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Simple Summary: Breast cancer (BC) is a common malignancy with molecular diversity, i.e., hetero-
geneity. Aside from routine clinical treatments, such as chemotherapy and radiotherapy, which have
side effects and tumor resistance, troubling patients and doctors, targeted therapy based on molecular
classifications and immunotherapy with novel approaches to reprogram the immune system offer
solutions to improve prognosis, anti-tumor efficacy, and address drug resistance. Here, we review
the wide range of molecular classifications of heterogeneous BC, emphasize targeted therapy and
immunotherapy, and provide insights into the significance of targeted drug delivery systems.

Abstract: Breast cancer (BC) is the most common malignancy in women worldwide, and it is a
molecularly diverse disease. Heterogeneity can be observed in a wide range of cell types with varying
morphologies and behaviors. Molecular classifications are broadly used in clinical diagnosis, includ-
ing estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor
2 (HER2), epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor
(VEGFR), and breast cancer gene (BRCA) mutations, as indicators of tumor heterogeneity. Treatment
strategies differ according to the molecular subtype. Besides the traditional treatments, such as hor-
mone (endocrine) therapy, radiotherapy, and chemotherapy, innovative approaches have accelerated
BC treatments, which contain targeted therapies and immunotherapy. Among them, monoclonal
antibodies, small-molecule inhibitors and antibody–drug conjugates, and targeted delivery systems
are promising armamentarium for breast cancer, while checkpoint inhibitors, CAR T cell therapy,
cancer vaccines, and tumor-microenvironment-targeted therapy provide a more comprehensive
understanding of breast cancer and could assist in developing new therapeutic strategies.

Keywords: heterogeneous breast cancer; targeted therapy; immunotherapy; targeted drug
delivery systems

1. Introduction

Breast cancer (BC) is the most common female malignancy, with an estimated 2.3 mil-
lion new cases each year. Female breast cancer has already surpassed lung cancer as the
most commonly diagnosed cancer in 2020 [1] and is the leading cause of tumor-related
mortality in women worldwide.

Due to the high heterogeneity of breast cancer, establishing precise prevention and
treatment programs remains a challenge. Heterogeneity can be observed in a variety of cell
types with different morphologies and behaviors, and these differences have served as the
foundation for disease classification, eventually dividing it into two categories: intertumor
heterogeneity and intratumor heterogeneity [2]. The former can be observed in a variety
of patients, whereas the staging system and histopathological classification are the most
effective methods for reflecting clinical diagnosis. The latter manifests within a single tumor
and can be reflected at the genomic, transcriptomic, and proteomic levels of expression,
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posing diagnostic and therapeutic challenges. To comprehend and address the challenges
posed by heterogeneity, molecular classification is an area of study that requires immediate
attention.

For intertumor or intratumor, the existence of heterogeneity doubtlessly increases the
risk of the mutation being expressed in the genetic features of the cells. No matter what
kind of heterogeneity cancer has, cells will inevitably be affected by a series of mutation
events and acquire the ability to evade the immune system and overcome anti-tumor host
defenses.

Despite advances in molecular biomarker knowledge, there has been little progress in
overcoming this malignant disease overall under the current clinical guidelines. It is worth
noting that, in addition to traditional treatments, such as hormone therapy, chemotherapy,
and surgical treatment, various effective treatment strategies, such as targeted therapy and
immunotherapy, have been developed.

In a nutshell, this review will conclude the molecular classification of heterogeneous
breast cancer, highlight the current treatment hotspots, with an emphasis on targeted
therapy and immunotherapy, and provide insights into the significance of targeted drug
delivery systems.

2. Molecular Classification

Molecular classifications are widely used in clinical diagnosis and serve as indicators
of tumor heterogeneity, allowing patients to be risk-stratified for subsequent personalized
therapy. Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2) are examples of classical biomarkers that have been routinely
selected for pathology experiments with well-established staining protocols all over the
world, while other biomarkers, BRCA, EGF, and VEGF, etc., have already been identified
and have the potential to be chosen for precise detection and treatments (Figure 1).
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2.1. ER and PR

In the 1970s, the ER biomarker was first recognized and utilized to estimate the
prognosis and indicate early recurrence. As the single predictive factor identified in BC and
the indicator of endocrine therapy, the ER biomarker is most powerful in treatments with
approximately 50% effective response to anti-estrogen or aromatase inhibitors for the ER-
positive (ER+) phenotype, which comprises up to 70–80% of BC subtypes [3]. Meanwhile,
the PR biomarker, induced by endocrine, is also a co-indicator of endocrine therapy. The PR-
positive (PR+) phenotype always comes with ER+ and consists of 55–65% of BC. Compared
with other classified subtypes, ER/PR−, ER−/PR−, or ER+/PR−, ER/PR+ tumors are
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the most responsive to endocrine therapy due to the characteristics of hormone-dependent
growth retained by the tumor cells.

2.2. HER2

However, when it comes to the ER/PR− phenotype, including the HER2+ phenotype,
keywords are more about the problems of low malignancy, poor prognosis, and high re-
currence probability, troubling both doctors and patients. Several studies have revealed
that HER2 biomarkers are tightly associated with poor prognosis and the others aforemen-
tioned [4,5]. HER2, a transmembrane tyrosine kinase receptor, regulates proliferation, cell
survival, and adhesion through activation of various downstream signaling pathways, such
as rat sarcoma virus/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase
kinase/extracellular-signal-regulated kinase (Ras/Raf/MEK/ERK), and phosphoinosi-
tide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) [6].
Therefore, the emergence of HER2 biomarkers has alleviated the difficulty in treating BC.
It is reported that HER2 positivity is linked with resistance to endocrine therapy due to
the inverse relationship between ER/PR and HER2 expression levels. For the HER2+
phenotypes, HER2 examination is established as a routine clinical practice before apply-
ing anti-HER2 therapy, including humanized monoclonal antibodies (mAbs) that bind
to the extracellular domain of the HER2 receptor, etc., trastuzumab and pertuzumab,
small-molecular inhibitors (lapatinib), and antibody–drug conjugates (ado-trastuzumab
emtansine or T-DM1).

