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Simple Summary: Breast cancer is the most common cancer, which resulted in the death of 700,000
people around the world in 2020. Various imaging modalities have been utilized to detect and analyze
breast cancer. However, the manual detection of cancer from large-size images produced by these
imaging modalities is usually time-consuming and can be inaccurate. Early and accurate detection
of breast cancer plays a critical role in improving the prognosis bringing the patient survival rate
to 50%. Recently, some artificial-intelligence-based approaches such as deep learning algorithms
have shown remarkable advancements in early breast cancer diagnosis. This review focuses first
on the introduction of various breast cancer imaging modalities and their available public datasets,
then on proposing the most recent studies considering deep-learning-based models for breast cancer
analysis. This study systemically summarizes various imaging modalities, relevant public datasets,
deep learning architectures used for different imaging modalities, model performances for different
tasks such as classification and segmentation, and research directions.

Abstract: Breast cancer is among the most common and fatal diseases for women, and no permanent
treatment has been discovered. Thus, early detection is a crucial step to control and cure breast
cancer that can save the lives of millions of women. For example, in 2020, more than 65% of breast
cancer patients were diagnosed in an early stage of cancer, from which all survived. Although early
detection is the most effective approach for cancer treatment, breast cancer screening conducted by
radiologists is very expensive and time-consuming. More importantly, conventional methods of
analyzing breast cancer images suffer from high false-detection rates. Different breast cancer imaging
modalities are used to extract and analyze the key features affecting the diagnosis and treatment
of breast cancer. These imaging modalities can be divided into subgroups such as mammograms,
ultrasound, magnetic resonance imaging, histopathological images, or any combination of them.
Radiologists or pathologists analyze images produced by these methods manually, which leads to an
increase in the risk of wrong decisions for cancer detection. Thus, the utilization of new automatic
methods to analyze all kinds of breast screening images to assist radiologists to interpret images is
required. Recently, artificial intelligence (AI) has been widely utilized to automatically improve the
early detection and treatment of different types of cancer, specifically breast cancer, thereby enhancing
the survival chance of patients. Advances in AI algorithms, such as deep learning, and the availability
of datasets obtained from various imaging modalities have opened an opportunity to surpass the
limitations of current breast cancer analysis methods. In this article, we first review breast cancer
imaging modalities, and their strengths and limitations. Then, we explore and summarize the most
recent studies that employed AI in breast cancer detection using various breast imaging modalities. In
addition, we report available datasets on the breast-cancer imaging modalities which are important in
developing AI-based algorithms and training deep learning models. In conclusion, this review paper
tries to provide a comprehensive resource to help researchers working in breast cancer imaging analysis.

Keywords: artificial intelligence; breast cancer; deep learning; histopathology; imaging modality;
mammography
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1. Introduction

Breast cancer is the second most fatal disease in women and is a leading cause of death
for millions of women around the world [1]. According to the American Cancer Society,
approximately 20% of women who have been diagnosed with breast cancer die [2,3]. Gen-
erally, breast tumors are divided into four groups: normal, benign, in situ carcinoma, and
invasive carcinoma [1]. A benign tumor is an abnormal but noncancerous collection of cells
in which minor changes in the structure of cells happen, and they cannot be considered
cancerous cells [1]. However, in situ carcinoma and invasive carcinoma are classified as
cancer [4]. In situ carcinoma remains in its organ and does not affect other organs. On
the other hand, invasive carcinoma spreads to surrounding organs and causes the devel-
opment of many cancerous cells in the organs [5,6]. Early detection of breast cancer is a
determinative step for treatment and is critical to avoiding further advancement of cancer
and its complications [7]. There are several well-known imaging modalities to detect and
treat breast cancer at an early stage including mammograms (MM) [8], breast thermog-
raphy (BTD) [9], magnetic resonance imaging (MRI) [10], positron emission tomography
(PET) [11], computed tomography (CT) [11], ultrasound (US) [12], and histopathology
(HP) [13]. Among these modalities, mammograms (MMs) and histopathology (HP), which
involve image analysis of the removed tissue stained with hematoxylin and eosin to increase
visibility, are widely used [14,15]. Mammography tries to filter a large-scale population
for initial breast cancer symptoms, while histopathology tries to capture microscopic im-
ages with the highest possible resolution to find exact cancerous tissues at the molecular
level [16,17]. In practice for breast cancer screening, radiologists or pathologists observe
and examine breast images manually for diagnosis, prognosis, and treatment decisions [7].
Such screening usually leads to over- or under-treatment because of inaccurate detection,
resulting in a prolonged diagnosis process [18]. It is worth noting that only 0.6% to 0.7%
of cancer detections in women during the screening are validated and 15–35% of cancer
screening fails due to errors related to the imaging process, quality of images, and human
fatigue [19–21]. Several decades ago, computer-aided detection (CAD) systems were first
employed to assist radiologists in their decision-making. CAD systems generally analyze
imaging data and other cancer-related data alone or in combination with other clinical
information [22]. Additionally, based on the statistical models, CADs can provide results
about the probability of diseases such as breast cancer [23]. CAD systems have been widely
used to help radiologists in patient care processes such as cancer staging [23]. However,
conventional CAD systems, which are based on traditional image processing techniques,
have been limited in their utility and capability.

To tackle these problems and enhance efficiency as well as decrease false cancer
detection rates, precise automated methods are needed to complement the work of humans
or replace them. AI is one of the most effective approaches capturing much attention in
analyzing medical imaging, especially for the automated analysis and extraction of relevant
information from imaging modalities such as MMs and HPs [24,25]. Many available AI-
based tools for image recognition to detect breast cancer have exhibited better performance
than traditional CAD systems and manually examining images by expert radiologists or
pathologists due to the limitations of current manual approaches [26]. In other words,
AI-based methods avoid expensive and time-consuming manual inspection and effectively
extract key and determinative information from high-resolution image data [26,27]. For
example, a spectrum of diseases is associated with specific features, such as mammographic
features. Thus, AI can learn these types of features from the structure of image data and
then detect the spectrum of the disease assisting the radiologist or histopathologist. It is
worth noting that in contrast to human inspection, algorithms are mainly similar to the
black box and cannot understand the context, mode of collection, or meaning of viewed
images, resulting in the problem of “shortcut” learning [28,29]. Thus, building interpretable
AI-based models is necessary. AI models can generally be categorized into two groups
to interpret and extract information from image data: (1) Traditional machine learning
algorithms which need to receive handcrafted features derived from raw image data as



Cancers 2022, 14, 5334 3 of 36

preprocessing steps. (2) Deep learning algorithms that process raw images and try to extract
features by mathematical optimization and multiple-level abstractions [30]. Although
both approaches have shown promising results in breast cancer detection, recently, the
latter approach has attracted more interest mainly because of its capability to learn the
most salient representations of the data without human intervention to produce superior
performance [31,32]. This review assesses and compresses recent datasets and AI-based
models, specifically created by deep learning algorithms, used on TBD, PET, MRI, US, HP,
and MM in breast cancer screening and detection. We also highlight the future direction
in breast cancer detection via deep learning. This study can be summarized as follows:
(1) Review of different imaging modalities for breast cancer screening. (2) Comparison
of different deep learning models proposed in the most recent studies and their achieved
performances on breast cancer classification, segmentation, detection, and other analysis.
(3) Lastly, the conclusion of the paper and suggestions for future research directions. The
main contributions of this paper can be listed as follows:

1. We reviewed different imaging tasks such as classification, segmentation, and detec-
tion through deep learning algorithms, while most of the existing review papers focus
on a specific task.

2. We covered all available imaging modalities for breast cancer analysis in contrast to
most of the existing studies that focus on single or two imaging modalities.

3. For each imaging modality, we summarized all available datasets.
4. We considered the most recent studies (2019–2022) on breast cancer imaging diagnosis

employing deep learning models.

2. Imaging Modalities and Available Datasets for Breast Cancer

In this study, we summarize well-known imaging modalities for breast cancer di-
agnosis and analysis. As many existing studies have shown, there are several imaging
modalities, including mammography, histopathology, ultrasound, magnetic resonance
imaging, positron emission tomography, digital breast tomosynthesis, and a combina-
tion of these modalities (multimodalities) [10,32,33]. There are various public or private
datasets for these modalities. Approximately 70% of available public datasets are related to
mammography and ultrasound modalities demonstrating the prevalence of these meth-
ods, especially mammography, for breast cancer screening [31,32]. On the other hand,
the researcher also widely utilized other modalities such as histopathology and MRI to
confirm cancer and deal with difficulties related to mammography and ultrasound imaging
modalities such as large variations in the image’s shape, morphological structure, and the
density of breast tissues, etc. Here, we outline the aforementioned imaging modalities and
available datasets for breast cancer detection.

