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Simple Summary: Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortal-
ity. Cuproptosis is a newly discovered mechanism of cell death. Numerous cuproptosis-related-genes
are reported; however, the studies on the role of cuproptosis-related genes in the prognosis of HCC are
limited. This study aimed to establish a prognosis model of HCC related to cuproptosis-related genes
and explore the correlations between cuproptosis-related genes and the immune microenvironment
of HCC. These findings might aid in studying the cuproptosis and tumor immune microenvironment
of HCC patients for improving their treatment outcomes and prognosis.

Abstract: Background: Studies on prognostic potential and tumor immune microenvironment
(TIME) characteristics of cuproptosis-related genes (CRGs) in hepatocellular carcinoma (HCC) are
limited. Methods: A multigene signature model was constructed using the least absolute shrinkage
and selection operator (LASSO) Cox regression analysis. The cuproptosis-related multivariate cox
regression analysis and bulk RNA-seq-based immune infiltration analysis were performed. The
results were verified using two cohorts. The enrichment of CRGs in T cells based on single-cell
RNA sequencing (scRNA-seq) was performed. Real-time polymerase chain reaction (RT-PCR) and
multiplex immunofluorescence staining were performed to verify the reliability of the conclusions.
Results: A four-gene risk scoring model was constructed. Kaplan–Meier curve analysis showed
that the high-risk group had a worse prognosis (p < 0.001). The time-dependent receiver operating
characteristic (ROC) curve showed that the OS risk score prediction performance was good. These
results were further confirmed in the validation queue. Meanwhile, the Tregs and macrophages
were enriched in the cuproptosis-related TIME of HCC. Conclusions: The CRGs-based signature
model could predict the prognosis of HCC. Treg and macrophages were significantly enriched in
cuproptosis-related HCC, which was associated with the depletion of proliferating T cells.

Keywords: hepatocellular carcinoma; cuproptosis; cuproptosis-related gene signature; immune
microenvironment

1. Introduction

Hepatocellular carcinoma (HCC) is a very common malignant tumor with high mor-
tality worldwide. According to the International Agency for Research on Cancer, the
Global Cancer Statistics 2020 showed that the number of new cases and deaths caused by
HCC worldwide were approximately 900,000 and 800,000, respectively [1]. Patients with
HCC are usually diagnosed at an advanced stage [2]. Therefore, given the high morbidity
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and mortality rates of HCC, effective and accurate prognostic models are needed to be
developed for the early detection of HCC.

Copper is an essential element for the biological activities of organisms, as well as a co-
factor for various metabolic enzymes. An increase in the concentration of intracellular copper
was closely associated with the progression of cancer and was required for the characteristic
phenomena, such as angiogenesis and metastasis in the progression of cancer; however, the
mechanisms are unknown [3]. Recently, a new cell-death mode, known as cuproptosis, was
discovered, which was different from the known cell-death modes [4] and might be an impor-
tant mechanism for the effects of copper concentration on cancer progression. Cuproptosis
is a novel form of copper-dependent cell death that depends on mitochondrial respiration
and is associated with the tricarboxylic acid (TCA) cycle [4]. Therefore, cuproptosis might
be closely related to the intracellular concentration of copper. The change in the intracellular
concentration of copper could affect the occurrence of cuproptosis and significantly affect the
occurrence and development of HCC. A previous study identified some cuproptosis-related
genes (CRGs); these genes could be used for developing a model by analyzing their expression
levels to predict the prognosis of HCC patients [4].

