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Simple Summary: Blood-based tests for cancer detection are minimally invasive and could be useful
for screening asymptomatic patients and high-risk populations. Since a single molecular biomarker
is usually insufficient for an accurate diagnosis, we developed a multi-analyte liquid biopsy-based
classification model to distinguish cancer patients from healthy subjects. The combination of cell-
free DNA mutations, miRNAs, and cell-free DNA methylation markers improved the model’s
performance. Moreover, we demonstrated that the androgen receptor mutation p.H875Y is not only
relevant in prostate cancer but had a strong predictive value for colorectal, bladder, and breast cancer.
Our results, although preliminary, showed that a single liquid biopsy test could detect multiple
cancer types simultaneously.

Abstract: Liquid biopsy-based tests emerge progressively as an important tool for cancer diagnostics
and management. Currently, researchers focus on a single biomarker type and one tumor entity. This
study aimed to create a multi-analyte liquid biopsy test for the simultaneous detection of several
solid cancers. For this purpose, we analyzed cell-free DNA (cfDNA) mutations and methylation, as
well as circulating miRNAs (miRNAs) in plasma samples from 97 patients with cancer (20 bladder,
9 brain, 30 breast, 28 colorectal, 29 lung, 19 ovarian, 12 pancreas, 27 prostate, 23 stomach) and
15 healthy controls via real-time qPCR. Androgen receptor p.H875Y mutation (AR) was detected
for the first time in bladder, lung, stomach, ovarian, brain, and pancreas cancer, all together in
51.3% of all cancer samples and in none of the healthy controls. A discriminant function model,
comprising cfDNA mutations (COSM10758, COSM18561), cfDNA methylation markers (MLH1,
MDR1, GATA5, SFN) and miRNAs (miR-17-5p, miR-20a-5p, miR-21-5p, miR-26a-5p, miR-27a-3p,
miR-29c-3p, miR-92a-3p, miR-101-3p, miR-133a-3p, miR-148b-3p, miR-155-5p, miR-195-5p) could
further classify healthy and tumor samples with 95.4% accuracy, 97.9% sensitivity, 80% specificity.
This multi-analyte liquid biopsy-based test may help improve the simultaneous detection of several
cancer types and underlines the importance of combining genetic and epigenetic biomarkers.

Keywords: cancer; classification; liquid-biopsy; microRNA; cell-free DNA; biomarker; methylation

1. Introduction

Cancer is mostly a manageable disease as long as it is diagnosed and treated before
metastasis has begun. In most cases, higher-grade cancer evolves from lower-grade cancer.
Thus, early tumor detection could increase the chances of successful treatment. In this way,
carcinomas could be identified at an early stage when they can still be surgically removed
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and cured [1,2]. Therefore, scientists are focusing on discovering biomarkers for early
cancer detection.

Liquid biopsy is a rapidly developing tool for assessing biomarkers shed from difficult
to access tissue in easily sampled bodily fluids, such as urine, blood, saliva, sweat, feces,
and tears [3,4]. Such minimally invasive blood-based tests could be useful for screening
asymptomatic patients and high-risk populations. Liquid biopsy-based tests have been not
only successfully applied in disease screening [5] but tend to have even higher compliance
in comparison to other standard procedures such as FIT (fecal immunochemical test) [6].

Cell-free DNA (cfDNA) and circulating miRNA from apoptotic, necrotic, or viable
tumor cells are released into the bloodstream. Tumor-derived cfDNA harbors somatic
mutations originating from the tumor and comprises tissue-specific DNA methylation
patterns; thus, methylation can indicate tumor location [7,8]. Hence an organ-specific
epigenetic pattern is measurable in the circulation [9]. Since many tumors originating from
different tissues share identical SNPs [10], epigenetic information adds a tissue-specific
data layer [11].

Given that epigenetic alterations occur early in carcinogenesis, cfDNA methylation
markers and miRNAs could be early cancer predictors. Genome-wide miRNA expression
profiling by miRNA sequencing led to finding useful biomarkers for the early diagnosis
of various cancers [12]. Moreover, a neural network model including only serum miRNA
could successfully differentiate between cancer, non-invasive neoplasms, and healthy
controls and suggests that detection of pre-metastatic disease in serum is possible [13].

Nevertheless, the heterogeneous phenotype of many diseases leads to variability
in biomarker expression across individuals. Usually, a single molecular biomarker is
not sufficient for an accurate diagnosis of cancer [14–16]. When using only mutation
biomarkers, after a certain number of markers is reached, adding additional mutation
biomarkers would fail to improve the sensitivity of the test and increase the false positive
rate [3]. Thus, a multi-analyte combined test could address this challenge. A combination of
more than one analyte has been found to improve the performance of liquid biopsy-based
detection tests [17–19].