2.1. Mammograms (MMs)

The advantages of mammograms, such as being cost-effective to detect tumors in
the initial stage before development, mean that MMs are the most promising imaging
screening technique in clinical practice. MMs are generally images of breasts produced
by low-intensity X-rays (Figure 1) [33]. In this imaging modality, cancerous regions are
brighter and more clear than other parts of breast tissue, helping to detect small variations
in the composition of the tissues; therefore, it is used for the diagnosis and analysis of
breast cancer [34,35] (Figure 1). Although MMs are the standard approach for breast cancer
analysis, it is an inappropriate imaging modality for women with dense breasts [36], since
the performance of MMs highly depends on specific tumor morphological characteris-
tics [36,37]. To deal with this problem, using automated whole breast ultrasound (AWBU)
or other methods are suggested with MMs to produce a more detailed image of breast
tissues [38].

For various tasks in breast cancer analysis, such as breast lesion detection and classifi-
cation, MMs are generally divided into two forms: screen film mammograms (SFM) and
digital mammograms (DMM). DMM is widely categorized into three categories consisting
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of full-field digital mammograms (FFDM), digital breast tomosynthesis (DBT), and contrast-
enhanced digital mammograms (CEDM) [39–44]. SFM was the standard imaging method in
MMs because of its high sensitivity (100%) in the analysis and detection of lesions in breasts
composed primarily of fatty tissue [45]. However, it has many drawbacks, including the
following: (1) SFM imaging needs to be repeated with a higher radiation dose because some
parts of the image in SFM have lesser contrast and cannot be further improved, and (2) var-
ious regions of the breast image are represented according to the characteristic response of
the SFM [19,45]. Since 2010, DMM has replaced film as the primary screening modality. The
main advantages of digital imaging over file systems are the higher contrast resolution and
the ability to enlarge the image or change the contrast and brightness. These advantages
help radiologists to detect subtle abnormalities, particularly in a background of dense breast
tissue, more easily. Most studies comparing digital and film mammography performance
have found little difference in cancer detection rates [46]. Digital mammography increases
the chance of detecting invasive cancer in premenopausal and perimenopausal women
and women with dense breasts. However, it increases false-positive findings as well [46].
Randomized mammographic trials/randomized controlled trials (RMT/RCT) represent
the most important usage of MMs, through which large-scale screening for breast cancer
analysis is performed. Despite the great capability of MMs for early-stage cancer detection,
it is difficult to use MMs alone for detection. Because it requires additional screening
tests along with mammographic trials/RMT such as breast self-examination (BSE) and
clinical breast examination (CBE), which are more feasible methods to detect breast cancer
at early stages to improve breast cancer survival [38,47,48]. Additionally, BSE and CBE
avoid tremendous harm due to MMs screening, such as repeating the imaging process.
More details about the advantages and disadvantages of MMs are provided in Table 1.

Table 1. Advantages and limitations of various imaging modalities.

Imaging
Modalities Advantages Limitations

MM

• More than 70% of studies (computational and
experimental) for breast cancer analysis.

• Time- and cost-effective approach for image capturing
and processing compared to other modalities

• No need for highly professional radiologists for diagnosis
and cancer detection compared to other methods

• Cannot capture micro-calcification because MMs are
created via low-dose X-ray

• Limited capability for diagnosis of cancer in dense breasts
• Needs more testing for accurate diagnosis
• Needs various pre-processing for classification because of

considering many factors and structures such as the
border of the breast, fibrous strands, hypertrophied
lobules, etc. which may cause misunderstanding
Problems in the visualization of cancer in high
breast density

US

• A very efficient approach in reducing false negative rates
for diagnosis because of its capability in capturing images
from different views and angles.

• A highly safe and most efficient approach for a routine
checkup because the US is a non-invasive method

• Ability to detect invasive cancer areas

Highly recommended for the identification of breast lesion ROI
because of its additional features such as color-coded
SWE images

• Capturing low-quality images for examination of the
larger amount of tissues

• Difficult to understand SWE images
• Single Nakagami parametric image cannot detect

cancerous tissues

Proper ROI estimation is very difficult because of the
shadowing effect making the tumor contour unclear

MRI

• Safe method due to no exposure to harmful ionizing
radiation

• Captures images with more detail
• Captures more suspicious areas for further analysis

compared to other modalities

Can be improved by adding contrast agents to represent
images with more details

• Misses some tumors but can be used as a complement of
MMs

• Increases body temperature
• May lead to some allergies

Invasive method and dangerous
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Table 1. Cont.

Imaging
Modalities Advantages Limitations

HP

• Produces color-coded images that help to detect cancer
subtypes and early detection of cancer

• Widely used in cancer diagnosis similar to MMs
• Shows tissues in two forms including WSI and ROI

extracted from WSI
• Provides more reliable results for diagnosis than any

other imaging modalities
• ROI increases accuracy of cancer diagnosis and analysis
• Can be stored for future analysis

• Expensive and time-consuming method to analyze
and need

• Highly expert pathologist
• It is tedious to extract ROI and analysis, so it may lead to

a decrease in the accuracy of analysis because of fatigue
• Analysis of HPs highly depends on many factors such as

fixation, lab protocols, sample orientations, human
expertise in tissue preparation, color variation

• The hardest imaging modality for applying a DL
approach for the classification of cancers, and it needs
high computational resources for analysis

DBT

• Increases cancer detection rate
• Can find cancers that were entirely missed on MMs
• Presents a unique opportunity for AI systems to help

develop DBT-based practices from the ground up.
• Captures a more detailed view of tissues by rotating the

X-ray emitter to receive multiple images
• Has great capability to distinguish small lesions which

may obscure the projections obtained using MMs

• Time consuming and expensive because of making
3D images

• Lack of proper data curation and labeling
• Decreasing accuracy of analysis when using 2D slices

instead of 3D images
• Looking only at 2D slices, it is still unclear whether

AIModels operate better using abnormalities labeled
• Using bounding boxes or tightly-drawn margins

of lesions
• DBT studies easily require more storage than MMs by

order of

magnitude or more.

PET

• An efficient method in the analysis of small lesions
• Great capability to detect metastasis at different sites

and organs.
• Checks up the entire patient for local recurrence, lymph

node metastases, and distant metastases using a single
injection of activity

• Highly recommended for patients with dense breasts
or implants

• Poor detection rates for small or non-invasive
breast cancers

• Missed osteoblastic metastases showed lower
metabolic activity

Figure 1. Example of breast cancer images using traditional film MMs. Reprinted/adapted with
permission from [49]. 2021, Elsevier.
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2.2. Digital Breast Tomosynthesis (DBT)

DBT is a novel imaging modality making 3D images of breasts by the utilization
of X-rays captured from different angles [50]. This method is similar to what is per-
formed in mammograms, except the tube with the X-ray moves in a circular arc around
the breast [51–53] (Figure 2). Repeated exposures to the breast tissue at different angles
produce DBT images in half-millimeter slices. In this method, computational methods
are utilized to collect information received from X-ray images to produce z-stack breast
images and 2D reconstruction images [53,54]. In contrast to the conventional FSM method,
DBT can easily cover the imaging of tumors from small to large size, especially in the case
of small lesions and dense breasts [55]. However, the main challenging issue regarding
the DBT is the long reading time because of the number of mammograms, the z-stack of
images, and the number of recall rates for architectural distortion type of breast cancer
abnormality [56]. After FFDM, DBT is the commonly used method for imaging modalities.
Many studies recently used this imaging modality for breast cancer detection due to its
favorable sensitivity and accuracy in screening and producing better details of tissue in
breast cancer [57–60]. Table 1 provides details of the pros and cons of DBT for breast
cancer analysis.

Figure 2. Images of cancerous breast tissue by DBT imaging modality [61]. Reprinted/adapted with
permission from [61]. 2021, Elsevier.

