with the PI3K p85α subunit under acidic and recovery conditions,
probably in assembly with CaM.
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Figure 5. TRPC1 silencing decreases the expression of CDK6, -1, -2, and cyclin A and increases the
expression of p21CIP1 to a greater extent in acid recovery conditions. (A) Western blot analysis of
relevant cyclin-dependent kinase complexes and cyclins and their inhibitor p21CIP1 from cells grown
under acid adaptation (6.5) or acid recovery conditions (7.4R). (B) Quantification of Western blot
analysis representing the expression of CDK6, (C) CDK2, (D) CDK1, (E) cyclin A, and (F) p21CIP1 in
siTRPC1 lysates compared to siCTRL lysates from PANC-1 cells grown under acid adaptation (6.5)
or acid recovery (7.4R) conditions (n = 3 − 6). Welch’s correction t-test was used to determine the
significant difference between siCTRL and siTRPC1. *, **, and *** indicate p < 0.05, 0.01, and 0.001,
respectively. The uncropped blots are shown in File S1.
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Figure 6. TRPC1 strongly interacts with the PI3K p85α subunit and CaM in acid adaptation and
recovery conditions. (A) Representative immunofluorescent analysis of TRPC1 and the PI3K p85α
subunit in PANC-1 cells grown under normal pH (7.4), acid adaptation (6.5) or acid recovery con-
ditions (7.4R), scale bars = 20 µm. Mander’s R coefficient was used to quantify the co-localization
between the two fluorophores (n = 3). (B) Representative images of proximity ligation assay (PLA)
in PANC-1 cells grown under normal pH (7.4), acid adaptation (6.5), or acid recovery conditions
(7.4R), scale bar = 10 µm. (C) Quantification of PLA where conditions are normalized to normal pH
conditions (7.4) (n = 3). Welch’s correction t-test was used to determine the significant difference
between different conditions. ** and *** indicate p < 0.01 and 0.001, respectively. (D) Representative
Western blot analysis of co-immunoprecipitation of TRPC1 and PI3K p85α subunit with CaM in
non-transfected PANC-1 cells grown under normal pH (7.4), acid adaptation (6.5) or acid recov-
ery conditions (7.4R), (n = 3–5). The control pull-down performed with rabbit IgG is presented in
Figure S3B. The uncropped blots are shown in File S1.
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Figure 7. TRPC1 silencing inhibits the interaction between the PI3K p85a subunit and CaM. (A) Rep-
resentative images of PLA in transfected PANC-1 cells grown under acid adaptation (6.5) or acid
recovery conditions (7.4R). Scale bar = 10 µm. (B) Quantification of PLA in transfected PANC-1
cells grown under acid adaptation (6.5) or acid recovery conditions (7.4R), where siTRPC1 is com-
pared to the relative number of siCTRL (n = 3). Welch’s correction t-test was used to determine
the significant difference between different conditions. (C) Representative Western blot analysis of
co-immunoprecipitation of TRPC1 with PI3K p85α and CaM in transfected PANC-1 cells grown
under acid adaptation (6.5) or acid recovery conditions (7.4R). The control pull-down performed with
rabbit IgG is presented in Figure S3B. (D) Quantification of PI3K p85α subunit intensity and (E) CaM
intensity from co-immunoprecipitation (n = 3–4). Welch’s correction t-test was used to determine
the significant difference between different conditions. *, **, and *** indicate p < 0.05, 0.01, and 0.001,
respectively. The uncropped blots are shown in File S1.
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3.6. The Knockdown of TRPC1 Decreases the Phosphorylation of AKT and ERK1/2 in
Acid-Recovered PANC-1 Cells

