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Simple Summary: Biomarkers for the prediction and efficacy of therapies are an urgent necessity for
lung cancer patients. In this article, we summarize genomic and proteomic biomarkers utilized for the
early detection and treatment of lung cancer, with a focus on immune checkpoint and PI3K pathways.

Abstract: Lung cancer is the leading cause of cancer-related death worldwide, with non-small-cell lung
cancer (NSCLC) being the primary type. Unfortunately, it is often diagnosed at advanced stages, when
therapy leaves patients with a dismal prognosis. Despite the advances in genomics and proteomics in
the past decade, leading to progress in developing tools for early diagnosis, targeted therapies have
shown promising results; however, the 5-year survival of NSCLC patients is only about 15%. Low-dose
computed tomography or chest X-ray are the main types of screening tools. Lung cancer patients
without specific, actionable mutations are currently treated with conventional therapies, such as
platinum-based chemotherapy; however, resistances and relapses often occur in these patients. More
noninvasive, inexpensive, and safer diagnostic methods based on novel biomarkers for NSCLC are
of paramount importance. In the current review, we summarize genomic and proteomic biomarkers
utilized for the early detection and treatment of NSCLC. We further discuss future opportunities to
improve biomarkers for early detection and the effective treatment of NSCLC.

Keywords: lung cancer; genomic markers; epigenomes markers; immunotherapy

1. Introduction

Worldwide, the second most common type of cancer diagnosed in men and women
is lung cancer, which is the most common cause of cancer-related deaths. There are two
main types of lung cancers: non-small-cell lung cancer (NSCLC) and small-cell lung
cancer (SCLC). Adenocarcinoma and squamous cell carcinoma are the main histological
subtypes of NSCLC. Prostate, colon, and breast cancers have screening tools for early
detection; however, there are generally less accurate early detection biomarkers for lung
cancer [1]. GLOBOCAN estimated approximately 2.2 million new lung cancer cases and
1,796,144 deaths [2].

The five-year survival rate in stage I NSCLC patients is 70–90%. However, over 75%
of lung cancer patients are diagnosed at advanced or metastatic stages when the five-year
survival rates are significantly lower [2,3]. Its diagnosis at advanced stages is associated
with significantly lower five-year survival.
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The first strategies for lung cancer detection for many years had been annual chest
radiography and sputum cytology. It has not been until recently, as medicine has advanced,
that these strategies have been updated. The results of several studies, such as two studies
conducted by Johns Hopkins University and the Memorial Sloan Kettering Center, revealed
that chest X-ray (CXR) and sputum cytology had not been promising screening tools for
reducing lung cancer mortality [4,5]. The Early Lung Cancer Action Project (ELCAP) was
initiated in 1993 and evaluated high-risk persons for lung cancer by low-radiation-dose
computed tomography (low-dose C.T.) [6]. In addition, the National Lung Screening Trial
(NLST) was initiated in 2002. These studies showed that the use of low-dose C.T. reduced
mortality from lung cancer; however, cumulative radiation exposure, a high-false positive
rate, and costs are some disadvantages of low-dose C.T. [7]. More specific, less invasive,
and cost-effective biomarkers are therefore urgently needed.

In the past several decades, the molecular profiling of lung cancer patients has shown
that many mutations correlate with NSCLC [8–10]. Molecular profiling helps stratify
patients with specific mutations to use several lines of targeted therapies. EGFR, KRAS,
MET, BRAF, ERBB2, ALK, ROS1, and RET gene rearrangements are the main actionable
genetic alterations in NSCLC [11–14]. Several generations of agents have been developed
to target these mutations, improving the patients’ outcomes. However, disease progression
and resistance to targeted drugs remain major challenges in NSCLC cancer treatment. In
our opinion, the efficacy of these drugs depends on how accurate biomarkers could help
stratify patients that would best respond to such targeted therapies. As medicine advances,
more accurate biomarkers have been discovered that could better help predict therapy
responses. Proteins are functional products from the genome. The dynamic range of protein
concentration differs from cell to cell and from time to time. Therefore, proteomics has
dynamic and complex entities. A quantitative understanding of proteomics provides the
exact knowledge about protein networks of human cells and may improve our cancer
detection and treatment tools [15].

The application of proteomics has resulted in subtype-specific, stage-specific, and
metastasis-specific tumor biomarkers in lung cancer. Numerous studies have demon-
strated that a significant number of proteins, including ENO1, selenium-binding protein
1 (SELENBP1), carbonic anhydrase (CA), heat shock 20KD-like protein, and transgelin
(SM22-alpha), are associated with poor prognosis [16,17].

This review summarizes the current knowledge on genomics and proteomics biomark-
ers for the early detection and treatment of NSCLC. Furthermore, we focus on new
biomarkers predicting the efficacy of immunotherapies and the PI3K–mTOR–AKT axis.
Finally, we summarize the ongoing clinical trials investigating the AKT–PI3K–mTOR
pathway in NSCLC.

2. Early Detection

Cancer early detection increases the opportunity for more successful treatment. Five
years of survival in NSCLC patients are approximately 63% and 7% for localized and
distant tumors, respectively [18]. Early detection of lung cancer will dramatically reduce
the mortality rate of patients. Many genomic and proteomic biomarkers, such as DNA
methylation, microRNA (miRNA), antitumor antibodies, and plasma proteins, have been
investigated for early cancer detection, including lung cancer. Liquid biopsy comprises
various sources, including sputum, blood, exhaled breath, sputum, bronchial aspirate, and
bronchoalveolar lavages for the early detection of lung cancer [19–21] (Figure 1).
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Figure 1. Schematic overview of the NSCLC biomarker discovery. (A) Different samples. Nasal ep-
ithelial scraping, exhaled breath, sputum, bronchoscopy, blood, and urine are used for NSCLC bi-
omarker discovery. (B) NSCLC biomarker applications. The biomarkers can be helpful for screen-
ing, early detection, personalized medicine, and monitoring treatment response. (C) Different ap-
proaches for biomarker discovery. Biomarkers can be discovered through genomic, transcriptomic, 
proteomic, and metabolomics changes in NSCLC. 