Tumor is not only a combination of malignantly proliferating cells but also a complex
tissue consisting of well-organized different cell types [5]. The immune components of the
tumor tissues, known as the tumor immune microenvironment (TIME), include tumor im-
mune cells and factors [6–8]. TIME is associated with the occurrence, development, prognosis,
and recurrence of tumors [9]. T-cell-mediated cellular immunity, playing a dominant role in
tumor immunity, can be divided into CD4+ T cells, CD8+ T cells, Treg cells, etc. The CD4+ T
cells can differentiate into various subtypes, which play important roles in the coordination of
various immune responses in TIME. The CD8+ T cells can target and destroy tumor cells by
detecting abnormal tumor antigens expressed on the surface of cancer cells and are usually
associated with the efficacy and survival of cancer patients. The Treg cells are ubiquitous
in TIME and promote the development and progression of the tumor by suppressing the
anti-tumor immune responses, such as the secretion of interleukin-2 (IL-2) [10].

In this study, prognostic models were established, and the TIME characteristics of 361
HCC tissue samples were analyzed using the RNA-seq data obtained from The Cancer
Genome Atlas (TCGA) database. The results were further validated using the RNA-seq data
of 231 HCC samples from the International Cancer Genome Consortium (ICGC) (LIRI-JP)
cohort and 116 HCC samples obtained from our in-house cohort. In addition, the TIME of
HCC cuproptosis was further elucidated at the single-cell level. The schematic process of
this study was showed in the Figure 1. This study revealed a potential correlation between
cuproptosis, prognosis, and TIME in HCC patients. These findings might aid in studying
cuproptosis and TIME of HCC patients for improving their treatment outcomes and prognosis.
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2. Materials and Methods
2.1. Dataset Acquisition

On 20 November 2021, the sequencing data and clinical information of 424 patients
were obtained from the TCGA database. The data of the patients, who were histopatho-
logically diagnosed with fibrolamellar carcinoma or mixed HCC, were excluded, re-
sulting in a total of 411 patients (361 HCC tumor tissues and 50 non-tumor tissues)
(https://portal.gdc.cancer.gov/repository, accessed on 14 January 2022). Moreover, the
results were validated using the data of 231 HCC patients obtained from the ICGC database
(https://dcc.icgc.org/, accessed on 1 June 2022) and 116 HCC patients from our in-house
cohort. The clinical data of all the patients in the three cohorts are listed in Table 1.

Table 1. Clinical information of the HCC patients included in this study.

TCGA ICGC (LIRI-JP) In-House RNA-seq

Number of patients 361 231 116
Age (median, range) 61 (16–90) 69 (31–89) 49.5 (36–76)

Gender
Female 117 61 15
Male 244 170 101

Grade
Grade 1–2 224 53 15
Grade 3–4 132 159 101
unknown 5 19 0

AFP
≤200 196 NA 63
>200 75 NA 53

unknown 90 NA 0
Stage

Stage I 167 36 58
Stage II 82 105 32
Stage III 84 71 26
Stage IV 4 19 0

unknown 24 0 0
vascular_tumor

Macro 16 NA 23
Micro 89 NA 49
None 200 NA 44

unknown 56 NA NA
Survival status

OS days 588 (0–3675) 780 (10–2160) 945 (0–1320)

Moreover, 19 CRGs were obtained from the published studies [4] (Table 2).

Table 2. Screened genes.

Cuproptosis-Related Genes CRGs-DEGs Prognosis Value Intersect Genes Signature Model

NFE2L2
√ √ √

NLRP3
√

ATP7B
ATP7A

√ √ √

SLC31A1
√

FDX1
√

LIAS
√

LIPT1
√ √ √ √

LIPT2
√ √ √

DLD
DLAT

√ √ √ √

PDHA1
√ √ √

https://portal.gdc.cancer.gov/repository
https://dcc.icgc.org/
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Table 2. Cont.