In normal pH conditions, TRPC1 silencing regulates AKT to a greater extent than
ERK1/2, with a decrease of 39 ± 7.8% and 13 ± 0.4%, respectively [37]. Hence, we
investigated the effect of TRPC1 silencing on the phosphorylation of AKT and ERK1/2
in acid-adapted and -recovered cells. The KD of TRPC1 reduced the activation of AKT
less in acid-adapted cells (27.4 ± 4.2%), and more in acid-recovered cells (48.0 ± 5.6%),
when compared to normal pH (n = 4–5, p < 0.01, Figure 8A,B). Moreover, AKT total
expression remained unchanged. Silencing of TRPC1 reduced the activation of ERK1/2
strongly in acid-adapted and -recovered cells when compared to pH 7.4 (32.0 ± 6.9%
and 39.0 ± 10.7%), respectively, without affecting the total ERK1/2 protein expression
(n = 4, p < 0.05, Figure 8C,D). Taken together, these results indicate that TRPC1 affects
the activation of AKT to a greater extent in acid-recovered PANC-1 cells and ERK1/2
phosphorylation in both conditions.

Once we had established that TRPC1 and the PI3K p85α subunit interact with CaM,
and that TRPC1 regulates AKT and ERK1/2 phosphorylation, we investigated whether the
inhibition of CaM affected the downstream signaling protein kinases AKT and/or ERK1/2.
Treatment of cells with the CaM inhibitor W7 for 72 h decreased the phosphorylation of
AKT by 25 ± 6.8% in acid recovery conditions (n = 4, p < 0.05, Figure S4E). No significant
decrease was found in normal pH or acid adaptation conditions (n = 3–4, Figure S4A,C).
Furthermore, we found that the treatment with W7 decreased the phosphorylation of
ERK1/2 by 23.8 ± 1.9%, 35.0 ± 10.5%, and 40.0 ± 6.0% in normal pH, acid adaptation,
and acid recovery conditions, respectively (n = 4, p < 0.05 and 0.01, Figure S4B,D,F). These
results indicate that CaM-dependent mechanisms regulate AKT solely in acid-recovered
cells, while ERK1/2 levels are affected in all conditions and notably in acid-adapted and in
acid-recovered PANC-1 cells.

3.7. PANC-1 Cell Migration and Proliferation Depend Mainly on Extracellular Ca2+ Entry, Likely
through TRPC1, in Acid-Adapted and -Recovered PANC-1 Cells

TRPC1 is not involved in SOCE, nor in basal Ca2+ entry in normal pH conditions;
instead, it regulates PANC-1 cell proliferation through a Ca2+-independent mechanism [37].
As TRPC1 was more localized at the plasma membrane in both acid-adapted and -recovered
cells compared to control, we investigated whether TRPC1 participates in Ca2+ entry in
these conditions. First, we found an increase in Mn2+ quenching in acid-recovered cells
(34.7 ± 5.8% and 57 ± 6.2%), compared to cells grown in normal pH and acid adapta-
tion conditions, respectively, (n = 150, 405, and 325, p < 0.01 and 0.001, Figure 9A–D).
Furthermore, we found that KD of TRPC1 decreased Mn2+ quenching by 60.2 ± 6.8% in
acid-adapted cells (n = 5, p < 0.001, Figure 9B,D) and by 21.5 ± 6.8% in acid-recovered cells
(n = 5, p < 0.01, Figure 9C,D), whereas no effect was observed in normal pH conditions
(n = 3, Figure 9A,D). Moreover, TRPC1 KD elicited a decrease of 12.8 ± 2.4% in the basal
Ca2+ ratio in acid-adapted cells only (n = 3, p < 0.001, Figure S5A,B), and failed to affect
SOCE in acid adaptation and recovery conditions (n = 4, respectively, Figure S5A,C–F).