These methods’ huge amount of data needs automated data processing to deliver
clinically relevant information. They range from simple approaches, such as logistic
regression and support vector machines, to complex artificial neural networks with many
hidden layers [20].

Despite the numerous aforementioned advantages of liquid biopsy, this theoretically
simpler approach to longitudinal disease monitoring, as opposed to tissue biopsy, is still
not routinely applied in cancer management. The low amount of cell-free DNA, the limited
sensitivity, and specificity remain a challenge, and the clinical applicability has yet to be
established [21].

Eventually, given the potential of this approach, an accurate, simple, and minimally
invasive pan-cancer screening test could ensure wide use, especially in a high-risk popula-
tion. This approach could reach more patients more rapidly since they would be screened
for several cancer entities. Ideally, this test would be able to identify the tissue of origin if a
malignancy is detected. In this study, our objective was to determine whether miRNAs,
cfDNA mutations, and cfDNA methylation can be combined to differ samples from subjects
with bladder, brain, breast, colorectal, lung, ovarian, prostate, stomach, and pancreatic
cancers and samples from cancer-free subjects, consequently creating a multi-analyte liquid
biopsy-based test. To our best knowledge, we are the first to combine mutations, miRNAs,
and DNA methylation markers to test several tumor entities.

2. Materials and Methods
2.1. Study Population

The study was approved by the local ethics committees and carried out according
to the current EU directives. All study subjects were recruited by Fidelis Research AD,
Bulgaria, and included after written informed consent. Study participants had to be male
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or female above the age of 25 without a previously treated cancer. Plasma was obtained
from a total of 205 patients with stage I, II, or III cancer prior to cancer therapy and a
control group (n = 15) of subjects with no evidence of malignancies. Nonetheless, 7 subjects
of the control group had one of the following conditions at the sample collection point:
pulmonary fibrosis, renal cyst, hemorrhoidal disease, dyspepsia, peritonsillar phlegmon, or
endometrial polyp. Cancer types included in the study were liver, lung, pancreas, colorectal
cancer, prostate, ovarian, breast, stomach, bladder, and brain cancer. The clinical data of
these study groups are summarized in Table 1.

Table 1. Patients characteristics.

Subjects n Age
Mean (95% CI)

Sex n (%) Cancer stage n (%) Family History
of Cancer n (%)

BMI
Mean

Current
Infection n (%)Female Male I II III

Healthy 15
54.60

(46.23–62.97)
b,c,e,f

8 (53) 7
(47) 0 (0) 0 (0) 0 (0) 0 (0) 25.47 0(0)

Bladder 20 70.75
(66.05–75.45) a 3 (15) 17

(85) 9 (45) 6 (30) 5 (25) 0 (0) 26.26 0 (0)

Brain 9 63.22
(54.33–72.12) 3 (33) 6

(67) 2 (22) 4 (44) 3 (33) 0 (0) 25.22 0 (0)

Breast 30 63.67
(59.39–67.94) 29 (97) 1 (3) 8 (27) 16

(53) 6 (20) 0 (0) 25.5 0 (0)

Colorectal 28 66.57
(62.81–70.34) a 14 (50) 14

(50) 3 (11) 19
(68) 6 (21) 0 (0) 24.65 d 0 (0)

Lung 29 62.62
(59.05–66.19) 4 (14) 25

(86) 1 (3) 12
(41)

16
(55) 5 (17) 25.77 1 (3)

Ovarian 19 60.95
(56.44–65.46)

19
(100) 0 (0) 0 (0) 4 (21) 15

(79) 0 (0) 28.19 c 0 (0)

Prostate 27 66.70
(63.15–70.26) a 0 (0) 27

(100) 16 (59) 7 (26) 4 (15) 1 (4) 26.08 2 (7)

Stomach 23 69.35
(65.04–73.65) a 15 (65) 8

(35) 0 (0) 8 (35) 15
(65) 0 (0) 22.98 0 (0)

Pancreas 12 67.08
(61.77–72.40) 6 (50) 6

(50) 0 (0) 5 (42) 7 (58) 0 (0) 24.41 0 (0)

Total 212 64.55
(63.08–66.01)

101
(48)

111
(52) 39 (18) 81

(38)
77

(36) 6 (3) 25.45 3 (1)

Lower case letters indicate the group with a significantly different value at p < 0.05: a healthy, b bladder, c CRC,
d ovarian, e prostate, f pancreas.