Cuproptosis-Related Genes CRGs-DEGs Prognosis Value Intersect Genes Signature Model

PDHB
√

MTF1
√ √ √

GLS
√ √ √ √

CDKN2A
√ √ √ √

DBT
√

GCSH
√

DLST

2.2. Identification of Prognostic CRGs and Selection of Differentially Expressed Genes Related to
Cuproptosis (CRGs-DEGs)

The DEGs were obtained by differential analysis of the HCC tumor and non-tumor
samples using the R package “limma” in the TCGA cohort (p < 0.05). At the same time,
univariate Cox regression analysis was applied to 19 CRGs, which resulted in obtaining
9 prognosis-related CRGs. A total of 16 CRGs-DEGs were obtained by intersecting the
DEGs with 19 CRGs obtained from the published studies. The 16 CRGs-DEGs intersected
with 9 prognosis-related CRGs, which identified 9 prognosis-related genes as CRGs-DEGs.
Therefore 9 CRGs-DEGs related to prognosis were finally obtained and used for subsequent
analysis (Table 2).

2.3. Development and Validation of the Prediction Model

In order to avoid overfitting, the R package “glmnet” was used to perform the least
absolute shrinkage and selection operator (LASSO) regression analysis on the 9 genes ob-
tained from the TCGA cohort. Finally, four genes were obtained for the model construction.
Then, the risk score of each sample was calculated using Equation (1).

riskScore = ∑i = 1nCoef(Xi) × Exp(Xi) (1)

where Coef(Xi) was the corresponding coefficient for each CRG and Exp(Xi) was the
expression level of each gene.

The median of risk scores was used as a grouping standard to divide the patients in
the TCGA cohort into high-risk (n = 180) and low-risk (n = 181) groups.

The survival curve was drawn in this study using Kaplan–Meier (K–M) analysis. The
area under the receiver operating characteristic (ROC) curve (AUC) was determined to
assess the ability of the model to predict the 1-, 2-, and 3-year survival of patients. Based
on the expression level of each gene in the model signature, Principal component analysis
(PCA) and t-distributed stochastic neighbor embedding (t-SNE) were performed using
the R packages “stats” and “Rtsne”, respectively, to observe the distribution of the two
groups of people. In addition, univariate and multivariate cox regression analyses were
also performed to confirm whether the model could be used as an independent factor for
predicting the overall survival (OS) of HCC patients. Moreover, the patients’ risk scores
were also calculated based on the RNA-seq data obtained from ICGC and our in-house
cohorts to validate the prognostic models. In the ICGC and internal cohorts, the median
risk score and 3:1 ratio were selected as cutoff values to classify the patients into low-risk
and high-risk groups, respectively.

2.4. Functional Enrichment Analysis and Immune Infiltration Score

The DEGs were identified in the high-risk and low-risk groups in the three cohorts
using the R package “limma” (fold-change > 1.2 and p < 0.05). Then, the common DEGs
across the three cohorts were obtained. Gene ontology (GO) analysis of the common DEGs
was performed using the R package “clusterprofiler”.

The proportion of 16 immune cells (activated dendritic cell (aDCs), B cells, CD8+
T cells, dendritic cells (DCs), inflammatory dendritic cells (iDCs), macrophages, mast
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cells, neutrophils, natural killer cells (NK cells), plasmacytoid dendritic cells (pDCs),
T-helper cells (Th cells), follicular helper T cell (Tfh), Th1 cells, Th2 cells, tumor infiltrating
lymphocytes (TIL), and regulatory cells (Treg)) infiltration and activity levels of 13 typi-
cal biological pathways (antigen-presenting cell (APC) co-inhibition, APC co-stimulation,
chemotactic cytokines receptor (CCR), check-point, cytolytic activity, human leukocyte
antigen (HLA), inflammation-promoting, major histocompatibility complex (MHC) class I,
para-inflammation, T-cell co-inhibition, T cell co-stimulation, type I interferon (IFN) re-
sponse, and type II IFN response) in a single sample were calculated by single-sample
gene-set enrichment analysis (ssGSEA) using the R package “gsva” [11].

