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Simple Summary: Patients with adenoid cystic carcinoma (ACC) often experience late distant
metastasis years after definitive therapy, most commonly to the lungs. Currently, there is little
consensus on the optimal treatment regimens for metastatic ACC, which typically confer modest
clinical benefit. Here, we outline management approaches for metastatic ACC in the context of
pertinent ACC biology. We summarize the most commonly utilized systemic treatment regimens,
review methods of local control for oligometastatic lung disease, and highlight emerging molecular
targets with promise for advancing ACC management in the future.

Abstract: High rates of recurrence and distant metastasis are a foremost challenge in the man-
agement of adenoid cystic carcinoma (ACC), occurring in approximately 40% of all ACC patients.
Despite the morbidity and mortality resulting from recurrent/metastatic (R/M) disease, there are
no FDA-approved systemic agents for these patients. In this review, we summarize pertinent ACC
pathophysiology and its implications for different systemic treatment regimens in R/M ACC. We
review the evidence for the most widely used systemic agents — cytotoxic chemotherapy and tyrosine
kinase inhibitors (TKIs) targeting VEGFR — in addition to immune checkpoint inhibitors and non-TKI
biologic agents. Exciting emerging targets for R/M ACC, including inhibitors of Notch signaling,
stemness, PRMT5, and Axl, are also discussed. Lastly, we review local therapies for small-volume
lung disease in patients with oligometastatic ACC, specifically pulmonary metastasectomy and
stereotactic body radiation therapy (SBRT). Future development of targeted molecular agents which
exploit the underlying biology of this disease may yield novel therapeutic options to improve clinical
outcomes in patients with R/M ACC.

Keywords: adenoid cystic carcinoma (ACC); salivary gland cancer; metastasis; systemic therapy;
chemotherapy; tyrosine kinase inhibitor (TKI); immunotherapy; metastasectomy; radiation; SBRT

1. Introduction

Adenoid cystic carcinoma (ACC) is a rare malignancy that accounts for just 1% of head
and neck cancers, but represents approximately 25% of all salivary gland malignancies [1–3].
More than half of ACC arises from the minor salivary glands, with the hard palate being
the most commonly affected intraoral site [1]. Within the head and neck, ACC can also
affect the major salivary glands, paranasal sinuses, larynx, and trachea [4]. Most cases are
diagnosed in the fifth or sixth decade of life, with a slight predilection for female sex [5].

Primary ACC is typically indolent and slow-growing, and can be successfully treated
with surgical resection similarly to other salivary gland tumors. However, ACC often
displays unpredictable and aggressive long-term behavior. In contrast to many head and
neck cancers (HNC), lymphatic spread resulting in clinical nodal disease is rare in ACC [6].
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However, perineural invasion (PNI) is strikingly common even in early tumors [7,8]. The
high rate of PNI, coupled with perineural tumor spread and a propensity for hematogenous
dissemination, make distant metastasis the most common pattern of treatment failure in
ACC, often occurring in the absence of locoregional recurrence [9]. An estimated 30–40% of
ACC patients will develop distant metastasis within 10–15 years following curative-intent
treatment, most commonly to the lungs [9,10].

The high rate of recurrence and distant metastasis in ACC necessitates effective sys-
temic and/or local therapies capable of durable disease control. Currently, there are no
FDA-approved agents for recurrent/metastatic (R/M) ACC, which has resulted in highly
variable treatment regimens across patients and institutions. The clinical and biological
heterogeneity of ACC, coupled with an incomplete understanding of its molecular patho-
genesis, have limited the development of successful targeted agents to date. The aim of
this review is to summarize our current knowledge of the biology and molecular landscape
of ACC, and to discuss current and emerging therapies for R/M ACC.

2. Biology of ACC
2.1. Cellular Origin and Histopathology

Salivary glands have complex spatial arrangements of multiple diverse cell types. In
particular, the salivary ductal system contains well-defined subdivisions which are relevant
for understanding the cellular origin of ACC [11]. The smallest diameter ducts are the
intercalated ducts, which are located directly adjacent to acini (the functional units of saliva
production). Intercalated ducts empty into the striated ducts, which themselves lead to the
larger interlobular excretory ducts that carry saliva to the oral cavity [12]. The arrangement
of these ductal segments is depicted in Figure 1.
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The epithelium of each ductal segment is phenotypically distinct, from simple cuboidal
cells in the intercalated ducts, to extensively infolded columnar cells in the striated ducts,
and a transition from pseudostratified columnar to stratified squamous epithelium as the
excretory ducts approach the intraoral opening [12]. ACC arises from the intercalated ducts,
which contain an outer layer of contractile myoepithelial cells in addition to the luminal
cuboidal epithelial layer [13]. The presence of both epithelial and myoepithelial components
is a unique characteristic of most ACCs, possibly due to the bidirectional differentiation
of salivary gland stem cells (which largely reside in the intercalated ducts) [14]. Based
on the relative proportion of these two cell types, ACC is classified as principally of
luminal epithelial differentiation or myoepithelial differentiation, the latter of which is far
more common [15,16].

Histologically, ACC is categorized into three major subtypes: cribriform, tubular, and
solid [17]. The cribriform subtype is the most common, with histology characterized by
variably sized nests of neoplastic cells interspersed with cystic spaces in a “swiss-cheese”
pattern [15]. The predominantly myoepithelial differentiation of most cribriform and
tubular ACC is hypothesized to contribute to the indolent and more restrained behavior of
these subtypes. In contrast, the loss of myoepithelial cells is a hallmark of the solid subtype
of ACC, which demonstrates a significantly more aggressive clinical course and higher
propensity for metastatic spread [18,19].