2.3. Ultrasound (US)

All of the aforementioned modalities can endanger patients and radiologists because
of possible overdosage of ionizing radiation, making these approaches slightly risky and
unhealthy for certain sensitive patients [62]. Additionally, these methods show low speci-
ficity, meaning the low ability to correctly determine a tissue without disease as a negative
case. Therefore, although the aforementioned imaging modalities are highly used for early
breast cancer detection, the US as a safe imaging modality has been used [62–67] (Figure 3).
Compared to MMs, the US is a more convenient method for women with dense breasts. It
is also useful to characterize abnormal regions and negative tumors detected by MMs [68].
Some studies showed the high accuracy of the US in detecting and discriminating benign
and malignant masses [69]. US images are used in three broad combinations, i.e., (i) simple
two-dimensional grayscale US images, (ii) color US images with shear wave elastography
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(SWE) added features, and (iii) Nakagami colored US images without any need for ionizing
radiation [70,71]. It is worth noting that Nakagami-colored US images are responsible for
the region of interest extraction by better detection of irregular masses in the breast. More-
over, US can be used as a complement to MMs owing to its availability, inexpensiveness
compared to other modalities, and it being well tolerated by patients [70,72,73]. In a recent
retrospective study, US breast imaging has shown high predictive value when combined
with MMs images [74]. US images, along with MMs, improved the overall detection by
about 20% and decreased unnecessary biopsy tasks by 40% in total [67]. Moreover, US is a
reliable and valuable tool for metastatic lymph node screening in breast cancer patients. It
is a cheap, noninvasive, easy-to-handle and cost-effective diagnostic method [75]. However,
the US represents some limitations. For instance, the interpretation of US images is highly
difficult and needs an expert radiologist to comprehensively understand these images. This
is because of the complex nature of US images and the presence of speckle noise [76,77]. To
deal with this issue, new technologies have been introduced in breast US imaging, such
as automated breast ultrasound (ABUS). ABUS produces 3D images using wider probes.
Shin et al. [78] improved how ABUS allows more appropriate image evaluation for large
breast masses compared to conventional breast US. On the other hand, ABUS showed the
lowest reliability in the prediction of residual tumor size and pCR (pathological complete
response) [79]. Table 1 highlights more details about the weaknesses and strengths of the
US imaging modality.

Figure 3. Ultrasound images from breast tissue for normal, benign, and malignant [80].

2.4. Magnetic Resonance Imaging (MRI)

MRI creates images of the whole breast and presents it as thin slices that cover the
entire breast volume. It works based on radio frequency absorption of nuclei in the
existence of potent magnetic fields. MRI uses a magnetic field along with radio waves to
capture multiple breast images at different angles from a tissue [81–83] (Figure 4). By the
combination of these images together, clear and detailed images of tissues are produced.
Hence, MRI creates much clearer images for breast cancer analysis than other imaging
modalities [84]. For instance, the MRI image shows many details clearly, leading to easy
detection of lesions that are considered benign in other imaging modalities. Additionally,
MRI is the most favorable method for breast cancer screening in women with dense breasts
without any ionizing and other health risks, which we have seen in other modalities
such as MMs [85,86]. Another interesting issue about MRI is its capability for producing
high-quality images with a clearer view via the utilization of a contrast agent before
taking MRI images [87,88]. Furthermore, MRI is more accurate than MM, DBT, and the
US in evaluating residual tumors and predicting pCR [79,89], which helps clinicians to
select appropriate patients for avoiding surgery after neoadjuvant chemotherapy (first-
line treatment of breast cancer) when pCR is obtained [90,91]. Even though MRI exhibits
promising advantages, such as high sensitivity, it shows low specificity, and it is time
consuming and expensive, especially since its reading time is long [92,93]. It is worth
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noting that some new MRI-based methods, such as ultrafast breast MRI (UF-MRI), create
much more efficient images with high screening specificity with short reading time [94,95].
Additionally, diffusion-weighted MR imaging (DWI-MRI) and dynamic contrast-enhanced
MRI (DCE-MRI) provide higher volumetric resolution for better lesion visualization and
lesion temporal pattern enhancement to use in breast cancer diagnosis and prognosis and
correlation with genomics [53,81,96–98]. Details about various MRI-based methods and
their pros and cons are available in Table 1.

Figure 4. Dense cancerous breast tissue images conducted by MRI method from different angles.
(A) Normal; (B) malignant [82]. Reprinted/adapted with permission from [82]. 2011, Elsevier.

2.5. Histopathology

Recently, various studies have confirmed that the gold standard for confirmation
of breast cancer diagnosis, treatment, and management is given by the histopathological
analysis of a section of the suspected area by a pathologist [99–101]. Histopathology consists
of examining tissue lesion samples stained, for example, with hematoxylin and eosin
(H&E) to produce colored histopathologic (HP) images for better visualization and detailed
analysis of tissues [102–104] (Figure 5). Generally, HP images are obtained from a piece of
suspicious human tissue to be tested and analyzed by a pathologist [105]. HP images are
defined as gigapixel whole-slide images (WSI) from which some small patches are extracted
to enhance the analysis of these WSI (Figure 5). In other words, pathologists try to extract
small patches related to ROI from WSI to diagnose breast cancer subtypes, which is a great
advantage of HPs, enabling them to classify multiple classes of breast cancer [106,107] for
prognosis and treatment. Additionally, much more meaningful ROI can be derived from
HPs, in contrast to other imaging modalities confirming outstanding authenticity for breast
cancer classification, especially breast cancer subtype classification. Furthermore, one of the
most important advantages of HPs is their capability to integrate multi-omics features to
analyze and diagnose breast cancer with high confidence [108]. TCGA is the most favorable
resource for breast histopathological images. The TCGA database is widely employed in
multi-level omics integration investigations. In other words, within TCGA, HPs provide
contextual features to extract morphological properties, while molecular information from
omics data at different levels, including microRNA, CNV, and DNA methylation [108],
are also available for each patient. Integrating morphology and multiomics information
provides an opportunity to more accurately detect and classify breast cancer. Despite these
advantages, HPs have some limitations. For example, analyzing multiple biopsy sections,
such as converting an invasive biopsy to digital images, is a lengthy process requiring a
high concentration level due to the cell structures’ microscopic size [109]. More drawbacks
and advantages of the HP imagining modality are summarized in Table 1.
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Figure 5. Images of the breast from H&E (haemotoxylin and eosin) stained image of a benign case
provided by histopathology imaging modality [105]. Reprinted/adapted with permission from [105].
2017, Elsevier.

2.6. Positron Emission Tomography (PET)

PET uses radiotracers for visualizing and measuring the changes in metabolic pro-
cesses and other physiological activities, such as blood flow, regional chemical composition,
and absorption. PET is a recent effective imaging method showing the promising capability
to measure tissues’ in vivo cellular, molecular, and biochemical properties (Figure 6). One
of the key applications of PET is the analysis of breast cancer [110]. Studies highlighted that
PET is a handy tool in staging advanced and inflammatory breast cancer and evaluating the
response to treatment of the recurrent disease [34,35]. In contrast to the anatomic imaging
method, PET highlights a more specific targeting of breast cancer with a larger margin be-
tween tumor and normal tissue, representing one step forward in cancer detection besides
anatomic modalities [111–113]. Thus, the PET approach is used in hybrid modalities with
CT for specific organ imaging to encourage the advantages of PET and improve spatial
resolution, which is one of this modality’s strengths. Additionally, PET uses the integration
of radionuclides with some elements or pharmaceutical compounds to form radiotracers,
improving the performance of PET [114]. Fluorodeoxyglucose (FDG), a glucose analog, is
most commonly used for most breast cancer imaging studies as an effective radiotracer
developed for PET imaging [115]. Recent studies clarified a specific correlation between
the degree of FDG uptake and several phenotypic features containing a tumor histologic
type and grade, cell receptor expression, and cellular proliferation [116,117]. These corre-
lations lead to making the FDG-PET system for breast cancer analysis such as diagnosis,
staging, re-staging, and treatment response evaluation [111,118,119]. Another PET system
is a breast-dedicated high-resolution PET system designed in a hanging breast imaging
modality. Some studies demonstrate that these PET-based modalities can detect almost all
breast lesions and cancerous regions [120]. Table 1 summarizes some of PET-based imaging
modalities’ limitations and advantages. Also, in Table 2, we provided most commonly used
public datasets for different imaging modalities in breast cancer detection.

Table 2. Public datasets for different imaging modalities for breast cancer analysis.

Imaging Modality Public Dataset Link of Dataset Information about Dataset

MM

BCDR https://www.medicmind.tech/cancer-imaging-data
accessed date: 25 September 2022 426 benign and 310 malignant

IRMA https://www.medicmind.tech/cancer-imaging-data
accessed date: 25 September 2022 1865 typical cases and 932 abnormal

MIAS https://www.medicmind.tech/cancer-imaging-data
accessed date: 25 September 2022 133 abnormal and 189 of normal class

DDSM https://www.medicmind.tech/cancer-imaging-data
accessed date: 25 September 2022 912 benign and 784 malignant

INBreast http://marathon.csee.usf.edu/Mammography/Database.html
accessed date: 25 September 2022 410 malignant

https://www.medicmind.tech/cancer-imaging-data
https://www.medicmind.tech/cancer-imaging-data
https://www.medicmind.tech/cancer-imaging-data
https://www.medicmind.tech/cancer-imaging-data
http://marathon.csee.usf.edu/Mammography/Database.html
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Table 2. Cont.