2.2. Sample Collection and Liquid Biopsy

Peripheral venous blood samples were collected prior to surgery and therapy in K-
2 EDTA vacutainers. Subsequently, plasma was separated via double centrifugation as
described previously [22]. Whole blood samples were processed within one hour after the
blood draw. Briefly, blood samples were centrifuged at 2000× g for 10 min at 4 ◦C, followed
by centrifugation of the supernatant at 16,000× g for 10 min at 4 ◦C. The prepared plasma
samples were stored at −80 ◦C until shipment. All samples were shipped frozen (−20 ◦C)
on dry ice and stored temporarily at −20 ◦C upon arrival.

2.3. Cell-Free DNA Extraction, Processing, and Analysis

Cell-free DNA (cfDNA) was isolated with MagMAX™ Cell-Free DNA Isolation Kit
(ThermoFisher Scientific, Waltham, MA, USA) using KingFisher™ Duo Prime Magnetic
Particle Processor (ThermoFisher Scientific, Waltham, MA, USA) according to the user
guidelines. CfDNA was isolated from 4 mL plasma and eluted with elution solution in a
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final volume of 80 µL. The purified cfDNA samples were stored at −20 ◦C until further
analysis. DNA was quantified using the dsDNA HS Assay Kit on Qubit 4 Fluorome-
ter (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA) according to the standard
kit protocol.

2.4. Mutation Analysis

Prior quantitative real-time PCR (qPCR) analysis of cfDNA mutations, a blunt end
ligation-mediated whole genome amplification (BL-WGA) was carried out as described
previously [23]. Briefly, 4.45 µL purified cfDNA (~ 0.5 to 20 ng total/4 ng average) was
blunted with 0.3 U of T4 DNA polymerase (New England Biolabs (NEB), Frankfurt am
Main, Germany) in 0.5 µL of 10× T4 DNA ligase buffer (NEB), supplemented with dNTPs
(ThermoFisher) at a final concentration of 100 µmol/L at 12 ◦C for 15 min. The reaction
was then inactivated at 75 ◦C for 20 min. The blunted DNA was then ligated with 500 U of
T4 DNA ligase (NEB) at room temperature for 2 h and subsequently inactivated at 65 ◦C for
10 min. Afterward, the sample was denatured at 95 ◦C for 3 min and then rapidly cooled
on ice for 3–5 min in a total volume of 10 µL, containing 1 µL EquiPhi29 DNA Polymerase
Reaction Buffer 10× (ThermoFisher), 2.55 µL nuclease-free water (nfw) and 100 µM exo-
resistant random primer (ThermoFisher). Next, the sample was amplified at 45 ◦C for 3 h
using 10 U of EquiPhi29 DNA Polymerase (ThermoFisher), 1 mM DTT (ThermoFisher),
1 mM dNTPs (ThermoFisher), 0.02 U pyrophosphatase (ThermoFisher), 1.5 µL EquiPhi29
DNA Polymerase Reaction Buffer 10× and 4.5 µL nfw in a total volume of 20 µL. Finally, the
reaction was stopped by heat-inactivation at 65 ◦C for 10 min. The samples were quantified
via Qubit 4 Fluorometer using dsDNA BR Assay Kit (ThermoFisher).

The BL-WGA cfDNA (10–20 ng pro reaction) was then used for the mutational analysis
with TaqMan™ Mutation Detection Assays (ThermoFisher). The array is designed to
analyze 75 cancer-specific mutations in 21 genes and consists of a Reference Assay for
the amplification of a mutation-free and polymorphism-free region of the target gene in
addition to the Mutation Assay. Namely, the genes are AKT1, APC, AR, BRAF, CTNNB1,
EGFR, ERBB2, ESR1, FBXW7, FGFR3, GNAS, HRAS, IDH1, KRAS, MED12, NRAS, PIK3CA,
SMAD4, TERT, TP53, and VHL (Supplementary Table S1). ∆Ct values for the detection of
mutations were established for each gene and defined as:

∆Ct = Ct(Mutation Assay)− Ct(Re f erence Assay).

The presence of a mutation in a sample was determined upon an assay-specific
cutoff point (Supplementary Table S1). The DNA mutation screening was performed
on a QuantStudio 3 Real-Time PCR System (Applied Biosystems, ThermoFisher).