2.2. Genomic Landscape

Compared to other HNC types such as squamous cell carcinoma (HNSCC), the genetic
underpinnings of ACC remain poorly understood. The most prevalent mutations in
HNSCC (including TP53 and CDKN2A in HPV- HNSCC and PIK3CA in HPV+ HNSCC)
are found in an exceedingly low proportion of ACCs [20,21]. A rarity of mutations in
otherwise common oncogenes and tumor suppressors have led to the hypothesis that ACC
oncogenesis may rely more heavily on transcriptional alterations and changes in chromatin
structure than other HNC types [22]. Here, we briefly describe the three most common
mutational patterns reported in primary and R/M ACC: those affecting MYB/MYBL1,
members of the Notch signaling pathway, and genes involved in chromatin regulation.

2.2.1. MYB/MYBL1

There has been great interest in the myeloblastosis oncogene (MYB) in ACC since 2009,
when Persson et al. reported a characteristic translocation between MYB and the nuclear
factor 1B gene (NFIB) in these tumors [23]. This t(6;9)(q22–23;p23–24) translocation is the
only recurrent structural aberration reliably reported in primary ACC, and is present in
approximately 60% of cases [24]. In contrast, only 22% of R/M ACC demonstrate MYB
or MYBL1 rearrangements. It is important to note that the MYB protein is overexpressed
in upwards of 80% of all ACC, suggesting a central role for MYB in ACC’s pathogenesis
even in the absence of a MYB-NFIB fusion [25]. Contrary to initial studies, the cumulative
evidence suggests that neither translocation nor overexpression of MYB carries meaningful
prognostic significance in ACC [26].

2.2.2. Notch Signaling

Binding of Notch ligands with Notch receptors triggers a cascade of consecutive
receptor cleavages, including a gamma-secretase release of the Notch intracellular domain
(NICD), which regulates downstream transcription [27]. In general, genetic alterations of
the Notch pathway are present in about 13% of primary ACC, most commonly mutations in
NOTCH1 (8% of primary ACC) [24]. Less commonly, mutations in NOTCH2-4 are found, as
well as genes encoding key downstream proteins in the signaling pathway such as SPEN (an
NICD corepressor) and FBXW7 (a component of the ubiquitin-proteasome system), among
others [21,24]. Compared to primary ACC, mutations in genes of the Notch pathway
are far more common in R/M ACC, occurring in approximately 40% of all cases [28].
Strikingly, 26% of R/M ACC display mutations in NOTCH1 specifically [28]. Recent work
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has associated activating NOTCH1 mutations with poor prognosis and increased rates of
liver and bone metastasis in ACC [29]. Upregulation of Notch signaling has been shown
to suppress myoepithelial differentiation in ACC, a characteristic of the solid subtype,
and may contribute to the unrestrained clinical behavior of these cases [30]. It is worth
mentioning that in R/M ACC, mutations in NOTCH1 and TERT promoters are largely
mutually exclusive, with TERT-mutated ACC also generally lacking MYB rearrangements.
These observations suggest a distinct TERT-driven subgroup with potentially separate
oncogenic pathways and treatment susceptibilities [28].

2.2.3. Chromatin State Regulators

Mutations in chromatin remodeling genes are present in 35% of primary ACC [24].
Among the most conserved alterations are mutations in the histone demethylase KDM6A
(7%), the histone acetyltransferase CREBBP (7%), and SMARCA2 (5%), which encodes the
central ATPase of the SWI/SNF remodeling complex [24,31,32]. As with Notch signaling,
alterations in chromatin remodeling genes are significantly more common in R/M ACC
than primary tumors, including KDM6A mutations in 15% and CREBBP mutations in
11%, as well as other members of the SWI/SNF complex (i.e., the ARID family) [28,32]. In
contrast to the mutual exclusivity of NOTCH1 and TERT promoter mutations in R/M ACC,
there is a conspicuous co-occurrence of mutations in NOTCH1 and chromatin remodeling
genes in these patients (particularly KDM6A, CREBBP, and ARID1A) [28]. This suggests that
the role of Notch signaling in ACC progression may be promoted by upstream epigenetic
reprogramming via chromatin state regulators [22].

2.3. Immune Microenvironment

ACC is generally considered an immunologically “cold” tumor, with a low density of
dendritic cells and CD8+ tumor-infiltrating lymphocytes (TILs) [33]. The unremarkable
immune infiltrate seen in most ACCs is likely related to its low tumor mutational burden
(TMB), which results in an insufficient neoantigen load for triggering a robust adaptive
immune response [34]. One study comparing the immune landscape between different
types of salivary gland cancers found that ACC had the least conducive immune profile
to immunotherapy, with a low TMB (0.3 mutations/megabase), loss of HLA class I, and a
T-cell exclusion phenotype stemming from increased myeloid-derived suppressor cells and
inhibitory M2 macrophages [35].

The most commonly used immune checkpoint inhibitors (ICIs) in HNC target signaling
between the programmed death-1 receptor (PD-1) and programmed death ligands (PD-Ls).
Pembrolizumab and nivolumab, monoclonal antibodies which inhibit PD-1, enhance tumor
recognition by CD8+ TILs and stimulate cancer cell destruction [36]. The combined positive
score (CPS) is a standard method for identifying HNC patients who are most likely to benefit
from anti-PD-1 ICIs, and is determined through immunohistochemical analysis of the
proportion of PD-L1-positive cells (including cancer cells, lymphocytes, and macrophages)
in relation to total tumor cells in a patient’s sample [37]. Compared to HNSCC, PD-L1
expression is exceedingly low in the vast majority of ACCs. Three separate studies of
primary and R/M ACC reported that none of the samples analyzed were significantly
PD-L1-positive by immunohistochemistry (n = 36, 21, and 24); tumors with CPS ≥ 1 are
thus a significant minority of ACC patients [33,38,39].