2.5. Single-Cell RNA seq (scRNA-seq) Analysis

The scRNA-seq data of T cells (LIHC_GSE98638 dataset) was downloaded from
the Tumor Immune Single-cell Hub (TISCH) database (http://tisch.comp-genomics.org/
home/, accessed on 1 June 2022). The scRNA-seq data of tumor tissues, adjacent normal
liver tissues, and peripheral blood of six HCC patients were obtained [12]. Based on
TISCH, the analysis of DEGs and identification of immune cell types were performed by
analyzing scRNA-seq analysis using Seurat [13]. The main steps were as follows. First,
an expression matrix of single-cell transcriptome data was acquired, and the cell type
information was defined. The single-cell expression matrix was then created as a Seurat
object. The FindVariableFeatures function was used to discover hypervariable genes. The
data were normalized using the ScaleData function, and the dimensionality reduction
clustering was performed using RunPCA and RunUMAP. Finally, the defined cell type
information was integrated.

The cuproptosis scores of various T-cell subtypes for prognosis-related CRGs-DEGs
were obtained using the ssGSEA package. First, the counts were extracted from the single-
cell RNA-seq expression matrix, and the genes with 0 expressions were removed. The
GSVA package was then used to calculate the score of the prognosis-related CRGs-DEGs
in the extracted counts and added to the Seurat object using the AddMetaData function.
Finally, the VlnPlot function was used for visualization.

Similarly, based on the hallmark gene set analysis, the signaling pathway scores of
different T cell subtypes were obtained.

2.6. Cell Culturing

Seven HCC cell lines (HCCLM3, SNU-449, Huh-7, HCC97-H, HCC97-L, Hep3B)
and the human normal liver cell line (MIHA) were used in this study. The Huh-7 and
Hep3B were obtained from the Cell Bank of the Chinese Academy of Sciences (Shanghai,
China). The MIHA, HCCLM3, SNU-449, HCC97-H, and HCC97-Lwere purchased from
Zhong Qiao Xin Zhou Biotechnology (Shanghai, China). All cell lines were cultured in
the medium containing 89% DMEM (GIBCO, 11960044), 10% FBS (GBICO, 10099-141),
100U/mL streptomycin, and 100 µ G/mL penicillin (Solarbio, Beijing, China, P1400) in a
humidified incubator with 5% CO2 at 37 ◦C.

2.7. Multiplex Immunofluorescence Staining

A TSA fluorescence kit was used to process multi-color immunofluorescence staining
following the manufacturer’s instructions. First, the primary antibody was incubated with
the tissue sections. The following antibodies were used: CD4 (Abcam, Shanghai, China,
ab133616; 1:3000), Foxp3 (Servicebio, Wuhan, China, GB112325; 1:1000), CD68 (Servicebio,
Wuhan, China, GB113150; 1:3000), and CDKN2A (Servicebio, Wuhan, China, GB111143;
1:100). The tissues were then incubated with the respective polymer horseradish peroxidase
(HRP)-E-conjugated secondary antibodies. Then, the tissue sections were heated using a
microwave. After all the antigens were labeled, the tissue sections were stained with 4‘-6′-
diamino-2-phenylindole (DAPI; Servicebio, G1012). Multi-spectral images were obtained
by staining the slides, followed by scanning with a scanner (Pannoramic MIDI: 3Dhistech,

http://tisch.comp-genomics.org/home/
http://tisch.comp-genomics.org/home/
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Shandong, China). Then, CaseViewer 2.4 software was used to analyze the scanning results
and output of multi-color fluorescent images.

2.8. Real-Time Polymerase Chain Reaction (PCR)

The total RNAs of hepatocyte and hepatocellular carcinoma cell lines were extracted
with TRIzol reagent (Servicebio) following the manufacturer’s instructions. Then, the
extracted RNA was reverse-transcribed into cDNA using a PrimeSciptTM RT reagent Kit
with gDNA Eraser (Takara, Beijing, China). FastStart Universal SYBR Green Master (Roche,
Shanghai, China) was then used for real-time fluorescence quantitative PCR analysis. The
primer sequences were as follows: H-CDKN2A-F, 5′-GGAGGCCGATCCAGGTCAT-3′ and
H-CDKN2A-R, 5′-CACCAGCGTGTCCAGGAAG-3′; H-ACTB-F GTCATTCCAAATATGA-
GATGCGT, H-ACTB-R GCTATCACCTCCCCTGTGTG. In order to compare the expression
levels of different samples, the relative expression level of the gene was calculated using
the 2−∆∆Ct method. Each experiment was repeated at least three times independently.