2.3. BRCA

Except for ER/PR−/HER2+ tumor subtypes, ER/PR/HER2− tumors, also called
triple-negative breast cancer (TNBC), show aggressive behavior and poor outcome, with the
highest mortality rate and recurrence, and are least likely to respond to hormone therapy.
Despite the sensitivity to chemotherapy, the prognosis of conventional chemotherapy is still
unsatisfactory. It was earlier reported that the somatic BC susceptibility gene (BRCA1/2)
with a 12% mutation rate was found in 20% of TNBC patients, of which BRCA1 mutations
are most likely to occur [7,8]. Mutation rates are higher in patients with BRCA1/2- multiple
primary BCs than in single BC, indicating that the dysfunctional BRCA pathway in BC
should be considered seriously [9]. The protein encoded by the BRCA gene participates
in double-strand DNA break repairs through homologous recombination. Patients with
advanced or recurrent metastatic BC with somatic mutations in the BRCA1/2 genes are
more sensitive to DNA-damaging drugs, such as platinum drugs, or poly (ADP-ribose)
polymerase (PARP) inhibitors, such as olaparib, due to homologous repair deficiency [10].

2.4. EGF

As a member of the EGF receptor family, which includes HER2, epidermal growth
factor receptor (EGFR) activation has been shown to promote cell proliferation, motility,
and survival through different signaling pathways via activation of various downstream
signaling pathways [11]. Despite the fact that EGFR is frequently overexpressed in TNBC,
tyrosine kinase inhibitors (TKIs), which are specific anti-EGFR agents, have only been used
as part of the standard regimen for specific tumor types, such as gefitinib, erlotinib, afatinib,
and osimertinib for non-small cell lung cancer (NSCLC), and erlotinib for pancreatic
cancer [12]. TKIs approved for use in the clinic for BC are still being researched and
developed [13].

2.5. VEGF

Vascular endothelial growth factor (VEGF) was identified and isolated as an endothe-
lial cell-specific mitogen to induce physiological and pathological angiogenic processes,
with consequent tumor cell dissemination [14,15]. Angiogenesis promotes vascularization,
which means generation of new blood vessels by sprouting from existing blood vessels.
Due to vascularization, BC cells overexpressing VEGF point to larger metastatic poten-
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tial [16]. VEGF biomarkers were identified as one of the key players in BC liver metastases
in a study based on bioinformatics and microarray gene expression analysis comparing
data from liver aggressive and primary tumor specimens. It is also of interest that HER2+
BC can induce overexpression of VEGF, which may contribute to further cancer lethality
through metastasis.

Although the magnitude of the effects of tumor heterogeneity on biomarker expression
and its clinical significance remain uncertain, these biomarkers have been designed as
special targets that tremendously support the principle of targeted therapy for BC.

3. Clinical Therapy

Before routine clinical therapy, imaging tests for BC detection are quite necessary.
Different imaging modalities have been exploited to automate BC detection, such as mam-
mograms, ultrasound, magnetic resonance imaging, and histopathological images based on
molecular classification [17]. It is worth mentioning that, recently, researchers are focusing
on a new area of artificial intelligence (AI)-based methods for BC detection, diagnosis, and
treatment. With the help of robust AI algorithms and machine learning, early diagnosis and
precise subtype classification become less time-consuming and more traceable, accurate,
and convincing. According to Yusuf et al. [18], the model built based on the BreakHis
dataset containing 7909 benign and malignant histopathological images collected from 82
patients could achieve more than 99% accuracy on image-level performance. Moreover,
Alejandro et al. [19] verified that the evaluated AI system could obtain accurate BC detec-
tion, with an average 95% confidence interval [CI] of 0.840, which was higher than a breast
radiologist. AI-based methods are, therefore, a promising modality for fully reliable and
efficient BC predictions and diagnosis.

In the clinical treatment of BC, hormone (endocrine) therapy, radiotherapy, and
chemotherapy are commonly used. Hormone therapy, whose indicators are ER and PR
biomarkers, is widely and effectively used to treat ER+/PR−, ER−/PR+, and ER/PR+ BCs.
According to the latest National Comprehensive Cancer Network (NCCN) guidelines for
BC, premenopausal and postmenopausal patients are treated with tamoxifen (selective
estrogen modulator, SERM) and tamoxifen or aromatase inhibitors (AIs), respectively. Al-
though hormone therapy is beneficial for hormone-receptor-positive (HR+) patients, it also
shows some drawbacks. According to the most recent NCCN guidelines, both tamoxifen
and AI cause hot flashes and night sweats, as well as vaginal dryness. Furthermore, re-
sistance to hormone therapies is a major issue that must be addressed [20]. Furthermore,
as AI administration time is increased, bone-related adverse events, such as fractures,
pain, and osteoporosis, increase significantly [21,22]. Acupuncture and the antidepressant
venlafaxine, as well as the anticonvulsants gabapentin and pregabalin, have been shown in
studies to be effective in treating hot flashes in BC survivors [23].

Because breast tissue is superficial and sensitive to radiotherapy, it is typically used
as adjuvant therapy after BC surgery, such as breast-conserving surgery or radical mastec-
tomy [24,25]. Radiotherapy reduces the risk of local recurrence of BC significantly [26], but
it also causes radiation dermatitis, radiation pneumonia, bone marrow suppression, heart
and lung injury, and radiation-induced malignancy [27–29].

Chemotherapy is used to treat advanced BC patients, which is important for prevent-
ing tumor recurrence and improving long-term survival [30]. Adjuvant chemotherapy
and neoadjuvant chemotherapy are the two most common types. Adjuvant chemother-
apy is chemotherapy administered after surgery to prevent distant metastasis or to post-
pone tumor metastasis and thus prolong patient survival. Neoadjuvant chemotherapy is
chemotherapy administered before surgery that determines the tumor’s response to the
treatment, allows for more breast-conserving surgery, and is widely used in both early and
locally advanced breast cancer [31,32].

Chemotherapy drugs commonly used in clinical practice are divided into four types:
anthracyclines, alkylators, antimetabolites, and taxanes. The heterogeneity of BC tumors
causes tumor resistance to only one kind of chemotherapy drug. Therefore, a combination
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of multiple drugs is used to enhance the anti-tumor treatment effect. For example, the
combination of cyclophosphamide, methotrexate, and 5-fluorouracil reduced the risk of
recurrence by 30% in 10 years and 10-year overall mortality by 16% [33]. At the same
time, a combination of targeted drugs, such as trastuzumab, has also achieved a better
therapeutic effect on HER2+ BC [34]. However, resistance to chemotherapy drugs is the
largest reason for their limited efficacy [35]. Meanwhile, cytotoxicity and adverse reactions
to chemotherapy drugs still need to be considered in clinical application [36–38].