Imaging Modality Public Dataset Link of Dataset Information about Dataset

US

MBUD
https://www.kaggle.com/datasets/aryashah2k/breast-
ultrasound-images-dataset
accessed date: 25 September 2022

472 normal 278 abnormal

OASBUD http://bluebox.ippt.gov.pl/~hpiotrzk/
accessed date: 25 September 2022 48 benign 52 malignant

BUSI https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
accessed date: 25 September 2022 620 benign 210 malignant

MT-small
https://www.kaggle.com/datasets/mohammedtgadallah/mt-
small-dataset
accessed date: 25 September 2022

200 benign 200 malignant

UDIAT https://datasets.bifrost.ai/info/1320
accessed date: 25 September 2022 110 benign 53 malignant

STUHospital https://github.com/xbhlk/STU-Hospital
accessed date: 25 September 2022 42 malignant

MRI

DCE-MRI https://mridiscover.com/dce-mri/
accessed date: 25 September 2022 559 malignant

DWI
https://radiopaedia.org/articles/diffusion-weighted-imaging-
2?lang=us
accessed date: 25 September 2022

328 malignant

RIDER
https://wiki.cancerimagingarchive.net/display/Public/
RIDER+Collections
accessed date: 25 September 2022

500 malignant

DMR-IR http://visual.ic.uff.br/dmi/
accessed date: 25 September 2022 267 normal 44 abnormal

TCIA https://www.cancerimagingarchive.net/
accessed date: 25 September 2022 91 malignant

HP

BreakHis https://www.kaggle.com/datasets/ambarish/breakhis
accessed date: 25 September 2022 2480 benign and 5429 malignant

Camelyon https://camelyon16.grand-challenge.org/Data/
accessed date: 25 September 2022 240 benign 160 malignant

TUPAC
https:
//github.com/DeepPathology/TUPAC16_AlternativeLabels
accessed date: 25 September 2022

50 benign 23 malignant

BACH https://zenodo.org/record/3632035#.Yxl8gnbMK3A
accessed date: 25 September 2022 37 benign 38 malignant

ICPR 2012 http://icpr2012.org/
accessed date: 25 September 2022 50 malignant

IDC https://imaging.datacommons.cancer.gov/
accessed date: 25 September 2022 162 malignant

Wisconsin
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Wisconsin+%28Diagnostic%29
accessed date: 25 September 2022

357 benign and 212 malignant

DRYAD
https://datadryad.org/stash/dataset/doi:
10.5061/dryad.05qfttf4t
accessed date: 25 September 2022

173 malignant

CRC https://paperswithcode.com/dataset/crc
accessed date: 25 September 2022 2031 normal 1974 malignant

AMIDA https://www.amida.com/index.html
accessed date: 25 September 2022 23 malignant

TCGA https://portal.gdc.cancer.gov/
accessed date: 25 September 2022 1097 malignant

DBT BCS-DBT
https://sites.duke.edu/mazurowski/resources/digital-breast-
tomosynthesis-database/
accessed date: 25 September 2022

22,032 DBT volume from 5610
subjects (89 malignant, 112 benign,
5129 normal)

https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset
https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset
http://bluebox.ippt.gov.pl/~hpiotrzk/
https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
https://www.kaggle.com/datasets/mohammedtgadallah/mt-small-dataset
https://www.kaggle.com/datasets/mohammedtgadallah/mt-small-dataset
https://datasets.bifrost.ai/info/1320
https://github.com/xbhlk/STU-Hospital
https://mridiscover.com/dce-mri/
https://radiopaedia.org/articles/diffusion-weighted-imaging-2?lang=us
https://radiopaedia.org/articles/diffusion-weighted-imaging-2?lang=us
https://wiki.cancerimagingarchive.net/display/Public/RIDER+Collections
https://wiki.cancerimagingarchive.net/display/Public/RIDER+Collections
http://visual.ic.uff.br/dmi/
https://www.cancerimagingarchive.net/
https://www.kaggle.com/datasets/ambarish/breakhis
https://camelyon16.grand-challenge.org/Data/
https://github.com/DeepPathology/TUPAC16_AlternativeLabels
https://github.com/DeepPathology/TUPAC16_AlternativeLabels
https://zenodo.org/record/3632035#.Yxl8gnbMK3A
http://icpr2012.org/
https://imaging.datacommons.cancer.gov/
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://datadryad.org/stash/dataset/doi:10.5061/dryad.05qfttf4t
https://datadryad.org/stash/dataset/doi:10.5061/dryad.05qfttf4t
https://paperswithcode.com/dataset/crc
https://www.amida.com/index.html
https://portal.gdc.cancer.gov/
https://sites.duke.edu/mazurowski/resources/digital-breast-tomosynthesis-database/
https://sites.duke.edu/mazurowski/resources/digital-breast-tomosynthesis-database/
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Figure 6. Example of PET images for breast cancer analysis [118]. Reprinted/adapted with permission
from [118]. 2021, Elsevier.

3. Artificial Intelligence in Medical Image Analysis

Artificial intelligence (AI) has become very popular in the past few years because
it adds human capabilities, e.g., learning, reasoning, and perception, to the software
accurately and efficiently, and as a result, computers gain the ability to perform tasks
that are usually carried out by humans. The recent advances in computing resources
and availability of large datasets, as well as the development of new AI algorithms, have
opened the path to the use of AI in many different areas, including but not limited to image
synthesis [121], speech recognition [122,123] and engineering [124–126]. AI has been also
employed in healthcare industries for applications such as protein engineering [127–130],
cancer detection [131], and drug discovery [132,133]. More specifically, AI algorithms have
shown an outstanding capability to discover complex patterns and extract discriminative
features from medical images, providing higher-quality analysis and better quantitative
results efficiently and automatically. AI has been a great help for physicians in imaging-
related tasks, i.e., disease detection and diagnosis, to accomplish more accurate results [134].
Deep learning (DL) [30] is part of a broader family of AI which imitates the way humans
learn. DL uses multiple layers to gain knowledge, and the complexity of the learned
features increases hierarchically. DL algorithms have been applied in many applications,
and in some of them, they could outperform humans. DL algorithms have also been used
in various categories in the realm of cancer diagnosis using cancer images from different
modalities, including detecting cancer cells, cancer type classification, lesion segmentation,
etc. To learn more about DL, we refer interested readers to [135].

3.1. Benefits of Using DL for Medical Image Analysis

Comparing the healthcare area with others, it is safe to say that the decision-making
process is much more crucial in healthcare systems than in other areas since it directly
affects people’s lives. For example, a wrong decision by a physician in diagnosing a disease
can lead to the death of a patient. Complex and constrained clinical environments and
workflows make the physician’s decision-making very challenging, especially for image-
related tasks since they require high visual perception and cognitive ability [136]. In these
situations, AI can be a great tool to decrease the false-diagnosis rates by extracting specific
and known features from the images or even helping the physician by giving an initial
guess for the solution. Nowadays, more and more healthcare providers are encouraged to



Cancers 2022, 14, 5334 12 of 36

use AI algorithms due to the availability of computing resources, advancement in image
analysis tools, and the great performance shown by AI methods.

3.2. Deep Learning Models for Breast Cancer Detection

This section briefly discusses the deep learning algorithms applied to images from
each breast cancer modality.

3.2.1. Digital Mammography and Digital Breast Tomosynthesis (MM-DBT)

With the recent technology developments, MM images follow the same trend and take
more advanced forms, e.g., digital breast tomosynthesis (DBT). Each MM form has been
widely used for breast cancer detection and classification. One of the first attempts to use
deep learning for MMs was carried out by [137]. The authors in [137] used a convolutional
neural network (CNN)-based model to learn features from mammography images before
feeding them to a support vector machine (SVM) classifier. Their algorithm could achieve
86% AUC in lesion classification, which had about 6% improvement compared to the best
conventional approach before this paper. Following [137], more studies [138–140] have also
used CNN-based algorithms for lesion classification. However, in these papers, the region
of interest was extracted without the help of a deep learning algorithm, i.e., by employing
traditional image processing methods [139] or by an expert [140]. More specifically, the
authors in [138] first divided MM images into patches and extracted the features from the
patches using a conventional image-processing algorithm, and then used the random forest
classifier to choose good candidate patches for their CNN algorithm. Their approach could
achieve an AUC of 92.9%, which is slightly better than the baseline method based on a
conventional method with an AUC of 91%. With the advancement in DL algorithms and
the availability of complex and powerful DL architectures, DL methods have been used to
extract ROIs from full MM images. As a result, the input to the algorithm is no longer the
small patches, and the full MM image could be used as input. For example, the proposed
method in [131] uses YOLO [141], a well-known algorithm for detection and classification,
to simultaneously extract and classify ROIs in the whole image. Their results show that
their algorithm performs similarly to a CNN model trained on small patches with an AUC
of 97%. Figure 7 shows the overall structure of the proposed model in [131].