2.1. Genomic and Epigenomes 
2.1.1. Methylation 

DNA methylation (hypermethylation or hypomethylation) is an epigenetic modifi-
cation that plays a pivotal role in silencing gene transcription and is crucial in many bio-
logical processes, including embryonic development, X-chromosome inactivation, ge-
nomic imprinting, chromatin structure, normal growth, and cellular proliferation. Abnor-
mal DNA methylation has been observed in tumor initiation and proliferation of all forms 
of cancers [22]. The epigenetic pathway is potentially reversible and is involved in tumor-
igenesis by three main mechanisms: DNA hypermethylation, global hypomethylation of 
the genome, and histone modifications. 

DNA methylation can be assessed by different techniques, such as digital PCR 
(dPCR), methylation-specific PCR (MSP), methyl-CpG-binding domain (MBD), real-time 
quantitative MSP, quantitative methylation-specific PCR (qMSP), multiplex nested meth-
ylation-specific PCR, and whole-genome bisulfite sequencing (WGBS) [23]. Aberrant 
DNA methylation is catalyzed by DNA methyltransferases (DNMTs) through the pro-
moter methylation of tumor suppressor genes. It is associated with many types of cancers, 
including NSCLC, autoimmune diseases, diabetes, and multiple sclerosis [24–26]. Hyper-
methylation of DNA can silence tumor suppressor genes, and hypomethylation of DNA 
can lead to transcriptional activation proto-oncogenes. Methylation patterns have been 
associated with different cancer aspects, such as disease stage, survival, and response to 

Figure 1. Schematic overview of the NSCLC biomarker discovery. (A) Different samples. Nasal
epithelial scraping, exhaled breath, sputum, bronchoscopy, blood, and urine are used for NSCLC
biomarker discovery. (B) NSCLC biomarker applications. The biomarkers can be helpful for screening,
early detection, personalized medicine, and monitoring treatment response. (C) Different approaches
for biomarker discovery. Biomarkers can be discovered through genomic, transcriptomic, proteomic,
and metabolomics changes in NSCLC.

2.1. Genomic and Epigenomes
2.1.1. Methylation

DNA methylation (hypermethylation or hypomethylation) is an epigenetic modifica-
tion that plays a pivotal role in silencing gene transcription and is crucial in many biolog-
ical processes, including embryonic development, X-chromosome inactivation, genomic
imprinting, chromatin structure, normal growth, and cellular proliferation. Abnormal
DNA methylation has been observed in tumor initiation and proliferation of all forms of
cancers [22]. The epigenetic pathway is potentially reversible and is involved in tumorigen-
esis by three main mechanisms: DNA hypermethylation, global hypomethylation of the
genome, and histone modifications.

DNA methylation can be assessed by different techniques, such as digital PCR (dPCR),
methylation-specific PCR (MSP), methyl-CpG-binding domain (MBD), real-time quanti-
tative MSP, quantitative methylation-specific PCR (qMSP), multiplex nested methylation-
specific PCR, and whole-genome bisulfite sequencing (WGBS) [23]. Aberrant DNA methy-
lation is catalyzed by DNA methyltransferases (DNMTs) through the promoter methylation
of tumor suppressor genes. It is associated with many types of cancers, including NSCLC,
autoimmune diseases, diabetes, and multiple sclerosis [24–26]. Hypermethylation of DNA
can silence tumor suppressor genes, and hypomethylation of DNA can lead to transcrip-
tional activation proto-oncogenes. Methylation patterns have been associated with different
cancer aspects, such as disease stage, survival, and response to treatment. DNA methylation
could predict the response to platinum-based chemotherapy in lung cancer patients [27,28].
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Methylation of single or panel genes is reported in lung cancer and is associated
with response to therapies (Table 1). Several studies have shown that the methylation of
RASSF1A, SHOX2, and PTGER4 genes is greatly helpful in the early diagnosis of lung
cancer [29–31]. RASSF1A is a tumor-suppressor gene, and its methylation-associated inacti-
vation is reported in NSCLC, breast, and gastrointestinal cancer (G.C.) [32]. Combining
two or more gene methylation detection methods have improved sensitivity and specificity
compared to a single-gene methylation detection method. The promoter methylation TAC1,
HOXA17, and SOX17 in sputum obtained from a prospective cohort of 150 NSCLC patients
and 60 controls showed sensitivity and specificity of 98% and 71%, respectively [33]. The
sensitivity and specificity of the methylation panel of SOX17, HOXA9, AJAP1, PTGDR,
UNCX, and MARCH11 in NSCLC patients were 96.7% and 60%, respectively [34]. Based on
the study by Liu et al., the methylation frequency PCDHGB6, HOXA9, MGMT, and miR-126
reached 85.2% sensitivity and 81.5% specificity [34,35].

Table 1. Methylation-based biomarkers for early detection of NSCLC.

Biomarker (S) Method Specimen Population Sensitivity and
Specificity (%) Reference

MGMT, p16,
RASSF1A, DAPK,

and RAR-β
Meta-analysis Blood 37 case-control studies NA [36]

APC, CDH13,
KLK10,

DLEC1, RASSF1A,
EFEMP1, SFRP1,

RARβ and
p16INK4A

MSP Tissues

78 paired NSCLC
specimens and adjacent

normal tissues
110 stage I/II NSCLC and

50 plasmas cancer-free

83.64 and 74.0 [37]

RARB2, RASSF1A

Quantitative
methylation-

specific
PCR

Cell-Free DNA
circulating in the blood

(cirDNA)

32 healthy donors and
60 patients with lung

cancer
87 and 75 [38]

SHOX2

Quantitative
real-time

polymerase
chain reaction

Plasma
371 samples from patients

with lung cancer and
controls

60 and 90 [39]

DCLK1 qMSP-PCR Plasma
65 patients with lung
cancer and 95 healthy

donors
NA [39,40]

SEPT9

Real-time PCR
with the use of
specific SEPT9

promoter
methylation

probe

Plasma
70 lung cancer patients

and 100 healthy
individuals

44.3 and 92.3 [41]

CDO1,
BCAT1,

TRIM58,
ZNF177

Pyrosequencing

Paraffin-
embedded tissues

Bronchial aspirates and
bronchoalveolar lavages

237 stage I NSCLC and
25 nontumoral matched

lung tissues
NA [42]

TMEFF2
Methylation-

specific
PCR

Serum 316 NSCLC, 50 NC 9.2 and 100 [43]