4. Targeted Therapy
4.1. Antibody Therapy and Inhibitors
4.1.1. HER2 Targeted

• In the past 20 years, two HER2-targeted mAbs have been approved for HER2+ BC un-
der metastatic and adjuvant conditions: trastuzumab and pertuzumab. Trastuzumab,
one of the first approved targeted anti-oncology therapies, is considered the basis for
targeted treatment due to its effectiveness in women with BC harboring HER2 overex-
pression and/or amplification. Its anti-tumor action interferes with HER2 signaling
following binding to the extracellular domain of the receptor through several mech-
anisms: antibody-dependent cellular cytotoxicity (ADCC), inhibition of the HER2
receptor dimerization, receptor internalization and/or degradation, and inhibition
of downstream signaling pathways, i.e., the PI3K-AKT signaling pathway [39]. The
overall survival (OS) improvements observed with trastuzumab were maintained
after a median of more than 8 years of follow-up in a phase III study of patients with
HER2-positive metastatic BC, resulting in an 8-year OS rate of 37% [40]. Trastuzumab
has been assessed in other tumor types due to its high anti-tumor efficacy, including
HER2-amplified gastric cancer [41] and biliary tract cancer [39]. Furthermore, current
anti-HER2 mAbs treatments are more likely to be combined with chemotherapeutic
drugs, such as trastuzumab deruxtecan (T-DXd) conjugated to an exatecan derivative
(MAAA-1181a (DXd), which will be discussed in the following chapter regarding
antibody–drug conjugates.

• Given that HER2 belongs to the receptor tyrosine kinase (RTK), except for anti-HER2
antibodies, drug development efforts have also been dedicated to targeting tyrosine
kinases with small-molecule TKIs. Lapatinib, pyrotinib, neratinib, and tucatinib
represent TKIs. TKIs inhibit kinase activity by penetrating membranes of tumor
cells, thereby competing with ATP for the binding site of HER2 and finally blocking
HER2 phosphorylation and downstream signaling transduction. Because of their low
molecular weight, these HER-directed TKIs are more effective at penetrating the blood–
brain barrier, making them more effective in patients with HER2 brain metastases
and HER2-positive BC resistant to antibody therapy [42]. The ExteNET trial found
that neratinib, compared to a placebo, improved invasive disease-free survival (iDFS)
in patients with HER2/HR+ early-stage breast cancer after neoadjuvant/adjuvant
trastuzumab-based therapy [43]. Except for that, the oral dosage takes appropriate
palatability and swallowability into account, which have a significant impact on
patient adherence.

4.1.2. BRCA-Targeted

Based on significant PFS and OS benefits compared to standard chemotherapy, PARP
inhibitors (PARPi) are clinically chosen in breast cancer settings. PARPi were discovered
to have synthetic lethality with BRCA mutations. The main mechanism is to inhibit
PARylation by binding to PARP and trapping inactive PARP on DNA, thereby blocking
the replication forks, leading to their folding and the generation of double-strand breaks
that finally cause tumor cell death [44]. The representative, olaparib, is approved in the
USA for treatment of metastatic BC and in Europe for locally advanced or metastatic BC.
For BRCA mutant cancer cells, the DNA is more easily damaged and needs to rely on Poly-
ADP transferase to repair the DNA. Therefore, olaparib demonstrates its specific lethality
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by targeting BRCA mutant cancer cells other than healthy cells. However, the prospect
of biomarker-targeted therapies for BC is provided by PARPi, and identifying patients
who could potentially benefit from this treatment is noticeable. The BRCA gene test, an
established predictive test in BC risk assessment, is recommended to guide therapeutic
choice before and during the trial [45].

4.1.3. EGFR-Targeted

Targeting EGFR with mAbs has been a successful strategy in different cancer subtypes,
especially in NSCLC and colorectal cancer. Given the dramatic activity of these cancers
and the overexpression of EGF biomarkers in up to 66% of TNBCs, efforts to target EGFR
in BC have focused on TNBC. However, clinical efforts to target EGFR in TNBC have been
unsuccessful until now, with increased toxicity and unsatisfactory clinical benefits [12].
Cetuximab is one of the candidates chosen primarily for clinical trials. In a phase II study
designed for metastatic BC, Ixabepilone in combination with cetuximab did not show any
signal of increased efficacy over single-agent chemotherapy [46]. The reason may be that
few TNBCs are oncologically addicted to the EGFR signaling pathway, which renders them
sensitive to EGFR inhibition [47].

4.1.4. VEGFR-Targeted

As the first approved angiogenic mAb, bevacizumab (Avastin®) holds a pivotal po-
sition in targeted treatment of VEGF-A (referred to as VEGF) and even in targeted ther-
apy. Marking the start of a new paradigm in oncotherapy, it remains the most broadly
characterized anti-angiogenetic agent. Bevacizumab shows its potent inhibition of neo-
vascularization by binding to soluble VEGF-A ligands in the circulation, preventing combi-
nation of VEGF-A with VEGF receptor (VEGFR), thereby activating the VEGF signaling
pathways [48]. Therefore, in clinical regimens, angiogenesis-driven solid tumors, including
TNBC [49] and HER2− BC [50], were focused on. Except for the strategy of using anti-
bodies against VEGF isoforms, antibodies against VEGFR share the same anti-angiogenic
potency. Ramucirumab is one of these candidates and occupies a niche in metastatic gastric
cancer, NSCLC, and hepatocellular carcinoma (HCC) [51]. Until now, a few clinical trials
have been designed to prove its potential efficacy in BC. A phase II study designed for
unresectable, locally recurrent, or metastatic BC patients who had previously been treated
with anthracycline and taxane therapy, unfortunately, failed to improve progression-free
survival (PFS) and OS compared to eribulin monotherapy with ramucirumab in combina-
tion with eribulin, indicating that the efficacy and safety of ramucirumab in BC treatments
still need to be evaluated [52].

4.2. Antibody–Drug Conjugates

The non-specific drug action of cytotoxic drugs is known as traditional chemotherapy
regimens for cancer, which means rapidly dividing healthy and cancer cells are attacked,
leading to side effects. By discovering subtle differences between cancer and normal cells,
more effective and secure treatment options can be developed through targeted therapy
research, one example of which is antibody–drug conjugates [53].