Figure 7. Schematic diagram of the proposed YOLO-based CAD system in [131]. Reprinted/adapted
with permission from [131]. 2021, Elsevier.
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To increase the accuracy of cancer detection, DBT has emerged as a predominant
breast-imaging modality. It has been shown that DBT increases the cancer detection rate
(CDR) while decreasing recall rates (RR) when compared to FFDM [142–144]. Following
the same logic, some DL algorithms have been proposed to apply to DBT images for cancer
detection [145–149]. For instance, the authors in [150] proposed a deep learning model
based on ResNet architecture to classify the input images into normal, benign, high-risk,
or malignant. They trained the model on an FFDM dataset, then fine-tuned the model
using 2D reconstruction of DBT images obtained by applying the 2D maximum intensity
projection (MIP) method. Their method achieved an AUC of 84.7% on the DBT dataset. A
deep CNN has been developed in [145] that uses DBT volumes to classify the masses. Their
proposed approach obtained an AUC of 84.7%, which is about 2% higher than the current
CAD method with hand-crafted features.

Although deep learning models perform very well in medical image analysis, their
major bottleneck is the thirst for training datasets. In the medical field, collecting and
labeling data is very expensive. Some studies used transfer learning to overcome this
problem. In the study by [151], the authors developed a two-stage transfer learning
approach to classify DBT images as mass or normal. In the first stage, the authors fine-
tuned a pretrained AlexNet [152] using FFDM images, and then the fine-tuned model
was used to train a model using DBT images. The CNN model in the second stage was
used as the feature extractor for DBT images, and the random forest classifier was used to
classify the extracted features as mass or normal. They obtained an AUC of 90% on their
test dataset. In another work in [153], the authors used a VGG19 [154] network trained
on the ImageNet dataset as a feature extractor for FFDM and DBT images for malignant
and benign classification. The extracted features were fed to an SVM classifier to estimate
the probability of malignancy. Their method obtained an AUC of 98% and 97% on the
DBT images in CC and MLO view, respectively. These methods show that by using a
relatively small training dataset and employing transfer learning techniques, deep learning
models can perform well. Most of the aforementioned studies compare their DL algorithms
with traditional CAD methods. However, the best way to evaluate the performance of a
DL method is to compare that with a radiologist directly. For example, the performance
of DL systems on FFDM and DBT has been investigated in [155]. The study shows that
a DL system can achieve comparable sensitivity as radiologists in FFDM images while
decreasing the recall rate. Additionally, on DBT images, an AI system can have the same
performance as radiologists, although the recall rate has increased.

Table 3 shows the list of recent DL-based models used for MM and DBT with their
performances. The application of DL in breast cancer detection is not limited to mammog-
raphy images. In the following section, we discuss the DL application in other breast cancer
imaging modalities.

Table 3. The summary of the studies that used MM and DBT datasets.

Paper Year Task Model Type Dataset Evaluation

Agnes et al. [146] 2020 Classification Multiscale All CNN MM MIAS Acc = 96.47%

Shu et al. [156] 2020 Classification CNN MM INbreast
CBIS-DDSM

INbreast: Acc = 92.2%
CBIS: Acc = 76.7%

Singh et al. [150] 2020 Classification CNN FFDM and
DBT Private FFDM: AUC = 0.9

DBT: AUC = 0.85

Boumaraf et al. [157] 2020 Classification DBN (Deep Belief Network) MM DDSM Acc = 84.5%

Matthews et al. [158] 2021 Classification Transfer learning based on
ResNet DBT Private AUC = 0.9

Zhang et al. [159] 2021 Classification GNN (Graph Neural
Network) + CNN MM MIAS Acc = 96.1%

Li et al. [160] 2021 Classification SVM (Support Vector
Machine) MM INbreast Acc = 84.6%

Saber et al. [161] 2021 Classification CNN/Transfer learning MM MIAS Acc = 98.87%
F-score = 99.3%
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Table 3. Cont.

Paper Year Task Model Type Dataset Evaluation

Malebary et al. [162] 2021 Classification CNN MM DDSM
MIAS

DDSM: Acc = 97%
MIAS: Acc = 97%

Li et al. [163] 2021 Classification CNN-RNN (Recurrent
Neural Network) MM DDSM ACC = 94.7%, Recall = 94.1%

AUC = 0.968

Ueda et al. [164] 2022 Classification CNN MM Private
DDSM AUC = 0.93

Mota et al. [165] 2022 Classification CNN DBT VICTRE AUC = 0.941

Bai et al. [166] 2022 Classification GCN (Graph Convolutional
Network) DBT BCS-DBT

Private
Acc = 84%

AUC = 0.87

Zhu et al. [167] 2018 Mass
Segmentation

FCN (Fully Convolutional
Network) + CRF

(Conditional Random Field)
MM INbreast

DDSM-BCRP
INbreast: Dice = 90.97%

DDSM-BCRP: Dice = 91.3%

Wang et al. [168] 2019 Mass
Segmentation

MNPNet (Multi-Level
Nested Pyramid Network) MM INbreast

DDSM-BCRP
INbreast: Dice = 91.1%

DDSM-BCRP: Dice = 91.69%

Saffari et al. [169] 2020
Dense tissue

Segmenta-
tion/Classification

cGAN and CNN MM INbreast S: Acc = 98%
C: Acc = 97.85%

Ahmed et al. [170] 2020 Tumor Segmenta-
tion/Classification DeepLab/mask RCNN MM MIAS

CBIS-DDSM

DeepLab: C: Acc = 95%
S: MAP = 72%

Mask RCNN: C: Acc = 98%
S: MAP = 80%

Buda et al. [171] 2020 Lesion detection CNN DBT Private Sensitivity = 65%

Cheng et al. [172] 2020 Mass
Segmentation

Spatial Enhanced Rotation
Aware Net MM DDSM Dice = 84.3%

IOU = 73.95%

Chen et al. [173] 2020 Mass
Segmentation Modified U-Net MM INbreast

CBIS-DDSM
INbreast: Dice = 81.64%

CBIS: Dice = 82.16%

Soleimani et al. [174] 2020 Breast-Pectoral
Segmentation CNN MM

MIAS
CBIS-DDSM

INbreast

MIAS: Dice = 97.59%
CBIS: Dice = 97.69%

INbreast: Dice = 96.39%

Al-antari et al. [175] 2020
Breast lesions

Segmenta-
tion/Classification

YOLO MM DDSM
INbreast

S:
DDSM: F1-score = 99.28%

INbreast: F1-score = 98.02%
C:

DDSM: Acc = 97.5%
INbreast: Acc = 95.32%

Li et al. [176] 2020 Mass
Segmentation Siamese-Faster-RCNN MM

INbreast
BCPKUPH(private)
TXMD(private)

INbreast: TP = 0.88,
BCPKUPH:
TP = 0.85
TXMD:

TP = 0.85

Peng et al. [177] 2020 Mass
Segmentation Faster RCNN MM CBIS-DDSM

INbreast

CBIS:
TP = 0.93
INbreast:
TP = 0.95

Kavitha et al. [178] 2021 Mass Segmenta-
tion/Classification CapsNet MM MIAS

DDSM

MIAS: Acc = 98.5%
DDSM:

Acc = 97.55%

Shoshan et al. [179] 2021 Lesion detection CNN DBT DBTex
challenge Avg. sensitivity = 0.91

Hossain et al. [180] 2022 Lesion detection CNN DBT DBTex
challenge Avg. sensitivity = 0.815

Hossain et al. [181] 2022 Lesion detection CNN DBT DBTex
challenge Avg. sensitivity = 0.84

Atrey et al. [182] 2022 Breast lesion
Segmentation CNN MM DDSM Dice = 65%

3.2.2. Ultrasound (US)

As has been explained in Section 2, ultrasound performs much better in detecting can-
cers and reduces unnecessary biopsy operations [183]. Therefore, it is not surprising to see
that the researchers use this type of image in their DL models for cancer detection [184–186].
For instance, a GoogleNet [187]-based CNN has been trained on the suspicious ROIs of
US images in [184]. The proposed method in [184] achieved an AUC of 96%, which is 6%
higher than the CAD-based method with hand-crafted features. The authors in [188–190]
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trained CNN models directly with whole US images without extracting the ROIs. For
example, the authors in [190] combined VGG19 and ResNet152 and trained the ensemble
network on US images. Their proposed method achieved an AUC of 95% on a balanced,
independent test dataset. Figure 8 represents an example of CNN models for breast cancer
subtype classification.