2.9. Statistical Analyses

First, the gene expression levels in tumor and non-tumor tissues were compared using
Student’s t-test. K–M analysis and log-rank test were applied for comparing the OS of
patients between the high- and low-risk groups. A Chi-square test was performed in this
study to compare the clinical differences between the groups in each cohort. The ssGSEA
scores of immune cells and pathways between the two groups were compared using the
Mann–Whitney test and the p-values were adjusted using the Benjamini–Hochberg (BH)
method to confirm the significance of the difference. The R software package (version 4.1.2)
was used for the statistical analyses in this study. For all the statistical analyses, a p-value
of less than 0.05 was considered statistically significant. All the p-values were two-tailed.

3. Results
3.1. Prognostic and Differential Analysis of CRGs in the TCGA Cohort

The results showed that the expression levels of most CRGs (16/19, 84.2%) were
different between the tumor and non-tumor groups in the HCC patients.

A total of 9 prognosis-related CRGs were obtained by applying univariate Cox regres-
sion analysis to 19 CRGs (Figure 2B). At the same time, survival analysis was conducted
on these 9 genes, which suggested that the patients with high expression of these genes
except NF2L2 had lower OS; this verified that 8 of these 9 genes had prognostic potential
(Supplementary Figure S1). The intersection of 16 CRGs-DEGs with 9 prognosis-related
CRGs identified 9 prognosis-related genes as CRGs-DEGs. Therefore, 9 CRGs-DEGs re-
lated to prognosis were finally obtained and used for subsequent analysis (Figure 2A,C,
p < 0.05 for all genes). In addition, LIPT1, LIPT2, PDHA1, and DLAT had close relations
and interactions in the interaction network (Figure 2D). The expression of these genes had
a certain correlation (Figure 2E).

In addition, the correlations between clinicopathological features and four genes in the
TCGA cohort were verified. Four genes were related to clinical manifestation at different
degrees. The expression level of CDKN2A was higher in the patients with high grade
(“G3&G4”) (p < 0.05), and the expression levels of GLS, DLAT, and LIPT1 were higher in
the patients with a high stage (“III–IV”) (p < 0.05); these results were consistent with clinical
experience (Supplementary Figure S2).
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Figure 2. Identification of CRGs for follow-up studies. (A) Venn diagram of the intersection of
CRGs-DEGs and cuproptosis-related prognostic genes in tumor and non-tumor tissues. (B) The
heatmap shows the comparison of the expression amount of intersection genes in tumor (T) and
non-tumor (N) tissues. (C) Forest plot shows the risk degree of each intersecting gene using the
univariate cox regression analysis. (D) Interactions between the nine genes were presented using the
PPI network for further study. (E) Correlation network shows the correlations between the expression
levels of nine genes with positive correlation shown in warm colors.

3.2. Construction and Exploration of Prognostic Models in the TCGA Cohort

A 4-gene prognostic model was obtained by performing a LASSO-Cox regression
analysis on the expression profiles of the screened 9 CRGs. The optimal value of the penalty
parameter (λ) was selected to determine the signatures of four genes (Table 2). The risk
score was calculated using Equation (2).