In contrast to consistently low PD-L1 positivity, robust PD-L2 expression has been
reported in a high proportion (60–86%) of both primary and R/M ACC [38,40]. For this
reason, PD-L2 has been hypothesized as a major driver of immune evasion in ACC [33].
Compared to the ubiquitous use of the PD-L1 CPS for ICI response prediction, the signifi-
cance of PD-L2 positivity in predicting benefit from PD-1 inhibitors has been underexplored.
Importantly, PD-L2 status was shown to predict clinical response to pembrolizumab inde-
pendently of PD-L1 expression in 172 patients with HNSCC, though evaluation of PD-L2
is not regularly employed when considering ICI candidacy [41]. These observations lend
further support for the use of PD-1 targeted therapies (pembrolizumab, nivolumab, and
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cemiplimab), as compared to PD-L1 inhibitors (atezolizumab, avelumab, and durvalumab),
for the treatment of R/M ACC.

3. Adjuvant Chemoradiation

The preferred primary treatment modality for salivary malignancies, including ACC,
remains curative-intent surgical resection [42]. At present, radiation therapy (RT) and
chemotherapy play a minor role in adjuvant settings, often based on early, preliminary
results. This is in contrast to aggressive, locally advanced HNSCC, in which the benefit
of adjuvant concurrent chemoradiation is well established [43,44]. Most studies that do
address the use of adjuvant RT plus systemic therapy include a heterogeneous group of
salivary gland histologies and do not focus solely on ACC. Further, there is no standard of
care for the dosing or type of chemotherapeutic agent administered, though most regimens
include platinum-based therapy.

In a retrospective study by Mifsud et al., the authors found that in all subtypes of
salivary gland cancer, there was no difference in overall survival (OS) or progression-free
survival (PFS) among patients treated with adjuvant RT compared to adjuvant chemoradia-
tion [45,46]. A separate study, again including all subtypes of salivary gland cancer, found
that patients treated with adjuvant chemoradiation were more likely to have aggressive
pathologic features including positive margins, nodal involvement, and lymphovascular
invasion, compared to patients chosen for adjuvant RT alone [47]. In the chemoradiation
group, the authors demonstrated good local control, with only 1/22 developing a local
failure. Notably, this single locoregional failure was a patient with ACC. Regarding studies
focused on ACC alone, a single-institution, retrospective study found no difference in OS
among patients treated with surgery alone (n = 4), surgery + adjuvant RT (n = 21) and
surgery + chemoradiation (n = 4) [48]. However, given the small sample size, these results
were not adjusted for other important variables. A larger study utilizing propensity-score
matching showed that in 91 patients with ACC, adjuvant concurrent chemoradiation com-
pared to RT alone was associated with improved 5- and 8-year locoregional control, though
there was no difference in disease-free survival (DFS) or OS [49].

Overall, there remains no consensus regarding the addition of adjuvant chemotherapy
for high-risk ACC or any salivary gland cancer. RTOG-1008 is an active clinical trial
(NCT01220583) aimed to fill this gap in our knowledge. In this trial, patients with high-risk
salivary gland malignancies are randomized after surgical resection to either adjuvant RT
or adjuvant chemoradiation with cisplatin. The primary outcome is PFS at 2 years. This
will be the first prospective study to address this question about adjuvant treatment.

4. Systemic Agents for Recurrent/Metastatic ACC

It is important to note that not all R/M ACC patients require active systemic treatment.
If the disease is amenable to local treatment measures such as surgery or RT, those can be
attempted to delay the start of systemic therapy. Salvage surgery for locoregional recurrence
in ACC has been associated with significantly increased long-term survival in a study with
over 25 years of follow-up [50], suggesting that locoregional control is still worthwhile in
patients with limited metastasis, as it is difficult to predict how progressive the distant
disease will be. For select patients who have indolent disease without symptoms, active
surveillance can be offered as well. Although there are no FDA-approved systemic therapy
options available for ACC, most clinicians use multi-kinase inhibitors targeting vascular
endothelial growth factor receptor (VEGFR) pathways, as agents including lenvatinib and
axitinib have demonstrated modest clinical benefit in these patients. Here, we review the
evidence base for regimens of previously reported systemic agents in R/M ACC. The sites
and mechanisms of action for the current and emerging systemic therapies reviewed in this
article are depicted in Figure 2.
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4.1. Cytotoxic Chemotherapy

Chemotherapy is generally reserved for palliative treatment in patients with symp-
tomatic R/M ACC. Although several prospective and retrospective studies have been
performed in this setting, there is no consensus for the optimal treatment regimen [51].
Overall objective response rates typically do not exceed ~20%. Furthermore, experimental
studies with these therapies are often limited by sample size.

Combination therapy with cyclophosphamide-doxorubicin-cisplatin (CAP) is the most
well-studied combination therapy, with an overall objective response rate up to 33% [52,53].
Described in the 1980s, a series of 13 advanced salivary gland malignancies showed that
3/9 (33%) of patients with ACC exhibited a response to CAP therapy [54]. A similarly
small case series published in 2020 demonstrated that among R/M ACC patients treated
with CAP, 2/14 achieved partial response (PR) and 10/14 showed stable disease (SD),
with a median OS of 23.4 months [55]. Given the overall small number of patients in each
study, treatment of R/M ACC with CAP requires larger studies to determine its role in
this disease.

Multiple additional platinum combination therapies have been tested in ACC. A phase
2 clinical study investigated the efficacy of gemcitabine and cisplatin (or carboplatin among
cisplatin-ineligible patients) in all R/M salivary gland malignancies, not exclusive to
ACC [56]. Only 2/10 patients with ACC showed an objective response, though notably
a separate study of gemcitabine alone in R/M ACC showed no objective responses [57].
Similarly, a study of carboplatin and paclitaxel across multiple histologic subtypes of
R/M salivary gland cancer reported an objective response in 39% of all patients, but
only 9% of those with ACC [58]. Outside of CAP, the regimen with the most available
evidence is cisplatin and vinorelbine, which has yielded more encouraging results, with
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three studies reporting objective responses in 7/34 (21%), 6/22 (27%), and 6/19 (32%) of
R/M ACC patients [59–61].