2.5. Methylation Analysis

For methylation analysis, 70µL of the purified cfDNA was divided into two fractions—one
containing methylated cfDNA and one containing unmethylated cfDNA, using MethylMiner™
Methylated DNA Enrichment Kit (Invitrogen, ThermoFisher). This method is based on the
binding of methylated DNA to MBD2 protein which is coupled to magnetic beads. The
methylated fragments can then be eluted as a single enriched fraction with a high salt con-
centration solution (NaCl), thereby separating methylated (Me cfDNA) from unmethylated
cfDNA (UnME cfDNA). Both fractions were subsequently quantified via real-time qPCR for 12
different cancer-relevant genetic regions (SEPT9, MLH1, MGMT, GATA5, GSTP1, SFN, MDR1,
VIM, SHOX2, ALKBH3, APC, RASSF1A). Then, 2 µL of each fraction of cfDNA was ampli-
fied using a custom-designed primer (150 nM, Supplementary Table S2) and GoTaq® qPCR
Master Mix (Promega, US) in a final volume of 10µL on QuantStudio 3 (ThermoFisher). The
methylation level for each region was calculated using the following formula:

C f DNA methylation % = 100 − (100/
(

1 + 2−CtMe cfDNA −CtUnMe cfDNA
)

.
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2.6. RNA Extraction, Processing, and microRNA Analysis

Total RNA was isolated from 100 µL plasma with MagMAX™ mirVana™ Total RNA
Isolation Kit (ThermoFisher Scientific, Waltham, MA, USA) using KingFisher™ Duo Prime
Magnetic Particle Processor (ThermoFisher Scientific, Waltham, MA, USA) according to the
user guidelines. Spike-in miRNA C. elegans 39 was added during the RNA purification at
a concentration of 15 fmol per sample. Total RNA was eluted with elution buffer in final
volumes of 50 µL, and samples were stored at −20 ◦C until further analysis.

After RNA purification, miRNA was transcribed into cDNA using the TaqMan™
Advanced miRNA cDNA Synthesis Kit (ThermoFisher). A 1:10 dilution of the cDNA was
taken for the analysis of 48 miRNAs (C. elegans spike-in control, Supplementary Table S3)
using prespotted Taqman adv. miRNA 96 well plates (ThermoFisher) on a QuantStudio
3 Real-Time PCR System (ThermoFisher) in a final reaction volume of 10µL. For data
normalization global mean of all analyzed miRNAs were used as previously described [24].

2.7. Statistical Analysis

One-way ANOVA for continuous variables and χ2 test and cross-tabulation for cat-
egorical variables were used to analyze the characteristics of the subjects. A t-test of
independent samples was performed to compare the mutational burden between cancer-
free subjects and cancer patients. The correlation between cell-free DNA concentration and
cancer stage was analyzed with a Spearman’s ρ rank coefficient test. miRNA expression
values were standardized by converting them to Z-scores. A one-way ANOVA was carried
out to determine whether miRNAs are differently expressed or cfDNA methylation varies
across the test groups. A χ2 automatic interaction detection decision tree model (CHAID)
was used to split the samples into subsets. The diagnostic potential of cfDNA mutations,
cfDNA methylation markers, and miRNAs was analyzed in discriminant function analyses
(DA) with a leave-one-out cross-validation. The performance of these DAs was further
estimated by a receiver operating characteristic (ROC) analysis and area under the curve
(AUC). Statistical analyses were carried out in IBM® SPSS® Statistics 20 Software.

2.8. Identification of Candidate Biomarkers

For the identification of the potential diagnostic markers, the correlation matrix of
all variables was calculated (Supplementary Figure S1). Firstly, all variables with missing
values were excluded from the analysis. Further, continuous variables (miRNA level
and cfDNA methylation percentage) were dichotomized upon an automatically defined
threshold value.

Subsequently, for each cancer type, the correlations of each cancer type with each
biomarker were calculated and sorted by their absolute values (Supplementary Figure S2).
Since many measured variables compared to a relatively small sample size tend to produce
spurious correlations, a subset of the best biomarkers with the highest correlation (by
absolute value) for each cancer type was chosen for further tests.

Then, all combinations of these best biomarkers were tested regarding their impor-
tance to predict a particular tumor type versus the healthy control group. Variables with
redundant information were eliminated based on a covariance matrix to further alleviate
the effects of overfitting. Thus, superfluous biomarkers that yield no improvement con-
cerning the classification performance of each cancer type were excluded. In order to do so,
a score was defined, where false negatives are discouraged by a factor of two compared to
false positives. All computations were carried out in R version 4.1.2.

3. Results
3.1. Patient Characteristics

A total of 205 cancer and 15 cancer-free plasma samples were collected. One of the
cancer samples was excluded since the patient was diagnosed with stage 4 ovarian cancer
after plasma collection. We received only seven plasma samples from patients with liver
cancer, making the size of this sample group too small to yield any meaningful results
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and thereby was excluded from the statistical data analysis. Hence, a total of 212 samples
were analyzed for mutations, miRNAs, and DNA methylation. Patient characteristics are
summarized in Table 1.