2.1.2. miRNAs

MicroRNAs (miRNAs) are a large family of short single-stranded RNAs that regulate
gene expression. MicroRNAs play a pivotal role in biological processes such as cell prolifera-
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tion, differentiation, and survival [44]. In cancer, miRNAs may act as either tumor suppressors
or oncogenes [45,46]. Profiling miRNA in plasma, serum, and sputum are promising non-
invasive biomarkers for the early detection of NSCLC (Table 2). Numerous studies have
reported the great potential of miRNAs in lung cancer diagnosis. A recent systematic review
and meta-analysis by Wang et al. declared that miRNA-21 has potential clinical value in the
diagnosis and prognosis of lung cancer [47]. Lu et al. investigated 723 human microRNAs
in 106 plasmas in healthy individuals and patients with NSCLC or SCLC. They identified
the diagnostic features of six miRNAs (miR-17, miR-190b, miR-19a, miR-19b, miR-26b, and
miR-375) that have value for discriminating lung cancer patients from healthy individuals [48].
A panel of three miRNAs (miR-125a-5p, miR-25, and miR-126) in the study of Wang et al.
distinguished early stage lung cancer patients from control subjects [49]. Pan et al. studied
the expression of miR-33a-5p and miR-128-3p lung cancer tissues and cell lines. They found
that the expression of these miRNAs was downregulated in tissues, cell lines, and the whole
blood of early stage lung cancer patients [50]. A multicenter study analyzed bloodborne RNA
signatures in 3102 patients and found that a 15-miRNA signature might help distinguish
patients diagnosed with lung cancer from cancer-free individuals [51]. Khandelwal et al.
explored the role of miR-590-5p in NSCLC patients in plasma samples, and they found that
miRNA functions as a tumor suppressor in NSCLC and downregulated in NSCLC patients
compared to healthy controls [52].

Table 2. MicroRNA biomarkers for early detection of NSCLC.

Biomarkers Specimen Population Result Sensitivity and
Specificity (%) Reference

13 miRNA Plasma

939 participants,
including 69

patients with lung
cancer and 870 healthy

control subjects

Screening 87 and 81 [53]

miR-31 and miR-210 Sputum
35 patients with lung cancer

and 40 healthy control
subjects

Screening 65.71 and 85.00 [53,54]

miR-125a-5p,
miR-25, and miR-126 Serum

24 early stage lung cancer
patients and 24 healthy

control subjects
Early Detection 87.5 and 87.5 [49]

miR-21, miR-143,
miR-

155, miR-210,
miR-372

Sputum 24 NSCLC cases and
6 negative controls Early Detection 83.3 and

100 [55]

miR-141 Plasma NSCLC patients
(n: 72) and N.C. (n: 50) Early Detection 82.7 and 98 [56]

miRNA (miR)-486
and miR-150

Peripheral
Blood

Early Diagnosis and
Recurrence

90.9 and 81.8 for
miR-486

and 81.8 for
miR-150

[57]

miRs-126, 145, 210,
and 205-5p Plasma

64 individuals comprising
34 lung cancer

patients and 30 healthy
control smokers

Early Detection 91.5 and 96.2 [58]

I-miR-1254 and
hsamiR-574-5p Serum

22 individuals (11 healthy
control subjects and

11 patients with early stage
NSCLC).

Early Detection 82 and 77 [58,59]
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2.2. Proteomic Early Detection

Proteomics is a powerful approach to studying numerous proteins that generates infor-
mation about biomarker identification, molecular interactions, and signaling pathways [60].
Mass spectrometry (MS) is an analytical tool in biomarker discovery that can be used to
measure the mass-to-charge ratio of particles. MS-based proteomics has been applied to
biomarker discovery for several decades. In oncology, MS approaches provided a decisive
result for the early detection of breast, colorectal, prostate, and ovarian cancer [61–64].
Proteomic biomarkers could be used from several sources, including plasma, serum, tears,
sputum, saliva, and urine [65–67]. We can also find proteomic biomarkers in exhaled breath
condensate, bronchoalveolar lavage fluid, and pleural effusion for lung cancer [68] (Table 3).
Zhang et al. profiled urine proteome in several cancer types and healthy control. In this
study, five biomarkers (FTL: ferritin light chain; MAPK1IP1L: mitogen-activated protein
kinase 1 interacting protein 1-like; FGB: fibrinogen beta chain; RAB33B: RAB33B, member
RAS oncogene family; RAB15: RAB15, member RAS oncogene family) could distinguish
lung cancer patients from healthy individuals [69].

Table 3. Protein biomarkers for early detection of NSCLC.

Biomarker Method Specimen Population Sensitivity and
Specificity (%) Reference

FTL, FGB, RAB33B,
RAB15 LC-MS/MS Urine

Lung cancers from
healthy control

subjects
90 and 90 [69]

ERO1L, NARS,
PABPC4, RCC1, RPS25,

TARS

(iTRAQ) labeling
combined with
2D-LCMS/M.S.

Tumor and Lung
Tissues

ADC tumors without
L.N. metastasis and

adjacent normal
tissues

NA [70]

44 proteins showed a
fold-change > 3.75 (L.C.–MS/MS) Bronchoalveolar

Lavage Fluid (BALF)

Adenocarcinoma vs.
healthy control

subjects
NA [71]

133 biomarkers LC-MS Bronchoalveolar
Lavage (BAL)

Lung cancer versus
nonlung cancer NA [71,72]

GlcNAcylated AACT iTRAQ labeling
and LC-MS/MS. Serum

NSCLC patients,
benign lung diseases
subjects, and healthy

individuals

90.8 and 76.9 [73]

α2 macroglobulin,
αmicroglobulin/bikunin,

and SERPINA1
MRM Serum

NSCLC lung
adenocarcinoma

cancer and healthy
control subjects

NA [74]

Elongation factor 1-
alpha 2, proteasome

subunit alpha type, and
spermatogenesis-

associated
protein

LC-MS/MS Serum
Lung cancer and
healthy control

subjects
NA [75]

ALOX5, ALOX5AP,
SLC2A3, CEACAM6,

ITGAX, CRABP2, LAD1

LC-MS,
PMR-MS, and
immunohisto-

chemistry

Tissues and Normal
Bronchial Biopsies

Adenocarcinoma
samples and benign

nodules
NA [76]