Eribulin, a non-taxane microtubule inhibitor currently approved for the treatment
of metastatic breast cancer and metastatic liposarcoma, has also been of interest in ACC.
Between 2012–2015, 29 patients with R/M salivary gland malignancies were enrolled in
a phase 2 clinical trial with eribulin [62]. Eleven patients with R/M ACC were included;
1/11 had a complete response (CR) and 1/11 had a PR. Notably, 79% of patients included
in the study had SD. More recently, a phase 1 study of the liposomal formulation of eribulin
(E7389-LF) was tested in Japan in patients with advanced, nonresectable, or recurrent solid
tumors [63]. In terms of efficacy with ACC, 2/12 achieved PR and 9/12 achieved SD, with
a median PFS of 16.6 months. Although not designed to compare to other tumor types, the
average PFS among the other malignancies was <4 months.

In summary, though cytotoxic chemotherapy regimens (especially platinum-based)
have historically been employed for R/M ACC with marginal benefit, the use of these
agents is based on studies with exceedingly small sample sizes, and thus the overall role of
chemotherapy requires additional investigation.

4.2. Tyrosine Kinase Inhibitors

Tyrosine kinase receptors include a broad range of receptors instrumental for cell
regulation and survival. One of these receptor families, the vascular endothelial growth
factor receptors (VEGFRs), plays a key role in angiogenesis and lymphangiogenesis in
cancer, and is an active area of research. Of the three main VEGF receptors (VEGFR-1,
VEGFR-2, and VEGFR-3), the majority of VEGF-mediated angiogenic signaling occurs
through VEGFR-2 [64]. In ACC, the expression of VEGF has been correlated with worse
survival, making VEGFRs a possible therapeutic target [65,66]. Multiple preliminary clinical
studies have been undertaken in patients with R/M ACC with varying degrees of success.
We will present those with the most promising results below.

Axitinib is a multikinase inhibitor that is thought to be primarily an inhibitor of
VEGFR-1, -2, and -3. A phase 2 clinical trial for patients with incurable ACC found that
patients treated with axitinib had PR in 9% and SD >6 months in 75% [67]. Recently,
a randomized phase 2 trial of 60 patients with R/M ACC demonstrated an improved
6-month PFS in patients who received axitinib compared to the observation group (10.8 vs.
2.8 months, respectively) [68].

Lenvatinib is another multikinase inhibitor with activity against all three VEGFRs, as
well as fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor
(PDGFR), KIT and RET. A phase 2 clinical trial in 2019 enrolled patients with R/M ACC
with evidence of either radiographic or clinical disease progression at the time of enroll-
ment [69]. Of 32 patients, 5/32 (16%) had PR and 24/32 (75%) had SD. Similar results were
demonstrated in a similar study, with PR in 3/26 (11%) patients [70].

Another drug being tested is rivoceranib (also known as apatinib), a small molecule
inhibitor of VEGFR-2. A prospective phase 2 clinical trial of this agent was carried out in
China for R/M ACC. Among 65 analyzable patients, the objective response rate was 46%
and the disease control rate was 98%, with a median 1-year OS of 92% [71]. A similar phase
2 study was undertaken in the United States and South Korea which did not demonstrate
the same promising results, reporting an objective response rate of 13–19%, but the study
only included patients with documented radiographic progression at the time of enrollment
and yet demonstrated robust activity in R/M ACC [72]. Additional studies are needed to
confirm the utility of rivoceranib in the treatment of ACC.

Overall, early phase 1/2 clinical trials of multi-kinase inhibitors targeting VEGFR have
demonstrated modest but encouraging clinical benefits in R/M ACC. These targeted treat-
ments may be considered over cytotoxic chemotherapy, especially given the comparatively
tolerable toxicity profile.
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4.3. Immunotherapy

Immune checkpoint inhibitor (ICI) therapy has shown promise in advanced head and
neck cancers, though the overall clinical benefit in ACC is less clear with generally poor
response rates thus far. Prior work suggests that the overall low tumor mutational burden
and low PD-L1 expression in ACC may help explain these results [33,35].

In a phase 2 clinical trial, 20 patients with R/M ACC were randomized to either
pembrolizumab or pembrolizumab plus RT [73]. Although the treatment was generally
well tolerated, no patients had an objective response and 12/20 (60%) showed SD. In
a separate phase 1b study, even among ACC patients with PD-L1-positive tumors, no
objective responses were seen with pembrolizumab [74]. Nivolumab has also been trialed
in this population with limited success. The phase 2 NISCAHN trial reported PR in
4/46 (9%) and SD in 26/46 (56%) patients with R/M ACC [75]. In two studies assessing
the combination of nivolumab plus ipilimumab, PR was observed in only 2/32 (6%) and
1/26 (4%) of R/M ACC patients [76,77].

In summary, ICI monotherapy has produced disappointing results in R/M ACC. An
ongoing clinical trial (NCT04209660) is investigating the combination of pembrolizumab
plus lenvatinib in R/M salivary gland cancers including ACC, and it will be interest-
ing to see whether there is rationale for the use of ICI in combination with other, more
effective agents.