One-way ANOVA test showed significant differences between the age of the healthy
control group and bladder cancer (p < 0.001), CRC (p < 0.05), prostate cancer (p < 0.05), and
stomach cancer (p < 0.005). The BMI of the subjects with ovarian cancer differed significantly
from the BMI of the patients with CRC (p < 0.05) and stomach cancer (p < 0.001).

3.2. Plasma cfDNA Levels

Mean plasma cfDNA levels did not significantly differ between cancer patients and
healthy controls (mean cfDNA plasma levels of cancer patients = 1.514 ng/µL, mean
cfDNA plasma levels of healthy subjects = 0.557 ng/µL, p = 0.439). However, a significant
correlation between cfDNA concentration and cancer stage (R = 0.225, p < 0.001, n = 212)
was observed. Mean cfDNA plasma levels irrespective of cancer type were 0.435 ng/µL for
stage I (n = 39), 1.091 ng/µL for stage II (n = 81), and 2.506 ng/µL for stage III (n = 77).

3.3. Plasma cfDNA Mutation Detection

Targeted mutation analysis was implemented to investigate 75 alterations such as
nucleotides insertions and substitutions (Supplementary Table S1), referred to as mutations.
Among the 197 patients with tumors, at least one mutation was detected in 187 patients
(94.9%). In 8 out of the 15 healthy control samples, at least one mutation was detected in
CTNNB1 (COSM5663), EGFR (COSM6224), FGFR3 (COSM718), KRAS (COSM517), PIK3CA
(COSM760), TP53 (COSM10662, COSM6549, COSM10690, COSM10863). The six most
frequently detected mutations among all samples were in AR (COSM238555, n = 101, 48%),
EGFR (COSM6224, n= 97, 46%), TP53 (COSM10758, n = 77, 36%), FGFR3 (COSM718, n = 64,
30%), TERT (COSM1716559, n = 46, 22%), APC (COSM18561, n = 45, 21%) (Supplemen-
tary Table S4). The mutations COSM5677 (CTNNB1), COSM6223 (EGFR), COSM22932
(FBXW7), COSM483 (HRAS), COSM499 (HRAS), COSM518 (KRAS), COSM10779 (TP53)
were not detected in any sample and were therefore excluded from the analysis. All of the
analyzed cfDNA alterations and their frequencies in this study population are listed in
Supplementary Table S4.

A significant difference in the mutation burden of cfDNA between healthy subjects
and cancer patients was prominent (p < 0.001, mean difference = 4.819, std error = 0.463,
95% CI 3.896–5.741). Cancer patients had 6.15, while the control group had 1.33 mutations
on average.

3.4. Androgen Receptor p.H875Y Mutation

A total of 101 (51.3%) of all cancer patients had a p.H875Y mutation in the androgen
receptor gene (AR, COSM238555) (Supplementary Table S4). This mutation was detected in
the plasma of subjects with CRC (85.71%), bladder (80%), prostate (66.67%), and breast (60%)
cancer samples, and none of the healthy controls. The percentages of AR mutation-positive
patients (AR+) for lung, stomach, ovarian, brain, and pancreas cancer were 48.28, 26.09, 20,
11.11, and 8.33, respectively. Interestingly, cancer samples with an AR mutation (n = 101)
had an overall higher total mutational burden than samples without an AR mutation (AR–,
n = 96), 7.5 and 4.8 mutations on average, respectively (p < 0.001).

3.5. Plasma cfDNA Methylation

The methylation levels (m%) of 12 different cancer-relevant genetic regions (SEPT9,
MLH1, MGMT, GATA5, GSTP1, SFN, MDR1, VIM, SHOX2, ALKBH3, APC, RASSF1A) were
analyzed for all 212 samples. The cfDNA methylation levels for MLH1, SFN, MDR1, VIM,
and ALKBH3 of all groups are shown in Figure 1. No significant differences for SEPT9,
MGMT, GATA5, GSTP1, SHOX2, APC, and RASSF1 between the different study groups
were observed. The data for all analyzed genetic regions are provided in a heatmap in
Supplementary Figure S3.
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Figure 1. Cancer type specific cfDNA methylation levels. (A–E) Boxplots of cfDNA methylation for 
(A) MLH1, (B) SFN, (C) MDR1, (D) VIM, (E) ALKBH3. Boxes are the 25th to 75th percentile; the line 
is the median, and whiskers are 1.5× IQR. p-values are showed as * p < 0.05; ** p < 0.005; *** p < 0.001. 
Lower case letters indicate the group with significantly different cfDNA methylation levels: a 
healthy, b bladder, c brain, d breast, e CRC, f lung, g ovarian, i stomach. 