LC-MS/MS: liquid chromatography–tandem mass spectrometry, PMR-MS: parallel reaction monitoring mass
spectrometry, iTRAQ: isobaric tags for relative and absolute quantification MRM: multiple reaction monitoring,
NA: not applicable.
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3. Actionable Markers for Treatment
3.1. Genomics Biomarkers

In the United States, the National Cancer Institute (NCI) and National Human Genome
Research Institute launched a genomic cancer program, The Cancer Genome Atlas (TCGA),
in 2006. This project characterized 20,000 primary cancer and matched standard sam-
ples of 33 major cancer types in the genomic, epigenomic, transcriptomics, clinical, and
proteomics information level [77]. Over several years, TCGA data has been available in
several databases, such as cBioPortal for Cancer Genomics and The Cancer Proteome Atlas
Portal (TCPA) [78,79]. The Catalogue of Somatic Mutations in Cancer (COSMIC) and
the International Cancer Genome Consortium (ICGC) provide a comprehensive genomic
data visualization, integration, and analysis source [80,81]. Integrative analysis from the
Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer
Genome Consortium (ICGC) and TCGA revealed that cancer genomes contained four to
five driver mutations [82]. Recent results from the PCAWG Consortium shed light on
different aspects of cancers, such as mutational processes, tumor evolution, and diverse
transcriptional consequences [82]. The combination of omics data from various databases
such as Gene Expression Omnibus and TCGA is one of the promising approaches to finding
potential biomarkers for understanding cancer development and progression [83].

Genetic variations such as single-nucleotide polymorphisms (SNPs) and deletion
variants (indels) are associated with genetic susceptibility to cancer [84,85]. Pharmacoge-
netics studies explore genetic variations and focus on individual genetic variability and its
correlation with drug efficacy, toxicity, and overall cancer treatment outcomes [86,87].

Several driver gene alterations have been detected in NSCLC patients, including
Epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene homolog
(K-Ras), tumor protein p53 (TP53), MET, B-Raf proto-oncogene, serine/threonine kinase
(BRAF), ERBB2, the anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1 receptor
tyrosine kinase (ROS), RET, and NTRK rearrangement were detected [88–91].

Epidermal growth factor receptor (EGFR) controls critical signaling pathways, includ-
ing RAS/MAPK/ERK, PI3K/AKT, and STATS, and is responsible for cellular proliferation,
differentiation, and survival. EGFR is an oncogenic driver in NSCLC, breast, and glioblas-
toma. EGFR has been linked to types of cancer, including metastatic colorectal cancer
(CRC), pancreatic cancer, and head and neck squamous cell carcinoma (HNSCC). Its gene
is located on the short arm of chromosome 7 at position 11.2 (7p11.2) [92]. EGFR is over-
expressed and/or mutated in cancers such as glioblastoma, head and neck, pancreatic,
breast, and metastatic colorectal cancer [93–97]. EGFR is overexpressed in 40–80% of
NSCLC patients [98,99]. Abnormal EGFR expression has been associated with mutations
in the EGFR, with approximately 10–15% in Caucasians with adenocarcinoma and 50%
in lung tumors in East Asian populations [100]. Common mutations of EGFR are sum-
marized in Figure 2. Several tyrosine kinase inhibitors (TKIs) targeting EGFR have been
developed, including Erlotinib (Tarceva), Afatinib (Gilotrif), Gefitinib (Iressa), Osimertinib
(Tagrisso), and Dacomitinib (Vizimpro), which improved progression-free survival (PFS),
time-to-progression, and overall survival compared to standard chemotherapy in NSCLC
patients. Gefitinib, Erlotinib, and Afatinib are common options for lung cancer patients
with exon 21 Leu858Arg mutation or EGFR-exon 19 deletions. Unfortunately, patients with
EGFR-mutant NSCLC develop disease progression within 10–14 months [101]. Different
mechanisms underlie intrinsic or acquired resistance to EGFR-targeted inhibitors. T790M
mutation in EGFR is responsible for approximately 50% of cases of acquired resistance [102].
Other important resistance mechanisms involve AKT mutations, loss of PTEN, activation
of alternative signaling, and BCL2-like 11/BIM deletion polymorphism [103].
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Figure 2. Genetic alteration in NSCLC. (A) Frequency of driver genes in NSCLC. (B) Frequency of
driver mutations in EGFR. Fusion partners of ROS1 (C) and ALK (D) in NSCLC.

The ALK gene consists of 30 exons and is located on chromosome 2p23. ALK is a
tyrosine kinase receptor of the insulin receptor superfamily that plays an essential role in
embryonic and neural development and human immune responses. The role of ALK in
human tumorigenesis was discovered in anaplastic large cell lymphoma (ALCL) in 1994.
The presence of EML4-ALK fusion was shown in breast, colorectal, and non-small-cell
lung cancers. KIF5B, RET, ROS1, and ALK fusion has been detected in lung cancer. ALK
could have different fusion partners, including NPM, in non-Hodgkin’s lymphoma, VCL
in Renal cell carcinoma, FN1 in gastrointestinal leiomyomas, and TRK-fused gene (TFG) in
anaplastic large-cell lymphoma.

The V-RAF murine sarcoma viral oncogene homolog B (BRAF) encodes serine/threonine
kinase. BRAF is a constituent of the MAPK pathway that regulates various cellular processes,
including cell growth, proliferation, and survival. The effect of BRAF mutations in lung
cancer patients was first reported in 2011 [104]. Mutations in BRAF are seen in 2–5 lung
adenocarcinomas [105].

ROS1 (ROS proto-oncogene 1) is located on chromosome 6p22 and encodes 2347 amino
acid residues. ROS1 is the subfamily of receptor tyrosine kinase, which regulates cell
proliferation, survival, and migration [106]. FIG (GOPC)-ROS1 was the first ROS1 fusion
gene reported in the human glioblastoma cell line U118MG in the early 1980s. Genetic
rearrangements of ROS1 have been shown in different malignancies, including gastric
adenocarcinoma, colorectal cancer, ovarian cancer, inflammatory myofibroblastic tumor,
and angiosarcoma [106–110]. The first ROS1 fusion gene in NSCLC was identified in 2007.
Previous studies have shown that ROS1 fusions account for 1–2% of all cases of NSCLC [88].
NSCLC patients with ROS1 fusion have several distinct clinical characteristics: they are
typically female, younger (<50 years of age), and never or light smokers [111–113].