4.4. Biological Therapy (Non-TKI)

Vorinostat is a histone deacetylase inhibitor that has been FDA-approved for treatment-
refractory cutaneous T-cell lymphoma [78]. By modulating histone and non-histone pro-
teins, vorinostat induces apoptosis in addition to inhibiting proliferation and angiogenesis
in preclinical models. In a phase 1 study in various advanced solid tumors, 1/5 patients
with progressive R/M ACC showed PR and 4/5 patients had SD [79]. These very early,
yet promising results then led to a phase 2 clinical trial that included only patients
with R/M ACC, the majority with progressive disease prior to enrollment [80]. Among
30 patients included, the overall rate of clinical benefit was 97% (29/30), though only
2/30 experienced PR while 27/30 experienced SD. When combined with pembrolizumab
in a separate clinical study, no obvious additional benefit was observed [81].

Bortezomib is an inhibitor of the 26S proteasome used most commonly in multiple
myeloma, and is thought to act primarily by interfering with nuclear factor kappa B (NF-κB)
complex signaling [82]. Previous work has associated increased NF-κB expression with poor
prognosis in ACC, including higher propensity for vascular invasion and metastasis [83].
In a study of 25 R/M ACC patients, no objective responses were seen with bortezomib
monotherapy, though 71% achieved SD [84]. In 10 of these patients, doxorubicin (which
has preclinical evidence of synergy with bortezomib) was added to bortezomib at the time
of progression, which resulted in PR for 1 patient and SD in 6 patients.

Lenalidomide is a molecular glue protein degrader that mediates degradation of
IKZF1, IKZF3 and CK1α, and is primarily used in multiple myeloma and other hema-
tologic malignancies [85,86]. A recent phase 1 trial tested lenalidomide combined with
everolimus (an mTOR inhibitor) in various advanced solid tumors [87]. Among ACC
patients, 3/15 (20%) achieved PR and 10/15 (67%) had SD. Notably, a previous phase
2 study of everolimus alone in 34 R/M ACC patients reported no objective responses [88],
suggesting that lenalidomide (and other molecular glues which act through ubiquitin E3
ligases) may have activity in ACC [89].

Overall, these non-TKI biologic therapies will require additional prospective studies
to determine their efficacy in R/M ACC.
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5. Emerging Therapies for ACC

Traditional therapies for advanced head and neck cancer, such as RT and chemother-
apy, have a modest response at best in ACC. Recently, there has been a shift towards
defining molecular aberrations in ACC in order to develop novel, targeted therapies for
this disease [53,90,91]. While many of these agents have demonstrated early promise, there
is not yet sufficient data to recommend them for routine clinical use in R/M ACC.

5.1. Notch Signaling Pathway

The Notch signaling pathway regulates multiple cellular processes including pro-
liferation, differentiation, and apoptosis. Because activation of Notch signaling in ACC
patients is associated with a worse prognosis, the inhibition of this pathway is an active
area of research [29,30]. A phase 1 clinical trial utilizing crenigacestat, a small molecule
inhibitor of gamma secretase, a protein required for the activation of the Notch signaling
pathway, was recently published [92]. Among patients with R/M ACC, 68% of patients
achieved SD, though no objective responses were noted. A phase 2 clinical trial of AL101, a
different gamma secretase inhibitor, is currently underway (NCT03691207) with promising
preliminary results [53,93]. CB-103, a pan-NOTCH inhibitor which works further down-
stream at the transcriptional level, was recently tested in multiple solid tumors in a phase
1 trial [94,95]. Among R/M ACC patients, a median PFS of 21.7 weeks was achieved,
including radiologically confirmed SD >6 months in multiple ACC patients with activating
NOTCH mutations [95].

5.2. Stemness Inhibitors

Cancer stem cells represent a subpopulation of tumor cells that have stemness prop-
erties, which refers to the cell’s ability to self-renew, grow, metastasize, and continue
proliferating [96]. Preclinical studies have suggested that drivers of neural crest cell stem-
ness play a role in ACC disease progression [97]. Amcasertib (BBI503) is a novel oral cancer
stemness kinase inhibitor that targets multiple serine-threonine kinases to inhibit down-
stream cancer stemness signaling pathways including Nanog [98]. In a phase 1b/2 clinical
trial, patients with R/M ACC treated with amcasertib showed either SD, PR, or CR in
86% of patients, with 79% of patients alive at one year [99]. This medication was generally
well tolerated.

5.3. PRMT5 Inhibitors

Protein arginine methyltransferase-5 (PRMT5) is a protein that functions via the post-
translational modification of histones and transcription factors. An increased expression of
PRMT5 has been associated with poorer prognosis in several cancer types [100]. All clinical
studies with PRMT5 inhibitors are currently in phase 1 trials only. First published in 2020,
a phase 1 clinical trial with JNJ64619178, a selective PMRT5 inhibitor, showed only 1 PR
in 54 patients with advanced solid tumors, though notably, this PR was in a patient with
ACC [101]. Similarly, in a preliminary study including all solid tumor types, patients were
treated with GSK3326595, a selective PRMT5 inhibitor. In those with ACC, 3/14 exhibited
a PR [102]. A similar phase 1 study with PRT543, an oral PRMT5 inhibitor, reported SD in
5/7 ACC patients [103].

5.4. Axl Pathway Inhibitors

Among the tyrosine kinase receptors, fibroblast growth factor receptor (FGFR) over-
expression is thought to play a role in multiple tumor types, including ACC. A recent
preclinical study of ACC tumors found that several tumors expressed FGFR1 variants that
functioned through the AXL/AKT signaling pathway, known to play a role in cancer cell
survival and possibly drug resistance [104,105]. This mechanism makes the Axl pathway
an interesting therapeutic target. In vitro and in vivo studies have been undertaken with
ADCT-601, an antibody drug conjugate targeting AXL, which has preliminarily shown
significant tumor response rates in high AXL-expressing ACC mouse models [106].
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6. Local Therapy for Oligometastatic Lung Disease
6.1. Burden of Lung Metastasis in ACC

Of ACC patients who develop distant metastasis (DM), approximately 70% will have
lung involvement, making it the most common site of metastasis by far [107]. Strikingly,
up to 95% of patients with lung metastasis have no pulmonary symptoms at the time of
diagnosis [108]. The average tumor doubling time of metastatic ACC pulmonary deposits
has been reported as 393 days, which is much longer than most other malignancies [109].
Since tumors generally require about 30 doublings to reach a 1 cm diameter, some have hy-
pothesized that a sizable portion of ACC patients may harbor pulmonary micrometastases
at the time of primary diagnosis [109,110].