Given the ability of TRPC1 to regulate basal Ca2+ entry in acid-adapted and -recovered
cells, and to understand whether Ca2+ is involved in cell migration and proliferation, we
cultured cells in normal and low Ca2+ (30 µM free Ca2+) medium. Cell migration decreased
by 40 ± 3.7% and 34.2 ± 5.6% in acid-adapted and -recovered cells, respectively, in the low
Ca2+ medium (n = 3 and 4, p < 0.001, Figure 10B,C). KD of TRPC1 in this condition reduced
migration additionally by 15.2± 4.7% and 12.5± 6.3% in acid-adapted and -recovered cells,
respectively (n = 3 and 4, p < 0.001 and < 0.05, Figure 10B,C). Furthermore, no significant
difference was found between the cell migration of siTRPC1 cells in normal Ca2+ medium
and in siCTRL cells in low Ca2+ medium, indicating that TRPC1 mainly regulates PANC-1
cell migration in a Ca2+-dependent manner in acid adaptation conditions (n = 3, Figure 10B).
In normal pH conditions, low Ca2+ medium failed to affect cell migration, and silencing of
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TRPC1 reduced it to a similar extent with or without extracellular Ca2+ (27.1 ± 4.7% and
30.4 ± 5.9, respectively; n = 3, p < 0.001, Figure 10A).
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Figure 8. TRPC1 silencing inhibits the phosphorylation of AKT and ERK1/2, notably in acid recovery
conditions. (A) Western blot analysis of phosphorylated AKT (pAKT) and total AKT in transfected
PANC-1 cells grown in acid adaptation (6.5) conditions or (B) in acid recovery (7.4R) conditions
after mitogen activation with FBS for either 0 or 30 min (left panel). Quantification of the Western
blot analysis compared to siCTRL either after 0 min or 30 min of mitogen activation (right panel).
(C) Western blot analysis of phosphorylated ERK1/2 (pERK1/2) and total ERK1/2 in transfected
PANC-1 cells grown in acid adaptation (6.5) conditions or (D) in acid recovery conditions (7.4R) after
mitogen activation with FBS for either 0 or 30 min (left panel). Quantification of the Western blot
analysis compared to siCTRL either after 0 min or 30 min of mitogen activation (right panel). Welch’s
correction t-test was used to determine the significant difference between siCTRL and siTRPC1. ns
indicates non-significance. * and ** indicate p < 0.05 and 0.01, respectively. The uncropped blots are
shown in File S1.
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Figure 9. TRPC1 reduces basal Ca2+ entry in acid adaptation and recovery conditions. (A) Represen-
tative traces of Mn2+ quenching in transfected PANC-1 cells grown in normal pH conditions (7.4),
(B) in acid adaptation (6.5) conditions, or (C) in acid recovery conditions (7.4R). (D) Quantification
of siCTRL and siTRPC1 transfected PANC-1 cells in all three conditions (number of analyzed cells;
pH 7.4 siCTRL n = 150 and siTRPC n = 128, pH 6.5 siCTRL n = 405 and siTRPC n = 326, pH 7.4R
siCTRL n = 325 and siTRPC n = 214). Tukey’s multiple comparison test was used to determine
significant differences between conditions. ns indicates non-significance. ** and *** indicate p < 0.01
and 0.001, respectively.

Growth in low Ca2+ medium for 48 h decreased cell proliferation by 24.1 ± 5.3% and
30 ± 3.5% in acid adaptation and recovery conditions, respectively (n = 4 and 5, p < 0.001,
Figure 10D,E). Furthermore, in low Ca2+ conditions, KD of TRPC1 decreased cell prolifera-
tion additionally by 16.2 ± 5.8% in acid-adapted and by 15.3 ± 4.9% in acid-recovered cells
(n = 4 and 5, p < 0.01 and 0.001, Figure 10D,E). These results suggest that in acid-adapted
and -recovered PANC-1 cells, proliferation and migration exhibit increased dependence on
extracellular Ca2+ levels. TRPC1 permits Ca2+ entry, which regulates cell migration and
proliferation by Ca2+-dependent and, to some extent, -independent mechanisms.
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Figure 10. The role of TRPC1 in PANC-1 cell migration and proliferation shifts from being
Ca2+-independent in normal pH conditions to being substantially Ca2+-dependent in acid adaptation
and recovery conditions. (A) Boyden chamber assay analysis of transfected PANC-1 cells grown in
normal pH conditions, (B) in acid-adapted (6.5) conditions, or (C) in acid-recovered (7.4R) conditions.
Cells were transfected for 72 h in total. After 48 h, cells were seeded in Boyden inserts for 8 h, and
were then treated with medium containing extracellular Ca2+ concentrations (+ Ca2+), or with a
medium depleted of extracellular Ca2+ (− Ca2+), for 24 h (n = 3). (D) Trypan blue assay analysis
of transfected PANC-1 cells grown in acid-adapted (6.5) conditions or (E) in acid-recovered (7.4R)
conditions. Cells were transfected for 72 h in total and either treated with medium containing extra-
cellular Ca2+ concentrations (+ Ca2+), or with medium depleted of extracellular Ca2+ (− Ca2+), for
48 h (n = 3). Tukey’s multiple comparison test was used to determine significant differences between
conditions. ns indicates non-significance. *, **, and *** indicate p < 0.05, 0.01, and 0.001, respectively.