Antibody–drug conjugates (ADCs) are a new type of biological drug that consists
of mAbs and small-molecule drugs coupled with bioactive linkers. Over the course of
their development, two key factors that influence the effectiveness of ADCs have gradually
emerged: the design of a proper linker between the mAb and the payload and the joining of
a powerful cytotoxic agent to the mAb [54]. To improve these two factors, three generations
of ADCs have been produced, which will be introduced in the next section with their
specific design, mechanism of action, and therapeutic indications.

4.2.1. The First-Generation ADCs

The first drug for ADCs is gemtuzumab ozogamicin (Mylotrag®), which is composed
of gemtuzumab linked to N-acetyl-γ-calicheamicin dimethyl hydrazide via non-specific
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lysine conjugation and was approved in 2000 [55]. The linker contains a hydrazone bond
that can be hydrolyzed in the acidic environment of the target cell, releasing the anti-tumor
antibiotic calicheamicin.

Although this drug was designed to be hydrolyzed upon entry into the cell by the
acidic environment of early nucleosomes and lysosomes, the linker was found to be unstable
in the circulation, which led to premature release of toxic loads of calicheamicins that caused
undesired toxicity, and, consequently, it was voluntarily withdrawn by Pfizer in 2010.

4.2.2. The Second-Generation ADCs

The second-generation ADCs used different linkers to avoid premature drug release,
as observed in Mylotrag®. For example, the T-DM1 ADCs (Kadcyla®), approved by the
FDA in 2013 for treatment of HER2− BC, are composed of anti-HER2 IgG1 trastuzumab
linked to DM1 through a nonreducible heterobifunctional thioether linkage containing an
N-hydroxysuccinimide ester (SMCC), which was found to be less toxic, more efficacious,
and pharmacokinetically stable [56].

However, one study found that Kadcyla® increased the risk of radiation necrosis,
which may be associated with its attribution to normal glial cell death and dysfunction [57].

4.2.3. The Third-Generation ADCs

The third-generation ADCs are characterized by moderately stable linkers with short
half-lives and bystander effects, followed by selective binding to antibodies with high
drug-to-antibody ratios (DAR) and utilization of drugs with nanomolar toxicity on DNA
targets [58].

An example is sacituzumab govitecan (Trodelvy®), which consists of a monoclonal
antibody hRS7 lgG1K [anti-trophoblast cell-surface antigen 2 (TROP-2)] linked to an active
metabolite of irinotecan called SN-38 via a hydrolyzable CL2A linker. At the same time,
pH-sensitive benzyl carbonate bonds were used to release SN-38 under acidic conditions
on target cells and their tumor microenvironment (TME) to reduce off-target toxicity, and
studies have demonstrated that Trodelvy® has a high DAR (~8: 1) [59,60].

5. Targeting Drug Delivery Systems

Nanoparticles (NPs) are stable colloids made up of polymeric materials with varying
properties, such as polymers, lipids, or metals, with particle sizes smaller than 1000 nm.
Drugs are typically covalently attached or encapsulated on the surface of NPs and passively
or actively targeted to cancer cells, which not only increases their solubility but also extends
their half-life and improves bioavailability via the tumor tissues’ enhanced permeability
and retention effect (EPR) properties [61,62]. Because NPs are smaller than the cut-off size
of tumor vascular pores, they can cross the cell membrane and preferentially accumulate
in tumor cells. Until now, several NPs-related products have been approved or currently
evaluated in clinical trials for BC (Table 1), indicating that NPs have promising development
prospects as drug carriers. Nowadays, a wide range of materials with varying properties
are used as NPs, with varying particle sizes, shapes, surface chemistry, and residence
times in circulation (Figure 2), all of which can affect their effectiveness [63]. Under these
conditions, it is critical to choose materials that are compatible with the properties of the
encapsulated drug.
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Table 1. Nanoparticles approved or currently in clinical trials for breast cancer.

Delivery System Drugs Status

Liposomes

Doxil/Calyx Approved for marketing in 1995
Myocet approved for marketing in 2001

Trastuzumab, non-pegylated
liposomal doxorubicin Phase I

Mitoxantrone Phase II
Irinotecan Phase I

TheromDox Phase II
DepoCyte Phase III

Liposomal annamycin Phase I & II
Liposomal Irinotecan,

Pembrolizumab Phase II

Polymeric

Abraxane Approved for marketing in 2005
Genexol-PM Approved for marketing in 2006

NK-105 Phase III
Nanoxel Phase I

BIND-014 Phase I
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5.1. Inorganic NPs

Inorganic NPs are developed using inorganic elements, including metals, which
are one of the most typical elements that are widely utilized in diagnosis and treatment
of cancer, such as magnetic resonance imaging (MRI) or positron emission tomography
(PET). These NPs are capable of controlling the release rate of drugs via different stimuli,
increasing drug targeting and reducing adverse effects. For BC, inorganic NPs focus on
gold and magnetic NPs, which have diverse molecular mechanisms for inducing apoptosis
in tumor cells due to their unique magnetic, optical, or thermodynamic properties, such as
conversion of electromagnetic radiation into heat, absorption of near-infrared light, plasma
resonance, etc. [64–66].

5.1.1. Gold NPs

When internalized, gold nanoparticles (GNPs) have been investigated as radiosensitiz-
ers due to their chemical stability and unique property of causing enhanced radio-sensitivity
of cells [67]. GNPs have a “photothermal effect” that involves conversion of light energy
into kinetic energy after absorption of photons, with some of the latter eventually expressed
in the form of heat. GNPs have also been used as photothermal agents to inhibit tumor
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growth by generating heat upon irradiation with near-infrared light since tumor cells are
less heat-resistant than normal cells [68].

The positively charged Au+ ions in GNPs function as tumor-targeting carriers by
attracting negatively charged biomolecules and forming stable chemical bonds. Mean-
while, GNPs are linked to functional organic ligands or polymers via thiol- or nitrogen
(N)-containing linker molecules, resulting in different physiological effects [69]. For ex-
ample, Li et al. [70] used a calcium phosphate (CaP) shell and a removable gold nanorod
yolk to form CaP-based yolk–shell NPs. The loading efficiency of the doxorubicin (DOX)
molecules could reach up to 100%. Moreover, it has pH/NIR dual-response capability to
accumulate and induce DOX release in tumors under acidic environments or near-infrared
laser stimulation.