Long-term observational studies analyzing the natural course of metastatic ACC
generally report a median survival of less than 3–5 years after appearance of distant
disease [108,111–114]. However, multiple studies have suggested that the prognosis of
metastatic ACC depends heavily on the specific sites of DM. In two studies that stratified
ACC patients by DM site, the median survival after appearance of isolated lung metastasis
was reported at 47–54 months, compared to just 19–21 months in those with bone metastases
(with or without concurrent pulmonary lesions) [108,115]. While patients with isolated lung
disease may have favorable short-term outcomes (with an OS around 90% at 1 year), less
than one-third are estimated to survive 5 years after detection of pulmonary lesions [113].

Currently, local treatments for metastatic lesions, such as surgical removal (metasta-
sectomy) or non-palliative RT, are not routinely recommended in ACC (NCCN category 3).
Previous work from our institution found that the upfront treatment of metastatic lesions
with surgery or non-palliative RT conferred no significant OS or PFS advantage compared
to observation alone in a cohort of 16 R/M ACC patients [116]. In a larger report of 174 ACC
patients of the National Cancer Center of China database, there was again no significant
survival advantage after local therapy of metastatic lesions (via resection, RT, or both) in
an unselected R/M population [114]. A recent study of 42 metastatic ACC patients sug-
gested that those with fewer initial metastases may be better candidates for local ablative
treatment [117]. However, the potential benefit of local therapies in select R/M ACC popu-
lations, such as patients with isolated small-volume lung disease, remains controversial.

6.2. Pulmonary Metastasectomy

Pulmonary metastasectomy (PM) is not a favored option for many metastatic cancers
including HNSCC. However, PM can be considered for ACC considering its indolent
nature. We identified 12 retrospective studies of PM in HNC which included ACC patients
among other histologies (most commonly HNSCC), but did not separate survival outcomes
for ACC, and thus, could not analyzed further [118–129]. When looking at ACC-specific
post-PM survival outcomes, the results are heterogenous. There are multiple single-patient
case reports of PM for ACC reporting varied clinical benefit, with differences in survival
largely dictated by the development of subsequent distinct lung lesions or new metastases
at non-pulmonary sites [130–133]. We identified 10 studies which included multiple ACC
patients undergoing PM and reported ACC-specific survival data (as compared to the
12 reports above that presented aggregate outcomes across histologies). These studies,
ranging from n = 3 to n = 109, are detailed in Table 1.

Table 1. Studies investigating pulmonary metastasectomy in ACC.

Study n (ACC PMs) Intervention Outcomes Ref.

Girelli et al. (2017) 109
PM:

83.5% CR
16.5% IR

5-year OS: 66.8%
10-year OS: 40.5% [134]

Park et al. (2022) 18 PM:
100% CR

1-year DFS: 88.9%
3-year DFS: 38.9%
5-year DFS: 32.4%

8-year DFS: 0%

[135]
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Table 1. Cont.

Study n (ACC PMs) Intervention Outcomes Ref.

Locati et al. (2005) 20
PM:

55% CR
45% IR

Median OS:
78 mo. (CR) vs. 52 mo. (IR)

Median PFS:
30 mo. (CR) vs. 15 mo. (IR)

[136]

Liu et al. (1999) 16
PM:

81% CR
19% IR

5-year OS: 84% [137]

Mazer et al. (1988) 13 PM 5-year OS: 63% [138]

AlShammari et al. (2020) 11 PM 5-year OS: 100% [139]

Bobbio et al. (2008) 9 PM Median OS: 72 mo. [140]

Winter et al. (2008) 6 PM 5-year OS: 33.3%
Median OS: 43.5 mo. [141]

Ishida et al. (2020) 5 PM 5-year OS: 100% [50]

Lu et al. (2019) 3 PM 2-year OS: 100%
5-year OS: 100% [142]

Abbreviations: ACC, adenoid cystic carcinoma; CR, complete resection; DFI, disease-free interval; DFS, disease-
free survival; HNC, head and neck cancer; IR, incomplete resection; mo., months; OS, overall survival; PFS,
progression-free survival; PM, pulmonary metastasectomy.

Among these 10 publications, the most impressive survival results to date are from a
2020 study including 11 ACC PM patients, which demonstrated 100% OS at both 3 years
and 5 years post-PM (compared to just 62.5% and 44.6% for SCC patients at 3 and 5 years,
respectively) [139]. Remarkably, a 100% 5-year OS was also reported in two additional
smaller studies (n = 5 and n = 3) [50,142]. The remaining publications reporting 5-year OS
display considerable variability. The largest ACC-specific PM study to date, by Girelli et al.,
evaluated OS in 109 total ACC patients [134]. OS was 66.8% at 5 years and 40.5% at
10 years, with the multivariable Cox regression identifying incomplete resection [aHR
3.68 (95% CI, 1.58–8.59)] and a disease-free interval (DFI) greater than 36 months [aHR
0.27 (95% CI, 0.12–0.59)] to be significantly associated with OS. A study of 13 ACC patients
from 1988 reported a similar 5-year OS of 63% after PM [138], while a 1999 study of 16 ACC
patients reported a post-PM OS of 84% at 5 years (with no difference in OS between solitary
vs. multiple lesions) [137]. The most unfavorable outcomes are from a 2008 study including
6 ACC patients, in which 5-year OS was just 33.3%, though further information on these
patients and their medical histories was not detailed [141].