Risk score = e(0.602× CDKN2A expression level + 0.466 × GLS expression level + 0.790 × LIPT1 expression level + 1.842 × DLAT expression level) (2)

The median cut-off value of the risk score was selected to divide the patients into
low-risk (n = 181) and high-risk (n = 180) groups (Figure 3A). The results showed that, in
the high-risk group of the TCGA cohort, there was advanced tumor node metastasis (TNM)
stage and high tumor grade (Table 3, p < 0.05). Both the PCA and t-SNE maps showed
that the patients in the two risk groups were located in different directions (Figure 3B,C).
The patients in the low-risk group were more likely to have longer OS as compared to
those in the high-risk group (Figure 3D). As shown in Figure 3E, the K–M curve analysis
showed that the OS of patients in the low-risk group was higher as compared to that of
high-risk group patients (p < 0.001). The AUC values of the HCC patients at 1-, 2-, and
3-year OS were 0.745, 0.649, and 0.650, respectively. This indicated that the OS risk score
exhibited a good prediction performance for the prognosis of HCC patients (Figure 3F).
Meanwhile, these results were validated using the data obtained from the ICGC cohort and
our in-house cohort (Figure 4).
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Figure 3. Four-gene signature model was constructed using the TCGA cohort data. (A) Risk curves
show the distribution of sample risk values. (B) PCA analysis of high- and low-risk groups. (C) t-SNE
analysis of two groups was performed. (D) Survival status vs. time. The graph shows that with the in-
crease in risk, the number of deaths increased. (E) K–M curve for the two groups. (F) Time-dependent
ROC curve of risk score prognostic performance.

Table 3. Clinical information of the patients in high- and low-risk groups in the three cohorts.

Characteristics

TCGA-LIHC Cohort ICGC-LIRP-JP Cohort Internal RNA-seq Cohort

High
Risk

Low
Risk p-Value High

Risk
Low
Risk p-Value High

Risk
Low
Risk p-Value

Gender 0.76348 0.43206 0.63174
Female 57 60 28 33 5 10
Male 123 121 88 82 24 77
Age 0.72431 0.46656 0.20261

≤65 year 113 111 42 47 28 70
>65 year 66 70 74 68 1 12
unknown 1 0 0 0 0 0

Grade 0.00845 0.01173 -
G1 and G2 100 124 69 84 29 86
G3 and G4 78 54 38 21 0 0
unknown 2 3 9 10 0 1

AFP 0.97195 - 0.45128
≤200 91 105 - - 14 49
>200 35 40 - - 15 38

unknown 54 36 - - 0 0
vascular_tumor 0.73062 - 0.18493

Yes 51 54 - - 21 51
no 93 107 - - 8 36

unknown 36 20 - - - -
Stage 0.00136 0.11724 0.44054

I and II 109 140 65 76 24 66
III and IV 56 32 51 39 5 21
unknown 15 9 0 0 0 0
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Figure 4. Validation of the four-gene signature using the ICGC cohort data and our in-house cohort
data (named as an in-house cohort). (A–F) and (G–L) are the analyses of the ICGC cohort and our
in-house cohort data, respectively. (A) Risk curves, showing the distribution of sample risk values
in the ICGC cohort. (B) PCA analysis of high- and low-risk groups in the ICGC cohort. (C) t-SNE
analysis of two groups performed in the ICGC cohort. (D) Survival status vs. time in the ICGC cohort.
(E) K–M curve for the two groups of patients in the ICGC cohort. (F) Time-dependent ROC curve
of risk score prognostic performance in the ICGC cohort. (G) Risk curves, showing the distribution
of sample risk values in the in-house cohort. (H) PCA analysis of the high- and low-risk groups in
the in-house cohort. (I) t-SNE analysis of two groups performed in the in-house cohort. (J) Survival
status vs. time in the in-house cohort. (K) K–M curve for two groups of patients in the in-house
cohort. (L) Time-dependent ROC curve of risk score prognostic performance in the in-house cohort.

In addition, the prognostic potential of this signature in the recurrent TCGA and
in-house cohorts was also studied, and the results showed that the high-risk group had
worse recurrence-free survival (Supplementary Figure S3).