In comparison with datasets for mammography images, there are fewer datasets for
US images, and they usually contain much fewer images. Therefore, most of the proposed
DL models use some kind of data augmentation method, such as rotation, to increase
the size of training data and improve the model performance. However, one should be
careful about how to augment US images since some augmentation may decrease the model
performance. For example, it has been shown in [186] that performing the image rotation
or shift in the longitudinal direction can affect the model performance negatively. The
generative adversarial networks (GANs) can also be used to generate synthetic US images
with or without tumors [191]. These images can be added to the original training images to
improve the model’s accuracy.

The US images have also been used in lesion detection in which, when given an image,
the CAD system decides whether the lesion is present. One of the challenges that the
researcher faces in this type of problem with normal US images is that there is a need for a
US doctor to manually select the images that have lesions for the models. This depends on
the doctors’ availability and is usually expensive and time-consuming. It also adds human
errors to the system [192]. To solve this problem, a method has been developed in [193] to
detect the lesions in real time during US scanning. Another type of US imaging is called
the 3D automated breast US scan, which captures the entire breast [194,195]. The authors
in [195] developed a CNN model based on VGGNet, ResNet [196], and DenseNet [197]
networks. Their approach obtained an AUC of 97% on their private dataset and an AUC of
97.11% on the breast ultrasound image (BUSI) dataset [80].

Some methods combined the detection and classification of lesions in US images in one
step [198]. An extensive study in [199] compares different DL architectures for US image
detection and classification. Their results show that the DenseNet is a good candidate for
classification analysis of US images, which provides accuracies of 85% and 87.5% for full
image classification and pre-defined ROIs, respectively. The authors in [200] developed
a weakly supervised DL algorithm based on VGG16, ResNet34, and GoogleNet trained
using 1000 unannotated US images. They have reported an average AUC of 88%.

Some studies validate the performance of DL algorithms [201–203] using expert in-
ference, showing that DL algorithms can greatly help radiologists. This is mostly in cases
where the lesion was already detected by an expert, and the DL model is used to classify
them. However, unlike the mammography studies, most of the studies are not validated
by multiple physicians and do not show the generalizability of their method on multiple
datasets which should be addressed in future validations. Table 4 shows the list of recent
algorithms used for US images and their performances.

Table 4. The summary of the studies that used ultrasound dataset.

Paper Year Task Model Dataset Evaluation

Byra et al.
[204] 2019 Classification Transfer learning based on VGG-19

and InceptionV3 OASBUD VGG19: AUC = 0.822
InceptionV3: AUC = 0.857

Byra et al.
[186] 2019 Classification Transfer learning based on VGG 19 Private AUC = 0.936

Hijab et al.
[205] 2019 Classification Transfer learning based on VGG16 Private Acc = 97.4%

AUC = 0.98

Zhang et al.
[206] 2019 Classification Deep Polynomial Network (DPN) Private Acc = 95.6%

AUC = 0.961

Fujioka et al.
[207] 2020 Classification CNN Private AUC = 0.87
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Table 4. Cont.

Paper Year Task Model Dataset Evaluation

Wu et al.
[208] 2020 Classification Random Forest (RF) Private Acc = 86.97%

Wu et al.
[209] 2020 Classification Generalized Regression Neural

Network (GRNN) Private Acc = 87.78%
F1 score = 86.15%

Gong et al.
[210] 2020 Classification Multi-view Deep Neural Network

Support Vector Machine (MDNNSVM) Private Acc = 86.36%
AUC = 0.908

Moon et al.
[195] 2020 Classification VGGNet + ResNet + DenseNet

(Ensemble loss)
SNUH
BUSI

SNUH:
Acc = 91.1%

AUC = 0.9697
BUSI:

Acc = 94.62%
AUC = 0.9711

Zhang et al.
[211] 2020 Classification CNN Private AUC = 1

Yousef Kalaf
et al.
[212]

2021 Classification Modified VGG16 Private Acc = 93%
F1 score = 94%

Misra et al.
[213] 2022 Classification Transfer learning based on AlexNet

and ResNet Private Acc = 90%

Vakanski et al.
[214] 2020 Tumor

Segmentation CNN BUSI Acc = 98%
Dice score = 90.5%

Byra et al.
[215] 2020 Mass

Segmentation CNN Private Acc = 97%
Dice score = 82.6%

Singh et al.
[216] 2020 Tumor

Segmentation CNN Mendeley
UDIAT

Mendeley: Dice = 0.9376
UDIAT: Dice = 86.82%

Han et al.
[217] 2020 Lesion

Segmentation GAN Private Dice = 87.12%

Wang et al.
[218] 2021 Lesion

Segmentation Residual Feedback Network

1-Ultrasound-
cases.info and

BUSI
2- UDIAT

3- Radiopaedia

1-Dice = 86.91%
2-Dice = 81.79%

3-Dice = 87%

Wang et al.
[219] 2021 Segmentation CNN

Ultrasoundcases.info
BUSI

STUHospital

Ultrasoundcases:
Dice = 84.71%

BUSI: Dice = 83.76%
STUHospital: Dice = 86.52%

Li et al.
[220] 2022

Tumor
Segmentation +
Classification

DeepLab3 Private S: Dice = 77.3%
C: Acc = 94.8%

Byra et al.
[221] 2022

Mass
Segmentation +
Classification

Y-Net Private S: Dice = 64.0%
C: AUC = 0.87
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Figure 8. Example of a model architecture for breast cancer subtypes classification from US images
via CNN models [222].

3.2.3. Magnetic Resonance Imaging (MRI)

As explained in Section 2, MRI has higher sensitivity for breast cancer detection in
dense breasts [223] than MM and US images. However, the big difference between MRI
and MM or US images is that the MRI is a 3D scan, but MM and US are 2D images.
Moreover, MRI sequences are captured over time, increasing the MRI dimensionality to 4D
(dynamic contrast-enhanced (DCE)-MRI). This makes MRI images more challenging for DL
algorithms compared to MM and US images, as most of the current DL algorithms are built
for 2D images. One way to address this challenge is to convert the 3D image to 2D by either
dividing 3D MRIs into 2D slices [224,225] or using MIP to build a 2D representation [226].
Moreover, most DL algorithms have been developed for colored images, which are 3D
images whose third dimension represents the color channels. However, the MRIs are
grayscale images. Therefore, some developed MRI models put three consecutive slices of
grayscale MRI together and build a 3D image [227,228]. Some other approaches modify the
current 2D DL architecture to make them appropriate for MRI 3D scans [229].

All the above approaches have been used in lesion classification DL algorithms. For
example, [230] uses 2D slices of the ROIs as input to their CNN model. They obtained an
accuracy of 85% on their test dataset. The MIP technique is used in [231] which obtained an
AUC of 89.5%. In the study carried out by Zhou et al. [229], the authors put the grayscale
MRIs together and built 3D images for their DL methods. Their algorithm obtained an
AUC of 92%. In another study presented in [193], the proposed algorithm uses the actual
3D MRI scans obtaining an AUC of 85.9% by the 3D version of DenseNet [197]. It is worth
mentioning that the performance of 2D and 3D approaches cannot be compared since
they used different datasets. However, some studies compared their proposed methods
with radiologists’ interpretations [228,229]. Figure 9 shows a schematic of a framework for
cancer subtype classification with MRI.

Like in MM and US images, the DL methods have been widely used in lesion detection
and segmentation problems in MRI images. A CNN algorithm based on RetinaNet [232] has
been developed in [233] for detecting lesions from the 4D MR scans. Their method obtained
a sensitivity of 95%. One study [234] used a mask-guided hierarchical learning (MHL)
framework for breast tumor segmentation based on U-net architecture. Their method
achieved the Dice similarity coefficient (DSC) of 0.72 for lesion segmentation. In another
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work [235], the authors proposed a U-net-based CNN model called 3TP U-net for the
lesion segmentation task. Their algorithm obtained a Dice similarity coefficient of 61.24%.
Alternatively, the authors in [236] developed a CNN-based segmentation model by refining
the U-net architecture to segment the lesions in MRIs. Their proposed method achieved
a Dice similarity coefficient of 86.5%. It has to be noted that in most lesion segmentation
algorithms, there is a need for a mask that shows the pixels that belong to the breast as
ground truth for training. These masks can help the models to focus on the right place
and ignore the areas that do not have any information. Table 5 shows the list of recent
algorithms used for MRI images and their performances.

Figure 9. A model architecture for cancer subtypes prediction via ResNet 50 and CNN models from
MRI images [237]. Reprinted/adapted with permission from [237]. 2019, Elsevier.

Table 5. Summary of the studies that used MRI datasets.