Of the 10 studies, two presented only median OS or PFS and not survival percent-
ages [136,140]. One was a 2005 study of 20 ACC patients, in which the median OS for
patients with complete resection was 78 months post-PM, compared to 52 months in pa-
tients with an incomplete resection [136]. The PFS was 30 months and 15 months for
complete vs. incomplete resection, respectively. The authors of this study identified two
main factors associated with superior outcomes post-PM: a low tumor burden facilitating
complete resection (defined as <6 pulmonary lesions), and a disease-free interval (DFI)
≥36 months [136]. The second group found similar results, with a median OS of 72 months
in 9 ACC patients who underwent PM (compared to 62 months in 11 ACC patients who
did not have PM) [140]. Of all the studies, the lowest median OS reported was 43.5 months,
arising from the same 2008 publication mentioned above with significantly lower 5-year
OS rates [141].

Most recently, a 2022 study which included 18 ACC patients reported 1-, 3-, and 5-year
post-PM disease-free survival (DFS) rates of 88.9%, 38.9%, and 32.4%, respectively [135].
By 8 years, the DFS dropped to 0% in this cohort, demonstrating difficulty in achieving a
permanent oncologic cure through PM alone. While these percentages are substantially
lower than the other studies analyzed here, it is important to note that the authors only



Cancers 2022, 14, 5698 12 of 22

reported DFS and not OS, and it is likely that many of these patients survived significant
periods of time after the appearance of their second recurrence, given the often slowly
progressive nature of ACC [135].

In summary, with the exception of one publication, the 5-year OS rates in patients
undergoing PM ranged from 63 to 100%. This is at least double the 5-year OS histor-
ically reported in ACC patients with untreated pulmonary metastases (which hovers
around 28–35%) [108,113]. Nonetheless, the wide range of results in these PM studies high-
lights the importance of a rationally and rigorously selected subset of ACC patients with
oligometastatic lung lesions who will benefit from PM. Based on the available evidence,
this will most likely be patients in whom: (1) complete resection is feasible, and (2) there is
a favorable DFI (which appears to be greater than 36 months in ACC) [134,136]. Above all,
large (and ideally randomized) studies will be critical to establish whether PM affords a
meaningful clinical benefit that justifies its risks.

6.3. Radiation for Pulmonary Metastases

Although surgical resection has historically been the preferred treatment of limited
metastases, ablative radiation therapy (RT) is a non-invasive alternative that has yielded
similar rates of local control and OS in retrospective studies of nonsurgical candidates
with oligometastases [143]. As discussed above, PM has been used with varying success
in R/M ACC patients with isolated small-volume lung disease (either a single lesion or
oligometastases limited to a single lobe). Compared to the PM literature, there is a relative
dearth of work examining the efficacy of RT as a method of local control in R/M ACC.

Stereotactic body radiation therapy (SBRT), otherwise known as stereotactic ablative
radiotherapy (SABR), is an image-guided technique that delivers a highly conformal
radiation dose in a small number of fractions and has demonstrated impressive local
control rates with a low risk of high-grade toxicities [144,145]. In 2019, the landmark SABR-
COMET phase 2 RCT of 99 patients with oligometastatic disease (1–5 total lesions) from
a variety of primary sites demonstrated the efficacy of this modality in selected patients,
reporting a doubling of PFS and a 13-month increase in OS in those randomized to SBRT
compared to the standard-of-care palliative therapy [146]. When considering epithelial
tumors as a whole, SBRT appears to confer a similar rate of local control but inferior PFS
compared to PM, at least in the short term [147]. While multiple case reports have described
the use of palliative RT in combination with cytotoxic chemotherapy [148,149] or ICI [150]
for the treatment of ACC lung metastases, a role of SBRT in treating oligometastatic ACC
has yet to be defined [151].

There is currently no consensus on the ideal SBRT dose and fractionation schedule for
lung metastases, and protocols up to this point have been extrapolated from SBRT schemes
that are used for medically inoperable, early-stage non-small cell lung cancer (NSCLC) [152].
There is particular concern in using SBRT for centrally located tumors (i.e., within 2 cm
of the proximal bronchial tree and mediastinum), given an increased risk of radiation
toxicity, including effusions of pleura or pericardium, decline in pulmonary function,
and bronchopulmonary hemorrhage [153]. The recently published results of the phase
1 NRG-BR001 trial, which investigated SBRT for multiple oligometastatic lesions, reported
favorable safety outcomes with no dose-limiting toxicities using 45 Gy in three fractions
for peripheral lung metastases and 50 Gy in five fractions for central lung metastases [154].
In SABR-COMET, which allowed 1–5 metastases, peripheral lung metastases ≤3 cm were
prescribed 54 Gy in three fractions. Tumors >3 cm or abutting chest wall were prescribed
55 Gy in five fractions. Central tumors were prescribed 60 Gy in eight fractions. SABR-
COMET-10 is an ongoing phase 3 RCT (NCT03721341) that aims to assess the impact of
SBRT in patients with 4–10 metastases [155]. Recommended SBRT doses are 20 Gy in one
fraction, 30 Gy in three fractions, or 35 Gy in five fractions, which are lower than the original
SABR-COMET study to minimize the risks of toxicity when treating more lesions. ACCs
are radioresistant tumors, and thus, more ablative dose and fractionation schedules, such
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as 54 Gy in 3 fractions or 50–60 Gy in 5–8 fractions, appear to be reasonable for a limited
number of lung metastases.