3.1.1. The PI3K Pathway in NSCLC

The phosphatidylinositol 3-kinase (PI3K)/Akt/mechanistic target of the rapamycin
(mTOR) pathway has a pivotal role in regulating signal transduction and biological pro-
cesses such as cell growth and survival, apoptosis, angiogenesis, tumor invasion, and
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metastasis. PI3Ks, AKT, and mTOR are the core components of the PI3K–AKT–mTOR sig-
naling pathway, and their hyperactivation is observed in many cancers [114,115]. Therefore,
alterations in this pathway lead to initiating and enhancing cancer progression. Conse-
quently, this pathway is considered a target for novel anticancer therapies.

In NSCLC, the PI3K/Akt/mTOR pathway has been heavily implicated in carcinogene-
sis and disease advancement in NSCLC. Mutations in receptor tyrosine kinases (RTKs) and
KRAS have been linked to the activation of the PI3K/Akt/mTOR axis in NSCLC [116,117].
Alterations in each component of this pathway may lead to lung cancer development
and progression [118]. Mutations or increases in the number of PIK3CA of PIK3CA are
frequently found in patients with NSCLC. PIK3CA mutations are one of the most common
gene changes in human cancers. Mutations or increases in the number of PIK3CA of
PIK3CA are frequently found in patients with NSCLC.

A large study by Scheffler et al. analyzed 1144 consecutive NSCLC patients’ tumor
tissue for PIK3CA mutations. This study showed that 3.7% of patients have PIK3CA
mutations in exons nine and 20 [118,119]. Yamamoto et al. investigated PIK3CA mutations
in exons 9 and 20 in 86 NSCLC cell lines and 356 resected NSCLC tumors and revealed
that PIK3CA mutations in NSCLC cell lines were 4.7% and tumors 1.6%. Increased PIK3CA
copy number was detected in 9.3% of NSCLC cell lines and 17.1% of NSCLC tumors [120].

Recurrent alterations were observed in PIK3CA that were considered to contribute
Osimertinib resistance [121]. A systematic review and meta-analysis study was conducted
with a total of 13 studies involving 3908 NSCLC patients. The results indicated that
PIK3CA mutations are associated with OS, PFS, and cancer-specific survival (CSS) [122].
PIK3CA mutation could be considered an independent prognostic factor for reduced PFS
of EGFR-TKIs treatment and worse OS in NSCLC patients [122,123].

Several PI3K/Akt/mTOR signaling pathway inhibitors are currently developing as
promising targets for new anticancer drugs in preclinical investigations and clinical trials.
Pilaralisib is a highly selective inhibitor of the class I PI3Ks and successfully inhibits tumor
growth in vivo. In phase I trials, Pilaralisib was assessed as a tolerable monotherapy in
advanced solid tumors patients [109]. Alpelisib is a p110 alpha isoform-specific PI3K
inhibitor that has been FDA-approved for HER2-positive advanced or metastatic breast
cancer with PIK3CA-mutated. Alpelisib has been experimentally used in solid tumors with
a favorable safety profile [109,124].

However, there is limited data on using PIK3CA inhibitors such as Copanlisib, Idelal-
isib, Umbralisib, Duvelisib, and Alpelisib in NSCLC patients. There is a need to elucidate
the underlying molecular biology to detect the relevant biomarkers of toxicities and resis-
tance to PI3K therapies. Several NGS-based panels related to cancer were approved by
the FDA. Oncomine Dx Target Test detects variations in 23 genes that are biomarkers for
selecting NSCLC patients for four targeted therapies Dabrafenib, Crizotinib, Gefitinib, and
Pralsetinib [125]. The Praxis Extended RAS Panel detects several mutations in exons 2, 3,
and 4 of KRAS and NRAS to implicate metastatic colorectal cancer treatment decisions [126].
MSK-IMPACT was created by the Memorial Sloan Kettering Cancer Center (MSK) to detect
genetic aberrations in the 468-gene in solid tumors [127]. The FoundationOne CDx diag-
nostic test detects genetic mutations in 324 genes in several FDA-approved therapies for
solid tumors [128]. Ongoing clinical trials are summarized in Table 4.

Of note, Crizotinib is an ALK, MET, and ROS1 kinases inhibitor. The phase I study of
Crizotinib in 50 patients who were positive for ROS1 rearrangement proved the antitumor
activity of this drug in advanced NSCLC [129]. Consequently, in 2016, Crizotinib was
approved by the U.S. Food and Drug Administration (FDA) for the treatment of advanced
NSCLC patients with ROS1-rearranged. In a phase II study of Crizotinib in East Asian
patients, 127 East Asian patients were enrolled with ROS1-positive. The ORR by IRR was
71.7% (95% CI, 63.0% to 79.3) for NSCLC patients with ROS1-positive and had lower rates of
brain metastases compared to ALK rearrangements (ROS1 19.4%, ALK 39.1%; p = 0.033) [130].
Another study identified 33 ROS1 rearrangements in 579 patients with stage IV NSCLC.
The median PFS time for ROS1-positive was 11 months. ROS1 fusion partners were CD74,
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SLC34A2, and ZCCHC8 [131]. In Chinese patients with ROS1-positive advanced NSCLC
treated with Crizotinib, the objective response rate (ORR) and the disease control rate (DCR)
were 71.4% and 94.3%, respectively. In addition, the median PFS was 11.0 months (95%
confidence interval (CI), 7.8–14.2), and median OS was 41.0 months (95% CI, 22.5–59.5) [132].

Table 4. Ongoing clinical trials are investigating treatments targeting the AKT–PI3K–mTOR
pathway in NSCLC.