5.1.2. Magnetic NPs

Magnetic NPs have superparamagnetic features in their crystalline core that allow their
microwave magnetic response to be modified under an external polarized magnetic field
without affecting the surrounding environment, allowing them to be used as a contrast
agent in cancer diagnosis and tumor imaging. Magnetic NPs also have the ability to
function properly and selectively target tumor tissues with tumor-cell-receptor-specific
antigens, making them promising carriers for targeted drugs in research [71].

Zou et al. [72] developed mesoporous magnetic NPs loaded with DOX and coated
with chitosan to improve their biological properties. These NPs showed high DOX loading
capacity and the potential to target BC under alternating current (AC) electromagnetic
fields. Apart from that, according to another team [73], polyethylene-glycolized magnetic
NPs coupled with anti-VEGF antibodies were used for DOX delivery, which enabled these
NPs to accumulate at the tumor site while their magnetic cores provided strong signals that
were detected by MRI for real-time monitoring.

5.2. Polymeric NPs

The diameter range of polymeric NPs can be controlled within 10–1000 nm, which
enables extended blood circulation of the encapsulated drugs through the EPR effect. As an
ideal drug delivery system, polymeric NPs are available to target and control the release of
drugs by modulating the properties of the polymer or modifying the surface with various
ligands to improve the bioavailability and therapeutic index [74].

5.2.1. Polymeric Micelles

Micelles are colloidal dispersions of nanoparticles formed by self-assembled am-
phiphilic copolymers in specific media with distinct hydrophilic and hydrophobic blocks.
The majority of hydrophilic blocks are composed of polyethylene glycol (PEG), while
hydrophobic blocks are made of poly(lactide) (PLA), poly(ethylene oxide) (PEO), or
poly(ε-caprolactone) (PCL), with polymer shapes, including spheres, layers, and
rods [75,76].

Polymeric micelles are not only easily prepared, more stable, and biocompatible
but also have lower critical micelle concentrations than previous surfactants that were
commonly used to solubilize insoluble drugs. The stimuli-responsive cleavable bonds or
targeted ligands on the blocks of polymeric micelles enable micelles to respond to various
stimulating factors of the microenvironment, such as temperature, pH, reducing agents,
specific enzymes, or near-infrared irradiation (NIR). These characteristics enable stimuli-
responsive micelles to be widely used in precisely targeted delivery of drugs (Table 2).

Peng et al. [77] constructed Herceptin-conjugated PCL-PEG worm-like nanocrystal
micelles for HER2+ breast cancer using paclitaxel (PTX) and Herceptin and found them sta-
ble in blood circulation and TME with specific HER2+ tumor cells targeting. Garg et al. [78]
formed PEO-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-PBCL) by introducing pen-
dant benzyl carboxylate groups to the PCL segment of PEO-PCL and the core-forming
block coupled to the NIR probe Cy5.5 to develop traceable polymeric micelles. Subsequent
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tracer studies showed that these modified micelles had higher accumulation at tumor sites,
were more stable, and could track disease progression in real-time with in situ BC mouse
tumors.

By introducing ionizable groups into the copolymer, micelles can be released in the
acidic pH of the TME. Emami et al. [79] used α-tocopherol as a hydrophobic segment and
electrically coupled it to a pH-cleavable cis-aconitic anhydride. This conjugate then reacted
with heparin via a steroid bond to form micelles that encapsulated the anti-tumor drug
docetaxel in aqueous media (DTX). These experiments demonstrated that the micelles
improved not only the chemotherapeutic drug solubility and specific distribution but
also had desirable biocompatibility, high pH sensitivity, and effectively prolonged blood
circulation time.

Table 2. Examples of stimuli-responsive polymeric micelles in breast cancer therapy.

Stimulus Assembly Units Payloads Characteristics Reference

Temperature PNIPAM-co-DMAAm-PLA Shikonin Thermo-responsive deformation of micellar structure [80]
mPEG-PDLLA T1+PS Thermo-responsive forming hydrogel [81]

pH

PF127-PMVEMA DOX pH-responsive dissociation [82]
Dextran-retinal DOX pH-responsive deformation of micellar structure [83]
mPEG-b-PDPA SCB pH-responsive deformation of micellar structure [84]
mPEG-PBAE urushiol pH-responsive deformation of micellar structure [85]

Enzyme mPEG-S-S-VES DTX MMPs and GSH selective cleavage [86]

Light PEG-IR780-BIIB021 IR780 Photo-responsive fluorescence [87]

Redox F127-SS-TOC / Redox-sensitive disulfide bonds as linkers [88]

Magnetic Soluplus® DCT+MNPs magnetic response [89]

pH, NIR, temperature, mPEG-PAAV DOX+IR780 pH-responsive upper critical solution temperature
and NIR absorber [90]

pH, temperature PHEMA-g- (PCL-BM: beta-
CD-star-PMAA-b-PNIPAM) DOX pH- and thermo-responsive dissociation [91]

5.2.2. Nanocapsules

Nanocapsules are framed with a vesicular structure in which the drug is not only
embedded in a cavity surrounded by a polymeric membrane but also contains liquid or
solid active substances [92]. They consist of a polymeric shell layer and an oil core, which
increases the aqueous solubility of lipophilic drugs.

Acting as a targeted drug carrier, polymeric nanocapsules could prolong the drug’s
circulation time, delay, or control the drug’s release and also improve its efficacy [93]. In
a study of three different lipid nanosystems, the researchers found that, when DOX was
enclosed in lipid nanocapsules, the half-maximal inhibitory concentration (IC50) decreased,
implying less drug dosage and toxicity [94]. Apart from that, one group of researchers
synthesized nanocapsules consisting of hyaluronic acid (HA) and hydroxychloroquine
(HCQ) at pH 7.4, which is pH- and redox-dual-responsive [95]. Through experiments, they
demonstrated that these nanocapsules have remarkable targeting and selectivity for 4T1
cells.

5.2.3. Nanospheres

Nanospheres are presented as homogeneously dispersed matrix structures that are
prepared from biodegradable polymers and serve as fluorescent nanoprobes for tumor
cell imaging [96]. Wu et al. [97] developed a method to produce magnetic and fluorescent
nanospheres for magnetic capture and fluorescent labeling of circulating tumor cells, which
can be applied for efficient detection and isolation of tumor cells.