3.6. Identification of Differently Expressed Circulating miRNAs 
Among the 47 analyzed miRNAs, four were under the detection limit for the refer-

ence sample (miRNAs 30a-5p, 218-5p, 1225-3p, 203a-3p); therefore, they were excluded 
from the analysis. A heatmap was generated for the remaining 43 miRNAs (Supplemen-
tary Figure S4). After computing the Z-scores for the miRNA expression data, a differen-
tial analysis was conducted, and significantly deregulated miRNAs are depicted in Figure 
2. MiRNAs 133a-3p and 23a-3p were significantly up-regulated on subjects with brain 
(Figure 2B and 2G respectively). MiR-148a-3p was significantly elevated in subjects with 
pancreas cancer compared to all groups except brain and ovarian cancer (Figure 2C). Ad-
ditionally, higher levels of miR-34a-5p for subjects with pancreas cancer were observed 
(Figure 2J). Furthermore, miR-31-5p in pancreas cancer was down-regulated compared to 
breast and ovarian cancer and up-regulated compared to the bladder, CRC, lung, prostate, 
stomach cancer, and the control group (Figure 2I). Interestingly, cancer samples with an 
AR mutation (AR+, n = 101) showed significantly lower levels of miRNAs 148a-3p, 148b-
3p, 195-5p, 210-3p, 23a-3p, 25-3p when compared to samples without an AR mutation 
(AR–, n = 96) (Figure 2L). 

Figure 1. Cancer type specific cfDNA methylation levels. (A–E) Boxplots of cfDNA methylation for
(A) MLH1, (B) SFN, (C) MDR1, (D) VIM, (E) ALKBH3. Boxes are the 25th to 75th percentile; the line is
the median, and whiskers are 1.5× IQR. p-values are showed as * p < 0.05; ** p < 0.005; *** p < 0.001.
Lower case letters indicate the group with significantly different cfDNA methylation levels: a healthy,
b bladder, c brain, d breast, e CRC, f lung, g ovarian, i stomach.

3.6. Identification of Differently Expressed Circulating miRNAs

Among the 47 analyzed miRNAs, four were under the detection limit for the refer-
ence sample (miRNAs 30a-5p, 218-5p, 1225-3p, 203a-3p); therefore, they were excluded
from the analysis. A heatmap was generated for the remaining 43 miRNAs (Supple-
mentary Figure S4). After computing the Z-scores for the miRNA expression data, a
differential analysis was conducted, and significantly deregulated miRNAs are depicted in
Figure 2. MiRNAs 133a-3p and 23a-3p were significantly up-regulated on subjects with
brain (Figures 2B and 2G respectively). MiR-148a-3p was significantly elevated in subjects
with pancreas cancer compared to all groups except brain and ovarian cancer (Figure 2C).
Additionally, higher levels of miR-34a-5p for subjects with pancreas cancer were observed
(Figure 2J). Furthermore, miR-31-5p in pancreas cancer was down-regulated compared to
breast and ovarian cancer and up-regulated compared to the bladder, CRC, lung, prostate,
stomach cancer, and the control group (Figure 2I). Interestingly, cancer samples with an AR
mutation (AR+, n = 101) showed significantly lower levels of miRNAs 148a-3p, 148b-3p,
195-5p, 210-3p, 23a-3p, 25-3p when compared to samples without an AR mutation (AR–, n
= 96) (Figure 2L).
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Figure 2. Cancer type specific miRNA expression levels. (A–K) Boxplots of the miRNAs deregulated 
between the different cancer types and control group (healthy). Boxes are the 25th to 75th percentile; 
the line is the median, and whiskers are 1.5× IQR. Lower case letters indicate the group with signif-
icantly different miRNA levels: a healthy, b bladder, c brain, d breast, e CRC, f lung, g ovarian, h 
prostate, i stomach, k pancreas. (L) Grouped plot of the differentially expressed miRNAs between 
cancer samples with (AR+) and without (AR–) p.H875Y androgen receptor mutation. The line is the 
mean value, and whiskers are 95% CI. p-values are showed as * p < 0.05; ** p < 0.005; *** p < 0.001. 