3.3. Prognostic Potential of the Constructed Four-Gene Signature

Cox regression analysis was performed using the univariate and multivariate analysis
of several clinical traits, which were statistically analyzed. The risk scores in the TCGA
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cohort were correlated with the OS (Figure 5A); therefore, the risk scores were used as an
independent prognostic predictor of OS. At the same time, these results were validated
using the data obtained from the ICGC cohort and our in-house cohort (Figure 5A,B).
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cohort, and (C) in-house cohort data.

3.4. Functional Enrichment Analysis in Three Cohorts

A total of 268 common DEGs were obtained in the high- and low-risk groups in
all three cohorts (Figure 6A, p < 0.05, fold-change > 1.2 for all genes). GO enrichment
analysis was performed using these DEGs to study their role in biological functions and
pathways related to the risk score. Surprisingly, these DEGs were significantly enriched in
the biological processes, such as nuclear division and organelle division, which are related
to cell division. At the same time, the molecular functions of microtubule binding and
tubulin binding were also significantly enriched. Moreover, in terms of cellular localization,
the DEGs were mainly concentrated in the chromosomal region and spindle (Figure 6B).
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3.5. Enrichment Score of Immune Cells Infiltration in Three Cohorts

ssGSEA was used to obtain and compare the risk scores for different immune cells,
immune functions, and pathways for the identification of correlations between risk scores
and immune status.

The comparison of scores between the two groups showed that the score of DC,
macrophages, Treg cells, Th2 cells, MHCclass I molecules, and APC co-stimulation were
significantly enriched in the high-risk group, while those of the mast cells, cytolytic activity,
and type II IFN response significantly decreased (p < 0.05, Figure 7A,D). This enrichment
of Tregs and macrophages in the patients in the high-risk group was validated in the data
obtained from the ICGC cohort and our in-house cohort (Figure 7B,C,E,F).

3.6. Immunosuppressive T cell Related to Cuproptosis Based on scRNA-seq

In order to further explore the correlations between cuproptosis and T cells in HCC, the
scRNA-seq data of T cells in HCC were analyzed. In the UMAP, we found a good overlap
between the different samples suggesting that there was no significant batch effect for these
data (Supplementary Figure S4). The six subtypes of immune cells, including conventional
CD4 T cells (CD4Tconv), CD8 T cells (CD8T), exhausted CD8 T cells (CD8Tex), proliferating
T cells (Tprolif), regulatory T cells (Treg), and other cells, were identified and visualized
(Figure 8A). Furthermore, the results showed that the E2F targets and MYC targets V1
pathways were significantly activated in the Tprolif cells (Figure 8B,C). Then, the scores
of the six T-cell subtypes were identified using the nine prognostic-related CRGs-DEGs,
among which, the Tprolif cells scored the highest, followed by Treg (Figure 8D). More inter-
estingly, the Tprolif cells expressed the CD4+ T cell markers (CD4), CD8+ T cell markers
(CD8A), and a small amount of Treg cell markers (FOXP3 and LAYN) and significantly
expressed the immunosuppression markers (HAVCR2, CTLA4, LAG3, TIGIT, and PDCD1)
(Figure 8E). This suggested that the poor prognosis of cuproptosis-related HCC patients
might be correlated with the expression of these immunosuppression genes in the enriched
Tprolif cells.
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** p < 0.01; *** p < 0.001.
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Figure 8. Tprolif cells associated with cuproptosis in the HCC were obtained based on scRNA-seq.
(A) UMAP diagram shows the T cell subtypes of the patients. Each cluster is color-coded according
to the cell type, and the cluster annotations are shown in the figure. (B,C) E2F and MYC target V1
pathways are significantly enriched in the Tprolif subgroup based on the hallmark gene set using the
GSVA.(D) Scores of CRGs in T cell subsets. (E) Violin diagram shows the expression characteristics of
12 marker genes in T cell subtypes.
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3.7. Validation of Cuproptosis-Related Genes and Immune Cells