In a targeted drug delivery system, drug molecules are trapped in the nanospheres
to avoid drug degradation by enzymes or other substances in circulation and improve
the efficacy of drugs [98]. Tang et al. [99] fabricated self-assembled mRNA nanospheres
loaded with DOX, and the experiments showed that the nanospheres efficiently expressed
apoptogens and increased the necrosis of tumor tissues, exhibiting the synergistic effects
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of gene chemotherapy. Moreover, Vahab and Alireza developed nanospheres that were
composed of folic acid and poly(methacrylic acid) with pH responsiveness [100]. With
the attachment of folic acid to the surface, these nanospheres targeted folate receptors
overexpressing BC cells to achieve targeted delivery of toxic loads.

5.2.4. Dendrimers

Dendrimers are nano-sized-scale polymers composed of monodisperse molecules.
As targeted drug carriers, dendrimers are presented as derivatized branched structures
containing a variety of optional modifications for high drug loading capacity and targeted
drug delivery [101]. Anti-tumor drugs are packaged in the lumen of the dendrimers to
improve their stability and reduce immunogenicity. Sergio et al. [102] coupled D-glucose to
methotrexate-loaded polyamidoamine (PAMAM) to obtain glycosylated dendrimers. The
molecule was proven to improve cellular targeting, and the cytotoxicity was higher than
free methotrexate.

In addition, Aleanizy et al. [103] formulated a PAMAM 4th generation (G4) dendrimer
presented with trastuzumab to deliver an adjuvant. They demonstrated that these den-
drimers were more selective, cytotoxic, and had higher cellular uptake than the free drugs,
which were shown to be promising anti-breast-cancer drug-targeted delivery systems.

5.3. Lipid NPs

Lipid NPs contain aqueous, oily, or solid nuclei and are surrounded by lipid lay-
ers [104]. They are widely used in development of drug formulations, especially in the
field of nucleic acid drug delivery, as they have numerous advantages, including stable
drug loading, reduced off-target side effects, and improved delivery efficiency. Lipid NPs
are biocompatible, and, more importantly, they can increase stability by adding cholesterol
or modifying the surface with PEG. Additionally, other surface modifications, such as
peptides, antibodies, and small molecules, allow targeted delivery.

5.3.1. Solid Lipid NPs

Solid lipid NPs (SLNs) consist of natural or synthetic solid lipid carriers in which
drugs are embedded in the lipid core or bound to the lipid surface. They are more stable
than polymeric materials, allowing sustained drug release, thereby reducing the dosage,
decreasing toxicity, and delaying the onset of drug resistance. For example, in one study,
SLNs loaded with DTX were found to have a higher tolerated dose and lower organ toxicity
in mice compared to paclitaxel [105]. More importantly, Venkata et al. [106] modified
SLNs with receptors for advanced glycation end-products (RAGE) antibodies to deliver
diallyl disulfide, which was site-specific compared to the SLNs without antibodies in MDA-
MB231 cells overexpressing RAGE. Therefore, these SLNs overcome the off-target effects
of cytotoxic agents and multidrug resistance via drug efflux transporters. In addition,
increased programmed apoptosis was found in SLNs loaded with tamoxifen due to mRNA
and miRNA expression profiles that control apoptosis, but it still needs to be verified
through further experiments [107].

5.3.2. Liposomes

Liposomes are vesicles composed of degradable and biocompatible lipid bilayers,
which allow them to store hydrophilic drugs internally while hydrophobic drugs remain
preserved in the bilayer [108]. Liposomes are highly appealing as carrier systems for
targeted therapies due to their ease of production and modification, which can be used to
achieve specific biological effects and create active targeting in the TME through a variety of
modifications. Liposomes improve drug delivery by increasing uptake and accumulation in
tumor tissues, eliminating off-target toxicity and reducing side effects. These modifications
in structures and surfaces should focus on designing a co-localization system between the
drug and BC cells and enhancing the triggered release of the drug in the TME [109].
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Liang et al. [110] used peptide-p37-modified cationic liposomes CDO14 to deliver
survivin siRNA for treatment of heat-shock-protein-gp96-overexpressed breast cancer.
Peptide p37 is an inhibitor of gp96, which is a new target for tumor therapy and can
enhance targeting after modification of liposomes. Experiments have demonstrated high
efficiency of p37-CDO14 gene silencing, which significantly enhanced the anti-tumor effect
compared to the unmodified liposomes. One group of researchers applied thermosensitive
liposomes encapsulated with the photosensitizer indocyanine green and the anti-tumor
natural drug parthenolide for synergistic treatment of TNBC [111]. Under NIR, indocyanine
green released heat to change the structure of thermosensitive liposomes and unleash the
drug. The tumor suppression rate of this liposome was 2.08-fold higher than that of
paclitaxel, but it still needs further research and validation for in vivo evidence.

Jain et al. [112] developed a pH-sensitive liposome-loaded DTX with surface-coupled
VEGF antibody for BC treatment. It has been indicated that there was greater cellular
uptake, a higher percentage of drug release in an acidic environment, and a longer half-life
with the drug delivery system compared to the free DTX. Cao et al. [113] used a biomimetic
drug delivery strategy to construct pH-sensitive liposomes coated with macrophage mem-
branes to deliver the cytotoxic anticancer drug emtansine to enhance the specific metastatic
targeting ability of liposomes. The liposomes were proven to improve the specific targeting
ability for lung metastases of BC, thereby inhibiting it significantly.

6. Immunotherapy

In contrast to chemotherapy, which utilizes its toxicity to directly kill cancer cells,
immunotherapy is based on the principle of controlling the signals of cell growth and
enhancing or stimulating the natural immune response to fight against the cancer cells.
Therefore, continuous treatment could be avoided to reduce side effects by reprogramming
the immune system. However, the majority of tumors possess immune escape capabili-
ties via decreased expression of neoantigens, downregulated levels of antigen-presenting
cells, increased expression of anti-apoptotic proteins, and release of inhibitory cytokines,
such as transforming growth factor-beta (TGF-β), interleukin-10 (IL-10), and programmed
death-ligand 1 (PD-L1). Therefore, the key to immunotherapy is directing immune cells
to specifically recognize cancer cells and breaking the tolerance to trigger autoimmunity.
Although breast cancer has not been classified as immunogenic, there are numerous im-
munotherapeutic agents that modulate its interaction with the immune system, which are
discussed in detail in the sections that follow [114].