NCT Number Clinical Phase Types of Patients Purpose Primary End Points Intervention/s

NCT04467801 II 60 metastatic/advanced
NSCLC Treatment Progression-free

survival Ipatasertib

NCT04184921 NA 350 advanced lung
cancer patients NA Progression-free

survival Osimertinib

NCT03543683 NA 330 metastatic NSCLC NA
1-year median

progression-free
survival

Osimertinib

NCT03532698 NA 100 stage IIIB and IV
NSCLC NA Objective response rate

(ORR) Osimertinib

NCT03845270 II 46 stage III or IV NSCLC Treatment Overall response
Pertuzumab +
Trastuzumab +

Docetaxel

NCT01306045 II
471 advanced NSCLC,

SCLC, and thymic
malignancies

Treatment

Estimate the response
rate and feasibility of the
use of tumor molecular
profiling and targeted

therapies in the
treatment of NSCLC,

SCLC, and thymic
malignancies

AZD6244
MK-2206
Lapatinib
Erlotinib
Sunitinib

NCT02664935 II 423 NSCLC stage III or
stage IV Treatment

Objective response (OR),
progression-free

survival time (PFS), and
durable clinical benefit

(DCB)

AZD4547
Vistusertib
Palbociclib
Crizotinib

Selumetinib
Docetaxel
AZD5363

Osimertinib
Durvalumab
Sitravatinib
AZD6738

NCT02117167 II 999 metastatic relapse or
stage IV Treatment Progression-free

survival

AZD2014
AZD4547
AZD5363
AZD8931

Selumetinib
Vandetanib
Pemetrexed
Durvalumab
Savolitinib
Olaparib
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Table 4. Cont.

NCT Number Clinical Phase Types of Patients Purpose Primary End Points Intervention/s

NCT04591431 II

384 recurrent/metastatic
breast, gastrointestinal
cancer, non-small-cell
lung cancer, or others

Treatment Overall response rate
(ORR)

Erlotinib
Trastuzumab
Trastuzumab

emtansine
Pertuzumab

Lapatinib
Everolimus

Vemurafenib
Cobimetinib

Alectinib
Brigatinib
Palbociclib
Ponatinib

Vismogedib
Itacitinib

Ipatasertib
Entrectinib

Atezolizumab
Nivolumab
Ipilimumab
Pemigatinib

NCT04467801 II 60 metastatic/advanced
NSCLC Treatment Progression Free

Survival Ipatasertib

NCT04184921 NA 350 advanced lung
cancer NA Progression-free

survival Osimertinib

NCT03543683 NA 330 metastatic NSCLC NA
1-year median

progression-free
survival (PFS)

Osimertinib

NCT03532698 NA 100 metastatic NSCLC NA Objective response rate
(ORR) Osimertinib

NCT03845270 II 46 stage III and
metastatic Treatment Overall response

Pertuzumab +
Trastuzumab +

Docetaxel

NCT01306045 II

AZD6244
MK-2206
Lapatinib
Erlotinib
Sunitinib

NCT02664935 II

AZD4547
Vistusertib
Palbociclib
Crizotinib

Selumetinib
Docetaxel
AZD5363

Osimertinib
Durvalumab
Sitravatinib
AZD6738
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Table 4. Cont.

NCT Number Clinical Phase Types of Patients Purpose Primary End Points Intervention/s

NCT02117167 II

AZD2014
AZD4547
AZD5363
AZD8931

Selumetinib
Vandetanib
Pemetrexed
Durvalumab
Savolitinib
Olaparib

NCT04591431 II

Erlotinib
Trastuzumab
Trastuzumab

emtansine
Pertuzumab

Lapatinib
Everolimus

Vemurafenib
Cobimetinib

Alectinib
Brigatinib
Palbociclib
Ponatinib

Vismogedib
Itacitinib

Ipatasertib
Entrectinib

Atezolizumab
Nivolumab
Ipilimumab
Pemigatinib

NCT01737502 I and II

47 lung cancer
(squamous, Ras-mutated

adenocarcinoma, or
small-cell lung cancer)

Treatment

Maximum tolerated
dose of Auranofin,

number and severity of
all adverse events, and

progression-free
survival

Auranofin
Sirolimus

NCT05445791 III Metformin
Hydrochloride

NCT02664935 II

AZD4547
Vistusertib
Palbociclib
Crizotinib

Selumetinib
Docetaxel
AZD5363

Osimertinib
Durvalumab
Sitravatinib
AZD6738
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Table 4. Cont.

NCT Number Clinical Phase Types of Patients Purpose Primary End Points Intervention/s

NCT02117167 II

AZD2014
AZD4547
AZD5363
AZD8931

Selumetinib
Vandetanib
Pemetrexed
Durvalumab
Savolitinib
Olaparib

NCT04591431 II

Erlotinib
Trastuzumab
Pertuzumab

Lapatinib
Everolimus

Vemurafenib
Cobimetinib

Alectinib
Brigatinib
Palbociclib
Ponatinib

Vismogedib
Itacitinib

Ipatasertib
Entrectinib

Atezolizumab
Nivolumab
Ipilimumab
Pemigatinib

NCT05144698 II

22 advanced metastatic,
recurrent, and

unresectable solid
tumors

Treatment Safety of RAPA-201 Cell
Therapy

RAPA-201
Rapamycin-

Resistant T Cells
Chemotherapy Prior

to RAPA-201
Therapy

AZD2014; Novel mTOR inhibitor; AZD4547; FGFR inhibitor; AZD5363; Akt inhibitor; AZD8931; Novel
EGFR/HER2/HER3 signaling inhibitor; NA; Not available.

3.1.2. Current Status of Novel Biomarkers for Response to Immunotherapy

Immune checkpoint inhibitors (ICIs) are considered one of the most important treat-
ments for various advanced malignancies and have become the standard of care in lung
cancer [133,134]. Among ICI immunotherapy agents, the antiprogrammed death 1 lig-
and (PD-L1) (atezolizumab and durvalumab), the cytotoxic T-lymphocyte antigen 4 (anti-
CTLA-4) (ipilimumab), and the programmed cell death receptor-1 (PD-1) (nivolumab and
pembrolizumab) are currently used in therapy in patients with lung cancer. Treatment
outcomes of lung cancer patients have improved considerably with these drugs; however,
these drugs can cause immune-related adverse events (irAEs) that threaten the life of
patients. Moreover, only a relatively small number of lung cancer patients benefit from
immunotherapy, and the rapid tumor progression after the treatment with ICIs defined is
as a hyperprogressive disease (HPD). Hence, an urgent need for biomarkers that predict
responses and prognosis after treatment with ICIs is warranted.

Previous large clinical trials reported that the higher expression of PD-L1 can predict
the response to PD1/PD-L1 inhibitors in different types of cancer, such as non-small-cell
lung cancer (NSCLC), urothelial cancer, and melanoma [132,135–137]. Immunohistochem-
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ical (IHC) detection of PD-L1 is a current predictive biomarker, but it is an imperfect
biomarker for responses to ICI therapy.