Figure 2. Cancer type specific miRNA expression levels. (A–K) Boxplots of the miRNAs deregulated
between the different cancer types and control group (healthy). Boxes are the 25th to 75th percentile;
the line is the median, and whiskers are 1.5× IQR. Lower case letters indicate the group with
significantly different miRNA levels: a healthy, b bladder, c brain, d breast, e CRC, f lung, g ovarian,
h prostate, i stomach, k pancreas. (L) Grouped plot of the differentially expressed miRNAs between
cancer samples with (AR+) and without (AR–) p.H875Y androgen receptor mutation. The line is the
mean value, and whiskers are 95% CI. p-values are showed as * p < 0.05; ** p < 0.005; *** p < 0.001.
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3.7. Identification of Cancer Type Specific Biomarkers

A search algorithm for the most predictive cfDNA mutations, miRNAs, and cfDNA
methylation markers for each cancer type was derived and implemented, and variables with
redundant information were eliminated based on a score that discourages false positives.
The correlations for each cancer type are shown in Supplementary Figure S2A–I. Depending
on the cancer type, three to four biomarkers per cancer type showed the highest correlations
compared to the healthy control (Table 2).

Table 2. Biomarkers with the highest correlations for each cancer type.

Cancer Type cfDNA Mutations cfDNA
Methylation miRNAs

Bladder AR (COSM238555),
TP53 (COSM10758) - miR-17-5p

Brain - MLH1 m%,
GATA5 m% miR-133a-3p

Breast AR (COSM238555),
TP53 (COSM10758) MDR1 m% miR-17-5p

CRC AR (COSM238555),
TP53 (COSM10758) - miR-17-5p,

Lung TP53 (COSM10758) -
miR-17-5p,

miR-92a-3p,
miR-155-5p

Ovarian - -

miR-29c-3p,
miR-92a-3p,
miR-101-3p,
miR-148b-3p

Pancreas - SFN m%
miR-27a-3p,
miR-29c-3p,
miR-148b-3p

Prostate AR (COSM238555) - miR-17-5p,
miR-26a-5p

Stomach APC (COSM18561) - miR-20a-5p,
miR-21-5p

3.8. Classification of Tumor Samples

Firstly, samples were split into two groups (χ2 14.688, p < 0.001): samples with an
AR mutation (AR+, n = 101) and samples without an AR mutation (AR–, n = 111). The
AR+ group consisted only of tumor samples since no AR mutation was detected in the
control group. However, the AR– group contained the healthy controls (n = 15) and
tumor samples (n = 96); therefore, no further classification of these groups was possible
based only on AR mutation. In order to separate healthy from tumor samples in the AR–
group, several discriminant function analyses with a leave-one-out cross-validation were
carried out, including different sets of biomarkers, not including AR mutation. The sets
of biomarkers were as follows: discriminant analysis 1 (DA1) incorporated all measured
targets; discriminant analysis 2 (DA2) only cfDNA mutations; discriminant analysis 3
(DA3) only cfDNA methylation; discriminant analysis 4 (DA4) only miRNAs; discriminant
analysis 5 (DA5) included the biomarkers with highest correlations identified through the
correlation matrixes (Table 3).
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Table 3. Discriminant analysis for classification of AR– samples in healthy and tumor samples.

Discriminant
Analysis

Model
Accuracy % Sensitivity % Specificity % ROC AUC n of

Biomarkers

DA1 55.9 46.7 57.3 0.591 119

DA2 73.9 81.3 26.7 0.543 64

DA3 89.2 97.9 33.3 0.656 12

DA4 80.2 87.5 33.3 0.608 43

DA5 95.4 97.9 80.0 0.884 18

The DA5 model yielded the best results (Figure 3) and classified healthy and tumor
samples with 95.4% accuracy, 97.9% sensitivity, 80% specificity, and receiver operating
characteristic area under the curve (ROC AUC) of 0.884.
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4. Discussion

This study presents a liquid biopsy-based multi-analyte classification model for tumor
samples and healthy controls. The AR p.H875Y mutation plays a key role in this model.
Androgen receptor alterations have been identified as some of the main drivers of castration-
resistant prostate cancer [25]. The AR p.H875Y mutation has been predominantly found
in prostate cancer [26], but this mutation has also been reported for breast cancer [27] and
CRC [28]. However, to our knowledge, this is the first time that AR p.H875Y mutation
has been reported for bladder, lung, stomach, ovarian, brain, and pancreas cancer. AR
mutations have been predominantly studied in connection to prostate and breast cancer,
especially treatment response [29,30]. We analyzed all predefined targets in all samples,
not only the genes reported to be relevant in the specific cancer type. Considering this, we
speculate that there is no literature concerning other tumors until now because other studies
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that analyzed this specific AR mutation focused primarily on breast and prostate cancer.
Besides, we used a qPCR-based method to detect cfDNA mutations, which is shown to
have a better sensitivity to detect low allele fraction variants than sequencing [31]. Still, the
underlying mechanisms of the involvement of AR p.H875Y mutation in the carcinogenesis
of these cancer types should be investigated. Nevertheless, our results suggest that AR
p.H875Y mutation could be a promising biomarker for discriminating healthy subjects
from cancer patients, especially CRC, bladder, and prostate.