6.1. Checkpoint Inhibitors

Activation of T cells necessitates not only the first signal provided by antigenic stimu-
lation but also the second signal from co-stimulation and cytokines. Therefore, immune
checkpoints function as suppressors in the immune system, modulate the immune response,
maintain self-tolerance, avoid excessive activation of the system, and prevent damage to
the autologous tissues [115]. This dual recognition is essential to maintain immune home-
ostasis and is also utilized by cancer cells to suppress anti-tumor T cell responses while
avoiding abnormal activation of the immune system. The immune checkpoint inhibitors
(ICIs) were exploited to develop drugs that could reactivate the immune system for antigen
presentation and kill tumor cells.

Programmed death-1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) are the
first checkpoint receptors to offer a wide range of prospects for immunotherapy. However,
they differ in the mechanism of attenuating T cell activation. CTLA-4 is upregulated
after T-cell receptor (TCR) ligation and inhibits the activation by attenuating the positive
co-stimulation of CD28, while PD-1 is induced upon the activation to attenuate TCR
signaling and inhibit T cell proliferation and survival by recruiting tyrosine phosphatases
upon binding to its ligands PD-L1 or PD-L2 [116,117]. These two representative immune
checkpoints are described further below.
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6.1.1. PD-1/PD-L1

PD-1 is a co-inhibitory receptor that regulates T cell effector function, which means
blocking this pathway can enhance the immunogenicity of T cells and promote anti-tumor
effects. Although the major ligands of PD-1 are expressed in tumor-associated antigen
presentation cells (APCs), PD-L1 is present in a variety of tumor cells, while PD-L2 is
predominantly found in hematologic cancer cells [118]. Therefore, in most studies, PD-L1
is considered a potential response marker for checkpoint therapies.

As for breast cancer, PD-L1 protein is expressed in 20–30% of patients, with TNBC
exhibiting the highest constitutive expression, making this receptor a promising area for
anti-tumor research [119]. For example, a study demonstrated that atezolizumab, an FDA-
approved anti-PD-L1 antibody, enhanced the cytotoxicity and apoptosis mediated by T
cells in TNBC with high PD-L1 expression [120]. In addition, another clinical phase III
study that used atezolizumab with paclitaxel for treatment of patients with metastatic
TNBC found this combination to significantly prolong PFS compared to the control group
(NCT02425891).

However, some researchers pointed out that almost all anti-PD-L1 antibodies on the
market have serious side effects due to their high immunogenicity [121,122]. Therefore, Ma
et al. [123] screened a human-derived protein scaffold, U1, small nuclear ribonucleoprotein
polypeptide A (snRNPA), which is complementary in shape to the domain of the PD-L1
binding receptor, by constructing a library and found that this combination inhibited
PD-1/PD-L1 interaction. Compared to antibodies, the human-derived protein scaffold
has a longer half-life and better permeability because of its lower molecular weight and
immunogenicity since this protein scaffold exerts anti-tumor activity by reactivating tumor-
suppressed T cells and is unable to coordinate direct cytocidal effects.

6.1.2. CTLA-4/CD28

CTLA-4 is a fundamental immunoregulatory molecule that raises the activation thresh-
old of T cells and attenuates the anti-tumor response, which is expressed on the surface of
T cells and T regulatory cells (Tregs). However, CTLA-4 has the same functional expression
on tumor and T cells. For example, its expression on BC cells inhibited maturation of
dendritic cells, which is CTLA-4 dependent. Meanwhile, another study demonstrated that
TNBC has the highest CTLA-4 expression of all types of BC [124,125].

There are two categories of monoclonal antibodies targeting CTLA-4, ipilimumab, and
tremelimumab in BC. For example, McArthur et al. [126] evaluated the efficacy of cryoabla-
tion and ipilimumab prior to BC surgery. Clinical studies have found favorable immune
effects in the combination of these two approaches through cryoablation-mediated tumor
antigen presentation and ipilimumab-monoclonal-antibody-mediated immunomodulation,
resulting in a synergistic anti-tumor immune response.

Aside from that, a clinical phase II trial combining the anti-PD-1 monoclonal antibody
nivolumab with ipilimumab in metastatic hypermutated HER2-negative BC is currently
underway (NCT03789110). Furthermore, a clinical phase II trial validated the efficacy of
PD-L1 inhibitor durvalumab in combination with tremelimumab in patients with metastatic
ER+ or TNBC, finding that TNBC had a higher response rate and clinical benefit to im-
munotherapy [127].

6.2. CAR T Cell Therapy

Antibody-derived chimeric antigen receptor (CAR) T cell therapy, known as adop-
tive cell therapy, involves genetic modification of host cells to express anti-tumor T cell
receptors or chimeric antigen receptors, resulting in anti-tumor responsiveness. CAR is
a synthetic receptor that consists of extracellular single-chain variable fragments, trans-
membrane domains, immunoreceptor tyrosine-based activation motifs, and co-stimulatory
signals [128–130]. It evolved in the fourth generation as cytotoxicity was reduced and
specific co-stimulatory structural domains were added. The fourth generation CAR T
cell added IL-12 to eliminate antigen-negative cancer cells based on insertion of CD28 to
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improve T cell activity in the second generation compared to the first generation, which
had only a single activation structural domain resulting in cytotoxicity [131,132].

For BC, it is essential to select the optimal tumor-specific or tumor-associated antigens
to enhance tumor auto-immunogenicity and succeed in adoptive T cell therapy. For
example, Zhou et al. [133] selected mucin 1 (MUC1), which is expressed in more than 90%
of BCs and 95% of TNBC, as the target tumor antigen. They transduced human T cells with
chimeric antigen receptor MUC28z, which recognizes the aberrantly glycosylated MUC1
in all BC subtypes. This therapy has target-specific cytotoxicity and significantly reduced
the growth of TNBC in experimental tumor xenograft models. Moreover, since EGFR is
highly expressed in TNBC, another team chose EGFR as a candidate to design CAR T-cell
therapy. It was shown to inhibit TNBC with limited toxicity to normal tissues both in vitro
and in vivo [134].

6.3. Cancer Vaccines

With the development of cancer immunotherapies, such as immune checkpoint in-
hibitors and adoptive cell transfer, the necessity for pre-sensitized tumor antigens, activat-
ing long-term immunological memory, and amplifying the number of tumor-reactive T
cells in the naive repertoire gradually arose, and, consequently, the emergence of cancer
vaccines occurred. Among immunotherapeutic strategies, tumor vaccines are primarily
active immune approaches, which enhance anti-tumor immune responses via carrying
tumor antigens that activate autologous immune cells in the patient. To date, the most
widely used tumor vaccines are peptides derived from tumor antigens, while other types
include dendritic cell (DC) and DNA-based vaccines [135–137].