4. Discussion

Numerous studies have addressed the impact of TRPC1 dysregulation on hallmarks of
cancer. However, the interplay between the acidic tumor microenvironment and TRPC1 ex-
pression and downstream mechanisms contributing to PDAC progression are unexplored.
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The key findings of this study are: (i) The acidic tumor microenvironment promotes
PDAC cell migration but attenuates proliferation, which is restored upon recovery. (ii) Acid
adaptation reduces TRPC1 expression but favors its plasma membrane localization and
its interaction with the PI3K p85α subunit and CaM. (iii) TRPC1 regulates acid-adapted
and -recovered PANC-1 cell migration and proliferation by both Ca2+-dependent and
-independent mechanisms. This likely occurs through the PI3K/CaM axis and the down-
stream activation of AKT and ERK1/2.

Acid adaptation creates an evolutionary selection pressure that contributes to a ma-
lignant phenotype [52,53]. Our results show that acid adaptation reduces PANC-1 cell
viability and spheroid growth. In congruence with this, other studies have found the
same events in different types of cancer cells [54–56], including PDAC cell lines [40,57,58].
Although acid adaptation is becoming of interest, not much is known about the recovery
of and fluctuations in the acidic microenvironment. However, one study has shown that
oral squamous cell carcinomas can restore their proliferation capacity after 7 and 21 days of
acid treatments (pH 6.8) followed by 7 days of recovery (pH 7.4). To our knowledge, we are
the first to show that 14 days of acid recovery restores PANC-1 proliferation rates, and that
PANC-1 spheroid viability is enhanced after 9 days of recovery in normal pH conditions.

It is well accepted that proliferation and cell cycle progression depend on a permissive
and slightly alkaline pHi [41,48]. Our results show that acid-adapted PANC-1 cells exposed
to pH 7.4 exhibited a more alkaline pHi. The acid adaptation and recovery conditions led
to the accumulation of cells in G0/G1 phases and decreased the number of cells in G2/M
phases. Regarding the S phase, the number of cells was increased in the acid recovery
conditions, suggesting that acid adaptation promotes a more alkaline pHi, which results in
the improved cell proliferation of acid-recovered PANC-1 cells.

Moreover, long-term acidosis enhances extracellular matrix degradation that promotes
cell migration and invasion [8,15]. Our findings are in congruence with previous reports
showing that acid adaptation increased the migratory abilities of cancer cells, including
PANC-1 cells [39,52,54–56,59]. However, the cell migration was reduced upon recovery
conditions to the same levels as for normal pH conditions. Similar results were found in
prostate carcinoma cells, where acute acidosis (3 h) followed by 24 h of pH 7.4 treatment
decreased cell motility [60]. In oral squamous carcinoma cells, no difference in cell migration
was found between acid-adapted (21 days) and -recovered (7 days) conditions. However,
after only 7 days of acid treatment and 7 days of recovery under normal conditions, cell
migration increased [54]. In a mouse model of metastatic breast cancer, an increase in
pH to 7.4 after acid adaptation led to reduced spontaneous metastases [61]. These results
suggest that migratory properties of acid-recovered cells are cell type-specific and depend
on the time of acidosis and recovery.