Here, we describe a model consisting of two steps, sorting samples in two groups—with
and without an AR mutation (AR+ and AR– respectively) and consequently classifying the
AR– group in cancer patients and healthy subjects (95.4% accuracy, 97.9% sensitivity, 80%
specificity, 0.884 ROC AUC). The classification models, based solely on mutations, cfDNA
methylation, or miRNAs, showed poor specificity (DA2 26.7%, DA3 33.3%, and DA4 33.3%,
respectively). Combining all the analyzed biomarkers improved the specificity to some extent
(DA1 57.3%); however, the sensitivity declined. The large number of biomarkers included
in the DA1 model decreases the classifier’s performance since some contain redundant and
superficial information. To alleviate the effects of this so-called “curse of dimensionality,” also
known as the “Hughes phenomenon” [32,33], the number of biomarkers included in the model
should be decreased. Hence, biomarkers selection was carried out, and a classification model
was performed based on the most relevant biomarkers (DA5), displaying the best results
(Table 3, Figure 3).

Interestingly, our results demonstrate that the combination of three different analytes
could improve the performance of a classification model. Each analyte type provides
distinct information and adds value to the classification model, highlighting the importance
of a multi-analyte-based liquid biopsy test for cancer detection [3,34].

Although cfDNA concentration has been previously suggested as a biomarker for
cancer detection [35], our results did not support these findings. The healthy subjects in this
study exhibited a higher amount of cfDNA plasma concentrations than patients with stage
I tumors which has been already reported [36]. Plasma cfDNA present in healthy subjects
is not unusual; however, the main contributor of cfDNA is the apoptosis of hematopoietic
cells [37]. The cfDNA profile of a cancer patient differs from a healthy individual, whereby
it consists of fragments originating from tumor cells, also called circulating tumor DNA
(ctDNA). Additionally, these DNA fragments have a specific footprint indicating the
tissue of origin [38]. Although we did not estimate the percentage of ctDNA of the total
plasma cfDNA, we detected a higher mutational burden in cancer patients compared to
healthy individuals.

Nonetheless, some genomic aberrations were detected among the control group
(Supplementary Table S3). Somatic mutations in healthy tissues have been previously
reported [39]. Since no follow-up of the participants was conducted, we cannot know if
the healthy subjects harboring these somatic mutations developed cancer. However, these
subjects were declared cancer-free at sample collection.

Our results suggest that plasma cfDNA could serve rather as a monitor for disease
progression since cfDNA concentration correlated with cancer stage regardless of cancer
type. However, mutational burden and miRNA expression and cfDNA methylation should
be taken into account [40].

As mentioned earlier, one key limitation of this study is the lack of follow-up in
addition to the small number of healthy controls. Despite the small size of the control
group, it sufficed to observe several statistically significant results since it was matched
to reflect the average sample size of each cancer group. Another potential limitation is
the clinical utility of this model, as the three different analytes require separate sample
processing and analysis. Nevertheless, a blood-based test is a minimally invasive procedure
in contrast to a tissue biopsy and is more frequently accepted by patients than other
screening procedures such as colonoscopy [41] or a fecal immunochemical test (FIT) [6] in
the case of CRC. Thus, the screening methods themselves directly affect compliance and
should be therefore optimized.
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Liquid biopsy markers such as cfDNA mutations, cfDNA methylation, and CTCs are
already successfully applied as prognostic and predictive tools for treatment response in
several tumor types and monitoring tools for disease progression [42–45], as well as for
disease screening [5]. Yet, there are still no clinically approved tests for a broader cancer
screening of the population. Despite the limitations of this study, our results indicate that
pan-cancer detection could be achieved through the combination of genetic and epigenetic
biomarkers in plasma.

5. Conclusions

In this study, we created a liquid biopsy-based classification model allowing the dis-
crimination between healthy controls and patients with various solid tumors. We demon-
strated that combining several analytes improves the performance of the test. Nevertheless,
a bigger prospective cohort is required to confirm the clinical utility of this classification
model and assess whether a subclassification of the different cancer types is possible.
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Figure S4: Heatmap of the miRNAs levels.
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