Paper Year Task Model Dataset Evaluation

Ha et al. [238] 2019 Classification CNN Private Acc = 70%

Ha et al. [239] 2019 Classification CNN Private Acc = 88%

Fang et al. [240] 2019 Classification CNN Private Acc = 70.5%

Zheng et al. [241] 2020 Classification CNN TCIA Acc = 97.2%

Holste et al. [242] 2021 Classification Fusion Deep learning Private AUC = 0.9

Winkler et al. [243] 2021 Classification CNN Private ACC = 92.8%

Fujioka et al. [244] 2021 Classification CNN Private AUC = 0.89

Liu et al. [245] 2022 Classification Weakly ResNet-101 Private AUC = 0.92
ACC = 94%

Bie et al. [246] 2022 Classification CNN Private ACC = 92%
Specificity = 94%

Jing et al. [247] 2022 Classification U-NET and ResNet 34 Private AUC = 0.81

Wu et al. [248] 2022 Classification CNN Private Acc = 87.7%
AUC = 91.2%

Verburg et al. [249] 2022 Classification CNN Private AUC = 0.83

Dutta et al. [250] 2021 Tumor
Segmentation

Multi-contrast
D-R2UNet Private F1 score = 95%
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Table 5. Cont.

Paper Year Task Model Dataset Evaluation

Carvalho et al. [251] 2021 Tumor
Segmentation SegNet and UNet QIN Breast

DCE-MRI
Dice = 97.6%
IOU = 95.3%

Wang et al. [252] 2021 Lesion
Segmentation CNN Private Dice = 76.4%

Nowakowska et al. [253] 2022

Segmentation of
BPE area and

non-enhancing
tissue

CNN Private Dice = 76%

Khaled et al. [254] 2022 Lesion
segmentation 3D U-Net TCGA-BRCA Dice = 68%

Yue et al. [255] 2022 Segmentation Res_U-Net Private Dice = 89%

Rahimpour et al. [256] 2022 Tumor
Segmentation 3D U-Net Private Dice = 78%

Zhu et al. [257] 2022 Lesion Segmenta-
tion/Classification V-Net Private

S:
Dice = 86%

C:
Avg. AUC = 0.84

3.2.4. Histopathology

In contrast to other modalities, histopathology images are colored images that are
provided either as the whole-slide images (WSI) or the extracted image patches from the
WSI, i.e., ROIs that are extracted by pathologists. The histopathology images are a great
means of diagnosing breast cancer types that are impossible to find with radiology images,
i.e., MRIs. Moreover, these images have been used to detect cancer subtypes because of the
details they have about the tissue. Therefore, they are widely used with DL algorithms for
cancer detection. For example, Ref. [258] employed a CNN-based DL algorithm to classify
the histopathology images into four classes: normal tissue, benign lesion, in situ carcinoma,
and invasive carcinoma. They combined the classification results of all the image patches to
obtain the final image-wise classification. They also used their model to classify the images
into two classes, carcinoma, and non-carcinoma. An SVM has been trained on the features
extracted by a CNN to classify the images. Their method obtained an accuracy of 77.8%
on four-class classification and an accuracy of 83.3% on binary classification. In another
work proposed in [259], two CNN models were developed, one for predicting malignancy
and the other for predicting malignancy and image magnification levels simultaneously.
They used images of size 700 × 460 with different magnification levels. Their average
binary classification for benign/malignant is 83.25%. A novel framework was proposed
in [260] that uses a hybrid attention-based mechanism to classify histopathology images.
The attention mechanism helps to find the useful regions from raw images automatically.

The transfer learning approach has also been employed in analyzing histopathology
images since the histopathology image datasets suffer from the lack of a large amount
of data required for deep learning models. For example, the method developed in [261]
uses pretrained Inception-V3 [187] and Inception-ResNet-V2 [262] and fine-tunes them for
both binary and multiclass classification on histology images. Their approach obtained
an accuracy of 97.9% in binary classification and an accuracy of 92.07% in the multi-
classification task. In another work [263], the authors developed a framework for classifying
malignant and benign cells that extracted the features from images using GoogleNet,
VGGNet, and ResNet and then combined those features to use them in the classifier. Their
framework obtained an average accuracy of 97%. The authors in [264] used a fine-tuned
GoogleNet to extract features from the small patches of pathological images. The extracted
features were fed to a bidirectional long short-term memory (LSTM) layer for classification.
Their approach obtained an accuracy of 91.3%. Figure 10 shows the overview of the method
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proposed in [264]. GANs have also been combined with transfer learning to further increase
classification accuracy. In work carried out in [265], StyleGAN [266] and Pix2Pix [267]
were used to generate fake images. Then, VGG-16 and VGG-19 were fine-tuned to classify
images. Their proposed method achieved an accuracy of 98.1% in binary classification.

Figure 10. Prediction of breast cancer grades from extracted patches from histopathology images via
patch-wise LSTM architecture [264]. Reprinted/adapted with permission from [264]. 2019, Elsevier.

Histopathology images have been widely used for nuclei detection and segmentation.
For instance, in the work presented in [268], a novel framework called HASHI was devel-
oped that automatically detects invasive breast cancer in the whole slide images. Their
framework obtained a Dice coefficient of 76% on their independent test dataset. In the other
work performed in [269] for nuclei detection, a series of handcrafted features and features
extracted from CNN were combined for better detection. The method used three different
datasets and obtained an F-score of 90%. The authors in [270] presented a fully automated
workflow for nuclei segmentation in histopathology images based on deep learning and the
morphological properties extracted from the images. Their workflow achieved an accuracy
and F1-score of 95.4% and 80.5%, respectively. In another work by [271], the authors first
extracted the small patches from the high-resolution whole slides, then each small patch
was segmented using a CNN along with an encoder-decoder; finally, to combine the local
segmentation result, they used an improved merging strategy based on a fully connected
conditional random field. Their algorithm obtained a segmentation accuracy of 95.6%.
Table 6 shows the performance of recently developed DL methods in histology images.

3.2.5. Positron Emission Tomography (PET)/Computed Tomography (CT)

PET/CT is a nuclear medicine imaging technique that helps increase the effectiveness
of detecting and classifying axillary lymph nodes and distant staging [272]. However, they
have trouble detecting early-stage breast cancer. Therefore, it is not surprising that PET/CT
is barely used with DL algorithms. However, PET/CT has some important applications that
DL algorithms can be applied. For example, as discussed in [273], breast cancer is one of the
reasons for most cases of bone metastasis. A CNN-based algorithm was developed in [274]
to detect breast cancer metastasis on whole-body scintigraphy scans. Their algorithm
obtained 92.5% accuracy in the binary classification of whole-body scans.

In the other application, PET/CT can be used to quantify the whole-body metabolic
tumor volume (MTV) to reduce the labor and cost of obtaining MTV. For example, in
the work presented in [275], a model trained on the MTV of lymphoma and lung cancer
patients is used to detect the lesions in PET/CT scans of breast cancer patients. Their
algorithm could detect 92% of the measurable lesions.
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Table 6. The summary of the studies that used histopathology datasets.

Paper Year Task Model Dataset Evaluation

Zainudin et al. [276] 2019 Breast Cancer Cell
Detection/Classification CNN MITOS

Acc = 84.5%
TP = 80.55%
FP = 11.6%

Li et al. [277] 2019 Breast Cancer Cell
Detection/Classification Deep cascade CNN

MITOSIS
AMIDA13
TUPAC16

MITOSIS:
F-score = 56.2%

AMIDA13:
F-score = 67.3%

TUPAC16:
F-score = 66.9%

Das et al. [278] 2019 Breast Cancer Cell
Detection/Classification CNN MITOS

ATYPIA14

MITOS:
F1-score = 84.05%

ATYPIA14:
F1-score = 59.76%

Gour et al. [279] 2020 Classification CNN BreakHis Acc = 92.52%
F1 score = 93.45%

Saxena et al. [280] 2020 Classification CNN BreakHis Avg. Acc = 88%

Hirra et al. [281] 2021 Classification DBN DRYAD Acc = 86%

Senan et al. [282] 2021 Classification CNN BreakHis Acc = 95%
AUC = 99.36%

Zewdie et al. [283] 2021 Classification CNN
Private

BreakHis
Zendo

Binary Acc = 96.75%
Grade classification Acc =

93.86%

Kushwaha et al. [284] 2021 Classification CNN BreakHis Acc = 97%

Gheshlaghi et al. [285] 2021 Classification Auxiliary Classifier
GAN BreakHis

Binary Acc = 90.15%
Sub-type classification Acc

= 86.33%

Reshma et al. [286] 2022 Classification Genetic Algorithm with
CNN BreakHis Acc = 89.13%

Joseph et al. [287] 2022 Classification CNN BreakHis Avg. Multiclass Acc = 97%

Ahmad et al. [288] 2022 Classification CNN BreakHis Avg. Binary Acc = 99%
Avg. Multiclass Acc = 95%