We recently demonstrated that TRPC1 does not contribute to Ca2+ entry in PANC-1
cells grown under normal pH conditions [37]. Here, we show that there is a decrease in
TRPC1 expression along with an increase in the plasma membrane fraction of TRPC1 in
acid-adapted cells. In acid-recovered cells, the expression increased and increased plasma
membrane localization of TRPC1 was maintained. In addition, TRPC1 was involved in Ca2+

entry in acid adaptation and recovery conditions. Moreover, the Ca2+ entry was increased
upon acid recovery, indicating that PANC-1 cells grown in these conditions depend more on
extracellular Ca2+ concentrations. It is unknown whether TRPC1 expression and function
are affected by changes in pH. However, acidic pH activates its homologs TRPC4 and
TRPC5 [35,36], leading to Ca2+ entry. In addition, other ion channels, transporters, and
receptors can function as extracellular acid/base sensors, thereby increasing Ca2+ concen-
trations [48,62]. Furthermore, it has been reported that TRPC1 plasma membrane levels are
low when in an inactive form, and that the transfer and activation of the channel depends
on Ca2+ entry through ORAI1 and STIM1 [63,64]. Additional to other Ca2+ channels, TRPC1
trafficking to the plasma membrane can depend on other membrane-bound proteins. For
instance, the GTP-binding protein RhoA promotes the plasma membrane translocation [65]
and activation of TRPC1, which leads to SOCE [66]. The interaction between RhoA and
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TRPC1 leads to cell migration of intestinal epithelial cells [66]. In a glioblastoma cell line,
TRPC1 translocation to the plasma membrane depends on PI3K mediated transport, which
results in Ca2+ entry, chemotaxis, and cell migration [33]. We show that the interaction
between TRPC1 and the PI3K p85α subunit/CaM was enhanced after acid adaptation.
Thus, our results suggest that the acidic tumor microenvironment induces the trafficking
of TRPC1 to the plasma membrane, likely in association with the PI3K p85α subunit and
CaM, which are proteins near the plasma membrane. Here, TRPC1 promotes Ca2+ entry,
in acid adaptation and recovery conditions. However, the precise mechanism of TRPC1
trafficking upon acid adaptation and recovery needs further investigation.

TRPC1 regulates the cell cycle G1 and S phases, leading to PANC-1 cell proliferation in
a Ca2+-independent manner [37]. In acidic and recovery conditions, we show that silencing
of TRPC1 accumulated cells in the G0/G1 phases but decreased the number of cells in the
G2/M phases. Remarkably, TRPC1 KD reduced the expression of CDK1, -2, -6, and cyclin
A and increased the levels of p21CIP1 excessively in acid recovery conditions compared to
normal pH and acid adaptation conditions. In addition, TRPC1 KD inhibited PANC-1 cell
proliferation and spheroid growth to a greater extent than in the two other conditions. This
indicates that TRPC1 expression in acid recovery conditions is of more importance in cell
proliferation and spheroid growth. Furthermore, the proliferation of PANC-1 cells in acidic
and recovery conditions, contrary to normal pH conditions [37], depends on extracellular
Ca2+ levels, as the proliferation rate was decreased upon Ca2+ chelation.

TRPC1 regulates the migratory properties of several cancer cell types, including PDAC
cell lines [29,30,67–70]. In this study, KD of TRPC1 decreased the migratory properties
of PANC-1 cells in normal, acid-adapted, and acid-recovered PANC-1 cells. However,
the decrease was more prominent in acid recovery conditions. The migration of PANC-1
cells highly depends on extracellular Ca2+ solely in acid-adapted and -recovered cells, as
cell migration decreased upon Ca2+ chelation. Meanwhile, no effect was found under
normal pH conditions. These results indicate that, as for proliferation, TRPC1 regulates cell
migration in the acidic tumor microenvironment through Ca2+-dependent mechanisms.