We identified three retrospective studies of SBRT which included ACC patients with
oligometastases, all of which also included other HNC types. The largest of these studies
was a 2022 publication across nine Italian centers, comparing oncologic outcomes of SBRT
vs. conventional palliative RT in 37 patients with metastatic ACC (along with 27 additional
non-ACC salivary malignancies) [156]. The median total dose of radiation delivered was
29 Gy in 3 fractions for the SBRT group and 30 Gy in 10 fractions for the palliative RT group.
They reported a 2-year OS of 83% across all ACC patients, with no difference in OS between
the cohorts but a significant benefit in time to local failure for SBRT compared to palliative
RT techniques. It is important to point out that this study included patients with DM to a
variety of locations including the lung, bone, and brain, but unfortunately, did not report
data for each of these organ sites specifically; it is therefore difficult to draw conclusions
about SBRT benefits in patients with isolated lung lesions [156].

The second study included 13 ACC patients and suffered from similar limitations,
encompassing metastases to non-lung sites in addition to aggregating outcomes from
all salivary gland cancer histologies together in a single group (ACC, adenocarcinoma,
and mucoepidermoid carcinoma) [157]. The median total radiation dose was 48 Gy in
3–8 fractions. It is notable that this study reported impressive survival outcomes after SBRT
for metastases from primary salivary gland cancers, with a 2-year OS of 95%, compared to
just 35.2% in the remaining non-salivary HNCs.

The last study, which specifically investigated the role of SBRT in HNC patients with
isolated lung metastases, included 10 ACC patients out of 82 in total (employing 50 Gy in
4 fractions for peripheral lesions, and 70 Gy in 10 fractions for central lesions) [158]. Like
the other two studies, all non-SCC histologies (which also encompassed thyroid cancers,
adenocarcinomas, and sarcomas, among others) were grouped together for analysis, with
2-year OS rates of 54.7% in SCCs compared to 77.4% in non-SCCs.

This literature review demonstrates that the existing evidence for SBRT of oligometastatic
lung disease in ACC is limited to small retrospective studies. While encouraging 2-year
OS rates >75% following SBRT have been reported among heterogeneous groups of HNC
histologies that have included ACC, the lack of ACC-specific data is the major limitation in
assessing the efficacy of SBRT for small-volume lung disease. In addition, two out of three
studies identified consisted of patients with a variety of DM sites rather than isolated lung
metastases, and all three studies reported relatively short-term survival outcomes at 2 years
post-SBRT, compared to the 5-year follow-up routinely reported in the aforementioned
PM studies. Follow-up SBRT investigation will be important to establish an ideal target
dose (which ranged from medians of 30 to 70 Gy in the studies reviewed here). Excitingly,
the currently recruiting SOLAR Trial (NCT04883671) aims to assess the efficacy of SBRT
in ACC patients with 1–5 metastases. Patients will be randomized to either SBRT (to all
sites of disease) or standard of care, with a planned 10-year follow-up regardless of the
treatment regimen. These results will provide valuable data as to whether SBRT is a viable
local therapy option for oligometastatic ACC patients.

7. Conclusions

Despite the high burden of recurrence and metastasis in ACC, there remain no FDA-
approved systemic agents and no consensus on optimal treatment regimens for these
patients. In Figure 3, we present a framework for selecting a treatment modality based on
the characteristics of a patient’s metastatic disease.

Among systemic therapies, studies demonstrating promising clinical benefits with
VEGFR TKIs, especially lenvatinib (though also axitinib and more recently rivoceranib),
have solidified the role of these agents in the R/M ACC setting. Cytotoxic chemotherapy
(particularly CAP and other platinum-based combinations) has historically been employed
in R/M ACC, with objective responses generally achieved in less than 20% of patients.
However, the use of cytotoxic chemotherapy in ACC is based on studies with exceedingly
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small sample sizes, and their administration is often complicated by toxicity, so they are
thus not preferred when VEGFR inhibition is feasible. To date, ICI has produced disap-
pointing results in R/M ACC, and non-TKI biologic agents require additional investigation.
Inhibition of Notch signaling, stemness, PRMT5, and Axl represent exciting emerging
targets for this disease.
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As pulmonary involvement occurs in 70% of patients with metastatic ACC, whether
there is a role for the local treatment of lung lesions is a particularly prudent clinical
question. Most retrospective studies investigating pulmonary metastasectomy (PM) in
ACC patients with isolated small-volume lung disease have demonstrated favorable 5-year
overall survival rates compared to historical data of patients with untreated pulmonary
metastases. Predictors of the greatest PM benefit include a single metastatic focus, amenabil-
ity to complete resection, and a disease-free interval ≥36 months. However, it is important
to note the retrospective nature of this evidence and the lack of randomized trials assess-
ing PM in ACC; future work with less risk of bias will be important to more definitively
establish the efficacy of PM in these patients. The current evidence for stereotactic body
radiation therapy (SBRT) in oligometastatic ACC is limited, as an interpretation of the
few existing studies is hindered by analyses that aggregate patients with distinct HNC
histologies and those with extra-pulmonary metastatic sites. Further investigation into
both PM and SBRT are essential to determine whether these modalities can improve local
control, survival, and quality of life in ACC patients suffering from metastatic disease.
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ACC adenoid cystic carcinoma
CAP cyclophosphamide-doxorubicin-cisplatin
CR complete response
DFI disease-free interval
DFS disease-free survival
DM distant metastasis
HNC head and neck cancer
HNSCC head and neck squamous cell carcinoma
ICI immune checkpoint inhibitor
OS overall survival
PD-1 programmed death-1 receptor
PD-L programmed death ligand
PFS progression-free survival
PM pulmonary metastasectomy
PR partial response
R/M recurrent/metastatic
RT radiation therapy
SBRT stereotactic body radiation therapy
SCC squamous cell carcinoma
SD stable disease
TKI tyrosine kinase inhibitor
VEGFR vascular endothelial growth factor receptor
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