Peptide-based vaccines possess the advantages of being easy to synthesize, cost-
efficient, and having acceptable side effects. For example, Burn et al. [138] tested glycolipid-
peptide conjugate vaccines to activate cytotoxic T-cell responses, which delayed breast
tumor growth and impeded tumor lung metastasis in an experimental metastasis model.
Meanwhile, the efficacy of these vaccines was also demonstrated in BALB/cJ mice, which
have smaller and more T helper 2 (Th2)-skewed natural killer T (NKT) cell populations.

In addition, since DCs process and present antigens to T cells, the researchers isolated
immature DCs from the peripheral blood of cancer patients and stimulated them with
compatible antigens and cytokines. Afterward, the mature DCs were reinfused to launch
robust anti-tumor immune responses. Tomasicchio et al. [139] developed a DC vaccine that
proved to be cytotoxic to autologous BC cells in vitro and was shown to elicit a vigorous,
dose-dependent, and antigen-specific cytotoxic T-lymphocyte response.

Moreover, another team produced a DNA vaccine that utilizes the specific target
mammaglobin-A (MAM-A), a gene that is expressed only in BC and overexpressed in
40–80% of this cancer [140]. It was demonstrated in a phase I clinical trial that the number
and frequency of specific CD8+ T cells significantly increased in patients, with preliminary
evidence of improved PFS.

6.4. Tumor-Microenvironment-Targeted Therapy

The tumor microenvironment (TME) of BC is intricately composed of vascular stromal
cells, fibroblast cells, extracellular matrix (ECM), and various types of innate and adaptive
immune cells (Figure 3), together with multiple extracellular soluble molecules, such as
cytokines, chemotactic and growth factors [141].
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Although the search has been pursued to identify genetic mutations that drive cancer
to develop, recent studies have revealed that TME plays a crucial regulatory role in cancer
progression and its immune escape. For example, fibroblasts in normal tissues facilitate
repair and regeneration, while they can be activated into cancer-associated fibroblasts
(CAFs), which produce chemokines to promote inflammation and fibrosis of the tumor [142].
Therefore, CAFs have become a popular target for BC research. For instance, a study by Yao
et al. [143] demonstrated that artesunate and dihydroartemisinin derivatives of artemisinin
inactivated CAFs and reduced the interaction between tumor and TME by inhibiting the
TGF-β signaling pathway. In addition, another team identified an aberrantly expressed
miRNA, LNA-i-miR-221 (miR-221), which initiated proliferative and migratory effects in
BC via interfering with the A20/c-Rel/CTGF signaling pathway in CAFs [144]. Therefore,
they synthesized locked nucleic acid inhibitors of miR-221 to block these pro-tumor effects.

Meanwhile, macrophages and other leukocytes are recruited for immunosuppression
and the spread of cancer cells. Tumor-associated macrophages (TAMs) account for more
than 50% of the tumor mass and have two general phenotypes, the M1 phenotype, which
activates anti-tumor immunity, and the M2 phenotype, which promotes angiogenesis.
Although these two phenotypes depend on the stage of tumor progression, TAMs in BC are
typical of M2 macrophages [145,146]. Tan et al. [147] targeted the lysine-specific demethy-
lase 1-nuclear REST corepressor 1 (LSD1-CoREST) complex, which was differentially ex-
pressed between M1 and M2 macrophages in TNBC and converted the tumor-promoting
M2 macrophages into the less aggressive M1 phenotype. However, the related mechanism
and implications require further investigation.

7. Conclusions

In the face of BC, a refractory disease, clinicians no longer have only two means,
surgery and radiation therapy. As BC research has gradually entered into a molecular-
biology-driven research phase, biomarkers routinely selected for histopathology exam-
inations cannot fully satisfy the demand for precise detection. As a result, scholars are
motivated to detect more specific markers and refine molecular subtypes with state-of-the-
art technologies, including AI-based methods. Obviously, all the efforts paid to molecular
classification would expedite precise detection and treatment of heterogeneous BC. For
biomarkers, molecular-targeted therapy with mAbs, inhibitors, chemotherapeutic drugs, or
any combination of them is proven effective in clinics, with the improved indicator of OS
and PFS. Despite the advantages of high adherence by oral inhibitors and high specificity
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and affinity to a wide variety of molecules by mAbs, inadequate pharmacokinetics and
tissue accessibility and impaired interactions with the immune system are the limitations
of those therapies, especially mAbs treatments, which need to be conquered. Targeted drug
delivery systems are thus selected as carriers to alleviate targeted therapy deficiencies. Due
to the alternative active or passive targeting capability and the unique size effect of NPs, it
is a more straightforward mission to achieve remarkable aggregation on the targeted lesion
site, improve treatment effects, and reduce the toxicity or side effects. Therefore, a research
focus for precise and efficient BC therapies is merging the delivery system and targeted
drugs joining forces.

Moreover, with enhanced awareness of the importance of the immune system during
tumorigenesis, stimulating the natural immune response to fight against cancer cells
shows its efficacy. Owing to the heterogeneity, various immune cells, fibroblasts, and the
extracellular matrix located in the TME interact with each other to promote proliferation
and migration of the tumor and inhibit the normal function of immune cells in the tumor.
Specifically, immune cells change from “soldiers” into “enemies” for the host, such as
polarization of M1-like to M2-like TAMs. The interaction of the tumor cells and TAMs
promotes rapid growth of the tumor, inhibits immune function, and leads to treatment
failure. Given the difficulties mentioned above, an efficient combinatorial regimen of
targeted therapy and immunotherapy may help to cure BC. One option is to multi-target
different subtypes of tumor cells and M2-like TAMs. On the other hand, while BC is
classified as a “cold tumor”, tumor-specific antigens delivered with CAR T therapy and
cancer vaccines have the possibility to enhance tumor auto-immunogenicity and succeed
in adoptive T cell therapy. The rise of immune checkpoint inhibitors, genetic immune
therapy, and tumor-microenvironment-targeted therapy, all of which have the potential
to become powerful armaments, is also hastening innovative treatment of BC. While a
complete cure for BC may be challenging to achieve, new applications of targeted therapy
and immunotherapy offer hope.
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