TRPC1 forms a complex with the PI3K p85α subunit and the associated connecting protein
CaM, and activates AKT and, to a lesser extent, ERK1/2 in normal pH conditions [37,51].
We report that TRPC1 strongly formed a complex with the PI3K p85α subunit, probably
through CaM in acid-adapted and -recovered PANC-1 cells. This interaction was abolished
upon the KD of TRPC1. Moreover, the silencing of TRPC1 resulted in a substantial decrease
in AKT and ERK1/2 activation in acid-adapted and -recovered cells, which could result in
the downregulation of cell-cycle-regulating proteins and, thereby, cell cycle arrest in the
G0/G1 and G2/M phases. These results indicate that in these conditions, TRPC1 regulates
proliferation and migration both through the PI3K and MAPK signaling axis, and that
TRPC1 exerts a more aggressive role in acid-recovered PANC-1 cells.

AKT and ERK1/2 have previously been shown to be regulated through TRPC1 by
Ca2+-dependent and -independent mechanisms. The activation of AKT depends on Ca2+

through TRPC1 in lung cancer and hepatocellular carcinoma cell lines [71,72], and the
activation of ERK1/2 depends on Ca2+ through TRPC1 in thyroid and different breast
cancer cell lines [29,73,74]. Here, the activation of AKT and ERK1/2 seemed to be regulated,
at least partially, by Ca2+ through TRPC1 in acid adaptation and recovery conditions. As
TRPC1 forms a complex with PI3K p85α subunit and the Ca2+ binding messenger CaM,
we investigated whether the inhibition of CaM affected the activation of AKT and ERK1/2.
This inhibition only decreased the activating phosphorylation of AKT in acid recovery
conditions, where the activation of ERK1/2 was reduced in all conditions, but notably in
acid-adapted and -recovered cells. Our results designate the importance of CaM and Ca2+

downstream signaling in acid recovery conditions.
Interestingly, in more than 90% of PDAC tumors, the oncogene KRAS is mutated,

and KRAS G12D is the predominant driver mutation in this type of adenocarcinoma [75].
Furthermore, KRAS is involved in reprogramming cell metabolism, including glucose
metabolism, and the mutations are known to promote aerobic glycolysis (also known as
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the Warburg effect) [76]. The change in aerobic glycolysis in cancer cells is well known to
produce waste products in the form of H+, causing increased proton extrusion and an acidic
extracellular space. As TRPC1 can potentially regulate MAPK signaling cascades through
KRAS in liver and colorectal cancer cells lines [51,77], it would be interesting to further
investigate the interplay between TRPC1, KRAS, and the metabolic changes implicated in
the acidification of the tumor microenvironment of PDAC.

5. Conclusions

In conclusion, we show that pH fluctuations in the tumor microenvironment affect
PDAC cell migration, proliferation, and spheroid growth. We demonstrate that acid
adaptation permits TRPC1 localization to the plasma membrane. Here, TRPC1 reinforces a
complex with PI3K p85α/CaM and promotes Ca2+ entry. Synergically, this regulates AKT
and ERK1/2 activation, which in turn controls cell cycle progression, proliferation, and
migration. This indicates that the fluctuations in the acidic tumor microenvironment confer
a more aggressive role to TRPC1 (Figure 11).
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Figure 11. (A) Acid adaptation promotes migration but attenuates proliferation, whereas acid
recovery impairs this migration but further accelerates proliferation. (B) The fluctuations in the
acidic tumor microenvironment affect TRPC1 expression and localization. TRPC1 is downregulated
in acid-adapted PANC-1 cells and favors plasma membrane localization, which is maintained in
acid-recovered PANC-1 cells, where the expression of TRPC1 is upregulated. In the plasma membrane
of acid-adapted and -recovered cells, TRPC1 permits Ca2+ entry and, in interactions with the PI3K
p85α subunit and CaM, regulates PANC-1 cell migration, proliferation, and cell cycle progression.
The figure is generated with www.Biorender.com.
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