In the KEYNOTE-001 trial, patients with advanced NSCLC enrolled in a phase I study
and received Pembrolizumab. The PD-L1 expression in the tumor samples using the IHC
analysis and results declared that at least 50% of the PD-L1 expression in the tumor cells
correlated with improved efficacy of Pembrolizumab in patients [138]. In the open-label,
phase II randomized controlled POPLAR trial, improvement of NSCLC patients treated
with Atezolizumab was correlated with PD-L1 expression [139]. Data from the KEYNOTE-
024 study reported that advanced NSCLC patients with PD-L1 expression on at least 50%
of tumor cells treated with Pembrolizumab were associated with significantly longer PFS
and OS [136]. However, there are some challenging obstacles to consistency in PD-L1
testing, including sampling methods, different techniques used to assess PDL1 expression,
dynamic changes in PD-L1 expression, and spatial and temporal heterogeneity [122]. In
addition, the single biomarker may not be indicative of patient selection. Therefore, several
predictive and prognostic biomarkers have been explored during the past decade to guide
patient choice.

3.1.3. Tumor Mutation Burden (TMB) and Circulating Tumor DNA (ctDNA)

The tumor mutation burden (TMB) refers to the total number of somatic mutations
in tumor cells. The first association between a high TMB and treatment response was
reported in patients with melanoma treated with cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) [140]. Recently, various clinical trials showed that TMB is an im-
portant biomarker for predicting the efficacy of immunotherapy across diverse tumor
types, including lung, urothelial, and breast cancers [141,142]. New studies have shown
that blood-based TMB (bTMB) from circulating tumor DNA (ctDNA) has predictive
power for the clinical benefit of immunotherapy in non-NSCLC patients receiving im-
munotherapy [142,143]. The role of bTMB profiling and sequencing of small amounts of
cell-free DNA (cfDNA) in NSCLC patients treated with ICIs has been explored in several
studies. Gandara et al. tested a novel assay to measure bTMB using samples collected
prospectively from the POPLAR (NCT01903993) and the OAK (NCT02008227) clinical trials.
Their results indicated that high bTMB in patients receiving Atezolizumab monotherapy in
NSCLC was associated with longer PFS [143]. Wang et al. explored a 150-cancer genes panel
(CGP) named NCC-GP150 in blood and tissue samples from non-small-cell lung cancer
treated with anti-PD-1 and anti-PD-L1 therapy. Data from this analysis demonstrated that
bTMB was a potential biomarker for patients with advanced NSCLC receiving ICIs [144].
Iijima et al. studied early response in 14 NSCLC patients treated with Nivolumab. The
high level of tumor burden in circulating tumor DNA (ctDNA) could predict a durable
response to Nivolumab [145]. Raja et al. studied variant allele frequencies (VAF) of
somatic mutations in 73 genes ctDNA of NSCLC and urothelial cancer patients. Patients
with the reduction in ctDNA VAF had a more significant decrease in tumor volume, with
longer PFS and OS. [146]. In the study of Guibert et al., targeted sequencing of plasma
ctDNA was analyzed in 97 progressive NSCLC patients. This study revealed that if a
ctDNA allele fraction (A.F.) decreases, the PFS of patients increases. B-F1RST is the first
prospective trial that evaluated bTMB in advanced NSCLC treated with Atezolizumab
as a first-line (1L) monotherapy. The final result of this trial confirmed that bTMB could
be considered a predictive biomarker for PFS and OS in NSCLC patients [146,147].

Atezolizumab monotherapy resulted in longer overall survival in NSCLC patients
with high PD-L1 expression [148]. In the phase II B-F1RST (NCT02848651) trial, Kim et al.
evaluated bTMB in locally advanced or metastatic stage IIIB–IVB NSCLC patients treated
with first-line Atezolizumab monotherapy. In patients with bTMB ≥ 16, OS were associated
with longer than patients with bTMB < 16 [142].

In meta-analyses of Meng et al., predictive value of TMB in NSCLC patients treated
with ICIs were analyzed in six randomized controlled trials (3662 patients) and 31 datasets
(3437 patients). Longer PFS, OS, and higher ORR were observed in high-TMB patients.
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Furthermore, immunotherapy was associated with improved PFS, OS, and ORR in patients
with high-TMB patients [149].

In the systematic review and meta-analysis of Kim et al., they explored the data of
5712 patients from 26 studies. The result of this study showed that, in patients who were
treated with ICIs, the high-TMB groups showed better OS and PFS compared to the low-
TMB groups. Moreover, patients with high TMB benefit more from ICI treatment than
chemotherapy alone. In NSCLC patients, higher TMB was significantly associated with
better PFS [150].

In the study of Thompson et al., ctDNA NGS was identified 50 drivers and 12 resistance
mutations in advanced NSCLC. Detection of targetable driver and resistance mutations
in ctDNA led to the identification of the resistance mechanisms in patients and to finding
additional therapeutic options [151].

3.2. Proteomics

Protein markers can monitor treatment and/or predict drug resistance in NSCLC
patients. Xu et al. utilized a SILAC-based quantitative proteomic approach to elucidate the
Paclitaxel (PTX) resistance. They found that PDCD4 mediated PTX sensitivity in cancer
cell lines, and during adjuvant therapy of lung cancer patients with PTX, the overall
survival of patients correlated with high levels of PDCD4 [152]. Programmed cell death 4
(PDCD4) is downregulated in different cancer types and is considered a tumor suppressor.
It has been proved that Pdcd4 has various functions inhibiting cell growth, suppressing
tumor promotion, metastasis, and inducing apoptosis. For instance, the loss of PDCD4
expression is correlated with tumor progression and prognosis and survival in lung, breast,
ovarian, and colorectal cancers. In lung cancer cells, Vihreva et al. demonstrated that the
transcription of PDCD4 is negatively regulated by mTOR signaling.