Mathew et al. [289] 2022 Breast Cancer Cell
Detection/Classification CNN ATYPIA

MITOS F1 score = 61.91%

Singh and Kumar [290] 2022 Classification Inception ResNet BHI
BreakHis

BHI:
Acc = 85.21%

BreakHis:
Avg. Acc = 84%

Mejbri et al. [291] 2019 Tissue-level
Segmentation DNNs Private

U-Net: Dice = 86%,
SegNet: Dice = 87%,

FCN: Dice = 86%,
DeepLab: Dice = 86%

Guo et al. [292] 2019 Cancer Regions
Segmentation

Transfer learning based
on Inception-V3 and

ResNet-101
Camelyon16 IOU = 80.4%

AUC = 96.2%

Priego-Torres et al. [271] 2020 Tumor Segmentation CNN Private Acc = 95.62%
IOU = 92.52%

Budginaitė et al. [293] 2021 Cell Nuclei Segmentation Micro-Net Private Dice = 81%

Pedersen et al. [294] 2022 Tumor Segmentation CNN Norwegian cohort [295] Dice = 93.3%

Khalil et al. [296] 2022 Lymph node
Segmentation CNN Private F1 score = 84.4%

IOU = 74.9%

4. Discussion

Breast cancer plays a crucial role in the mortality of women in the world. Cancer
detection in its early stage is an essential task to reduce mortality. Recently, many imaging
modalities have been used to give more detailed insights into breast cancer. However,
manual analysis of these imaging modalities with a huge number of images is a difficult
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and time-consuming task leading to inaccurate diagnoses and an increased false-detection
rate. Thus, to tackle these problems, an automated approach is needed. The most effective
and reliable approach for medical image analysis is CAD. CAD systems have been designed
to help physicians to reduce their errors in analyzing medical images. A CAD system
highlights the suspicious features in images (e.g., masses) and helps radiologists to reduce
false-negative readings. Moreover, CAD systems usually detect more false features than
true marks, and it is the radiologist’s responsibility to evaluate the results. This charac-
teristic of CAD systems increases the reading time and limits the number of cases that
radiologists can evaluate. Recently, the advancement of AI, especially DL-based methods,
could effectively speed up the image analysis process and help radiologists in early breast
cancer diagnosis.

Considering the importance of DL-based CAD systems for breast cancer detection
and diagnosis, in this paper, we have discussed the applications of different DL algorithms
in breast cancer detection. We first reviewed the imaging modalities used for breast
cancer screening and diagnosis. Besides a comprehensive discussion, we discussed the
advantage and limitations of each imaging modality and summarize the public datasets
available for each modality with the links to the datasets. We then reviewed the recent
DL algorithms used for breast imaging analysis along with the detail of their datasets and
results. The studies presented promising results from DL-based CAD systems. However,
the DL-based CAD tools still face many challenges that prohibit them from clinical usage.
Here, we discussed some of these challenges as well as the future direction for cancer
detection studies.

One of the main obstacles to having a robust DL-based CAD tool is the cost of collecting
medical images. The medical images used for DL algorithms should contain reliable
annotated images from different patients. Data collection would be very costly for sufficient
abnormal data compared to normal cases since the number of abnormal cases is much
lower than the normal cases (e.g., several abnormal cases per thousand patients in the
breast cancer screening population). The data collection also depends on the number of
patients that takes a specific examination and the availability of equipment and protocols
in different clinical settings. For example, MM datasets are usually very large datasets,
including thousands of patients. However, the MRI or PET/CT datasets contain much fewer
patients. Due to the existence of a large public dataset for MM, much more DL algorithms
have been developed and validated for the MM modality than other datasets. One way to
create a big dataset for different image modalities is multi-institutional collaboration. The
dataset obtained from these collaborations covers a large group of patients with different
characteristics, different imaging equipment, and clinical settings and protocols. These
datasets make the DL algorithms more robust and reliable.

Currently available medical image datasets usually contain a small amount of data. On
the other hand, employing DL and exploiting its capabilities on a small amount of training
data is challenging. Because the DL algorithms should be trained on a large dataset to have
a good performance. Some possible solutions can help to overcome the problems related to
small datasets. For example, the datasets from different medical centers can be combined
to create a bigger one. However, there are usually some patient privacy policies that should
be addressed. Another solution to this problem is using federated learning [297] in which
the algorithm is trained on datasets locally, but it should travel between the centers and be
trained on the datasets in each center. The federated learning algorithms are not popular
yet, and they are not widely implemented. In most cases, the training data cannot be
publicly shared; therefore, there is no way to evaluate the DL methods and regenerate
the results in the studies. Many studies used transfer learning to overcome the problem
of small datasets. Some of the studies used a pre-trained model to extract features from
the medical images and then, they used the extracted features to train a DL model for
target tasks. However, other studies initialized their model with pre-trained model weights
and then fine-tuned their models with the medical image datasets. Although transfer
learning shows some improvement for the small datasets, the performance of the target
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model highly depends on the difference between the characteristics of source datasets and
target datasets. In these cases, a negative transfer [298] may occur in which the source
domain reduces the learning performance in the target domain. Some studies used data
augmentation rather than transfer learning to increase the size of the dataset artificially and
improve the model performance. However, one should note that augmenting data does
not introduce the independent features to the model; therefore, it does not provide much
new knowledge for the DL model compared to new independent images.

The shortage of datasets with comprehensive and fully labeled/annotated data is also
another challenge that DL-based CAD systems face. Most of the DL methods are supervised
algorithms, and they need fully labeled/annotated datasets. However, creating a large
fully annotated dataset is a very challenging task since annotating medical images is time-
consuming and may have human errors. To avoid the need for annotated datasets, some
papers used unsupervised algorithms, but they obtained less accurate results compared to
supervised algorithms.

Another important challenge is the generalizability of the DL algorithms. Most of the
proposed approaches work on the datasets obtained with specific imaging characteristics
and cannot be used for the datasets obtained from different populations, different clinical
settings, or different imaging equipment and protocols. This is an obstacle to the wide use
of AI methods in cancer detection in medical centers. Each health clinic should design and
conduct a testing protocol for DL-based CAD systems using the data obtained from the local
patient population before any clinical usage of these systems. During the testing period,
the user should find the weaknesses and strengths of the system based on the output of
the system for different input cases. The user should know that what is the characteristics
of the failed and correct output and recognize when the system makes mistake and when
it works fine. This testing procedure not only evaluates DL-based CAD models but also
teaches the user the best way to use DL-based CAD systems.

Another limitation can be the interpretability of DL algorithms. Most DL algorithms
are like a black box, and there are no suitable explanations for the decision, and feature
selection happens during the training and learning processes. Radiologists usually do
not prefer these uninterpretable DL algorithms because they need to understand the
physical meaning of the decisions taken by the algorithms and which parts of images are
highly discriminative. Recently, some DL-based algorithms such as DeepSHAP [299] were
introduced to define an interpretable model to give more insight into the decision-making
of DL algorithms in medical image analysis. Therefore, to increase physicians’ confidence
and reliability of the decision made by DL tools, the utilization of interpretable approaches
and proper explanation of DL algorithms is required for breast cancer analysis, helping
widely used DL technology in clinical care applications such as breast cancer analysis.

DL algorithms show outstanding performance in analyzing imaging data. However,
as discussed, there are still many challenges that they face. Besides DL algorithms, some
studies show that using omics data instead of imaging data may lead to higher classification
accuracy [108,300]. The omics data contain fewer but more effective features than imaging
data. Moreover, the DL methods may extract the features from the images that are not
relevant to the final label and those features may decrease the model performance. On the
other hand, processing omics data is more expensive than image processing. Moreover,
there are much more algorithms available for image processing than omics processing.
Additionally, there are much more imaging data available than omics data.

5. Conclusions

Cancer detection in its early stage can improve the survival rate and reduce mortality.
The rapid developments in deep learning-based techniques in medical image analysis algo-
rithms along with the availability of large datasets and computational resources made it
possible to improve breast cancer detection, diagnosis, prognosis, and treatment. Moreover,
due to the capability of deep learning algorithms particularly CNNs, they have been very
popular among the research community. In this research, comprehensive detail of the most
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recently employed deep learning methods is provided for different image modalities in
different applications (e.g., classification, and segmentation). Despite outstanding perfor-
mance by deep learning methods, they still face many challenges that should be addressed
before deep learning can eventually influence clinical practices. Besides the challenges,
ethical issues related to the explainability and interpretability of these systems need to be
considered before deep learning can be expanded to its full potential in the clinical breast
cancer imaging practice. Therefore, it is the responsibility of the research community to
make the deep learning algorithms fully explainable before considering these systems as
decision-making candidates in clinical practice.
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