Sandfeld-Paulsen et al. studied exosomal membrane proteins by using the extracel-
lular vesicle array in 276 NSCLC patients. They found increasing concentration levels of
NY-ESO-1, EGFR, PLAP, EpCam, and Alix have been associated with inferior OS [153].
In the same year, they published another study isolating exosomes from the blood of
581 patients (431 with lung cancer and 150 controls). They found that markers CD151,
CD171, and tetraspanin eight could significantly determine NSCLC patients versus healthy
controls [154]. In the PROSE study, Gregorc et al. demonstrated that a serum protein test
could predict survival in non-small-cell lung cancer treated with Erlotinib and single-agent
chemotherapy [155]. In the study by Salmon et al., L.C. patients were treated with Er-
lotinib in combination with Bevacizumab, and matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-TOF MS) could classify patients who benefit
from treatment with Erlotinib [155,156]. VeriStrat is a plasma- or serum-based test uti-
lizing MALDI MS methods to monitor EGFR TKIs treatment of various tumor types,
including colorectal and head and neck cancer [157]. Multiple studies demonstrated
that the blood-based proteomic VeriStrat test could help predict EGFR TKI treatment
response. In lung cancer, Taguchi et al. analyzed serum proteins by MALDI MS in
NSCLC patients treated with EGFR TKIs. Proteomic evaluation of this study classified
patients for good or poor outcomes after treatment with Gefitinib or Erlotinib [157,158].
Plasma samples of 111 NSCLC patients were analyzed by MALDI-TOF MS and ranked
by the VeriStrat test [159]. Patients in the VeriStrat “good” classification had longer PFS
and OS. Carbone et al. analyzed a plasma sample of 441 NSCLC patients in the NCIC
Clinical Trials Group BR.21 trial. According to the results, the VeriStrat test predicts the
objective response to Erlotinib and is a prognostic for both OS and PFS [160]. Fidler et al.
studies the serum samples of NSCLC patients who received chemotherapy or Erlotinib.
They measured 102 biomarkers by Luminex immunoassays and classified patients with
the VeriStrat test. This study showed 27 and 16 biomarkers associated with OS and PFS,
respectively [161]. In the study of Grossi et al., 481 NSCLC patients were treated with
first-line platinum-based chemotherapy. In the group receiving VeriStrat, the PFS and
OS were longer [161,162].
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4. AI Machine Learning-Driven Discovery of Biomarkers for NSCLC

Robust clinical evaluation requires innovations, including technology platforms and
artificial intelligence (AI). AI mimics the problem-solving and decision-making capabilities of
the human mind [163]. Machine learning (ML) and its subfield deep learning are the main
subsets of AI that can help biologists analyze vast amounts of data, leverage patterns in the
data, and transform big data into actionable biomarkers [164]. AI revolutionized various
areas in medicine, such as ophthalmology, radiology, and oncology [165–167]. Several medical
algorithms detect CT-based lesions and are approved by the FDA, such as Arterys Oncology
DL, Arterys MICA, and QuantX™, that improve radiologist performance [168,169]. AI affects
different aspects of lung cancer, such as medical imaging for screening, early detection,
characterizing lung cancers, treatment selection, and monitoring treatment response [170,171].
However, further improvement is required in big data interpretation and management, model
fairness and interpretability, and generalizability.

Artificial intelligence has many applications in lung cancer [172]. Zhang et al. found
that a combination of five urinary biomarkers discriminated lung cancer patients from
healthy ones and differentiated lung cancer from other cancers [69]. Analysis of microbial
reads of TCGA of 33 cancer types with the stochastic gradient-boosting machine (GBM)
learning models successfully discriminated against cancer-free individuals, patients with
cancer, and patients with multiple types of cancer [173]. In the study of Tirzïte et al., lung
cancer patients’ exhaled breath samples were explored with logistic regression analysis
(LRA). This model can discriminate lung cancer patients from noncancer patients [174]. It
is trained on a deep convolutional neural network (inception v3) that could predict most
STK11, EGFR, FAT1, SETBP1, KRAS, and TP53 from pathology images [175]. The PD-L1
expression level is a crucial biomarker for identifying responders and nonresponders to
NSCLC patients treated with anti-PD-1/PD-L1 treatments. However, the accurate estima-
tion of PD-L1 expression is challenging. Wang et al. proposed a deep learning model that
predicted mutated EGFR from the wild EGFR patients and distinguished PD-L1-positive
from PD-L1-negative patients through C.T. images [176]. Choi et al. developed an AI-
powered tumor proportion score (TPS) analyzer to evaluate whole-slide images of 802
NSCLC. Using this model, they could detect PD-L1 expression in tumors and calculate
TPS. Moreover, AI-assisted TPS reading predicted OS and PFS upon ICI treatment [177].
Cheng et al. developed deep learning (DL)-based AI model to analyze the expression of
PD-L1 in 1288 lung cancer patients. They used three different AI models (M1, M2, and
M3) assessed in both PDL1 (22C3) and PD-L1 (SP263) assays. Their models improved the
evaluation of PD-L1 expression, and diagnostic results were consistent with the patholo-
gist’s [177,178]. In the study of Wu et al., TPS of PD-L1 expression was also assessed in
whole slide images (WSIs) of the 22c3 assay by the DL model. Their results also confirmed
that AI-assisted diagnosis tests improve diagnostic repeatability and are a promising tool
for improving the efficiency of clinical pathologists [179].

5. Conclusions and Future Directions

Cancer is a heterogeneous disease caused mainly by genomic aberrations. These
aberrations may alter proteome, transcriptome, and metabolome pathways, which in turn
become valuable biomarkers. Genomics and proteomics heterogeneity is the primary bar-
rier that may be responsible for developing drug resistance. Using new techniques, such
as artificial intelligence or single cell RNA sequencing, to solve old problems could solve
old problems such as discovering biomarkers for diagnostic, prognostic, and predictive
biomarkers to help guide clinicians to choose their medicine more precisely. These data
layers integrate advanced computational methods to overview tumorigenesis comprehen-
sively. Rethinking with new methods the resistance to checkpoint inhibitors (e.g., PD-1,
PD-L1 or CTLA-4) or targeted therapies (e.g., PI3K/mROT pathways inhibitors) could help
in selecting only patients who would benefit from these therapies in the future.

Solid high-throughput clinical outcomes are pivotal for clinical biomarkers discovery.
Therefore, international collaboration with a large sample size of a wide variety of cancers
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and sharing of treatment data is imperative to develop more accurate biomarkers predicting
the therapy response of lung cancer patients. Early detection and a proper treatment
regimen prediction can ultimately aid clinicians in improving those patients’ survival rates.
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