In order to further verify these results, qRT-PCR was performed to compare HCC and
normal hepatocyte cell lines. The results indicated that the expression level of CDKN2A was
high in Hep3B and HCC97-L cells and low in the HCCLM3 and SNU-449 as compared to
the normal hepatocyte MIHA (Figure 9A). At the protein level, it was found that CDKN2A
was highly expressed in the HCC tumor tissues as compared to the non-tumor tissues
using two-color immunofluorescence (Figure 9B). This result was verified using the Human
Protein Atlas (HPA) portal (https://www.proteinatlas.org/, accessed on 10 October 2022)
(Figure 9C). In addition, the immune cells of the two groups with high and low CRG scores
were also compared (each group, n = 3). The results showed that Treg and macrophages
were significantly enriched in the high-risk group as compared to the low-risk group. These
results suggested that the data analysis and some valuable findings were strongly reliable.
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Figure 9. Validation of the CRGs and immune cells. (A) The expression of CDKN2A between MIHA
as a normal hepatocyte line and 6 HCC cell lines was analyzed by qRT-PCR. (B) Two-color im-
munofluorescence results showed that CDKN2A was highly expressed in tumor tissues (upper panel)
compared with non-tumor tissues (lower panel). (C) immunohistochemistry in the HPA showed
a difference in CDKN2A expression in HCC (upper panel) and non-cancer issues (lower panel).
(D) Multicolor immunofluorescence confirmed that the concentration of Treg and macrophages with
a high-risk group (left panel) was higher than that in the low-risk group (right panel).

https://www.proteinatlas.org/
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4. Discussion

Cuproptosis is a new form of cell death and has potential research potential. Therefore,
in this study, the differential expression of CRGs in HCC tumor tissues and non-tumor
tissues was identified, and the correlations between these DEGs and prognosis were
also obtained. Finally, a prognostic model, integrating the four CRGs, was established.
Meanwhile, the patients were divided into high-risk and low-risk groups based on the
scores of the model. The results showed that the Tregs and macrophages were significantly
enriched in the high-risk group. These results were validated using the data obtained
from the ICGC cohort and our in-house cohort. Further analysis of the scRNA-seq data
revealed that cuproptosis might be correlated with the Tprolif cells, having high expression
of immunosuppression markers genes. These conclusions were verified using qRT-PC,
multiplex immunofluorescence staining, and IHC.

Currently, different prognosis models of HCC based on a variety of cell death mecha-
nisms, such as ferroptosis or pyroptosis, have been developed [14,15]. Similarly, studies
have also demonstrated the potential of CRGs in constructing prognostic models in a vari-
ety of tumors, such as clear cell renal cell carcinoma [16]. Therefore, the predictive potential
of CRGs in HCC was studied in this study. Surprisingly, 84.2% of the CRGs were DEGs
between the HCC tumor and non-tumor tissues. Moreover, based on the phenomenon
that half of the CRGs were related to OS, this study suggested the possible impact of
cuproptosis on HCC and the possibility of using these CRGs to establish a prognosis model.
In particular, the difference analysis showed that 8 of the 9 genes were upregulated in
tumor tissues, while FNE2L2 was downregulated in tumor tissues. NFE2L2 is considered a
tumor suppressor gene [17]. It can inhibit lipogenesis, support β-oxidation of fatty acids,
facilitate flux through the pentose phosphate pathway, and increase NADPH regeneration
and purine biosynthesis [18]. This might be the reason for the differential expression of
NFE2L2 in the heatmap. This study constructed an HCC prognosis model based on four
CRGs, including CDKN2A, GLS, lipt1, and DLAT. CDKN2A is mainly related to the cell
cycle and is associated with poor prognosis in multiple cancers [19]. The homozygous
deletion of CDKN2A on chromosome 9 was confirmed to be associated with HCC [20].
Glutamase is a key enzyme in glutamine metabolism, converts glutamine into glutamate,
and breaks down and produces alpha-ketoglutaric acid, which is then metabolized into the
TCA cycle to provide energy [21]. At the same time, glutamine is also involved in the syn-
thesis of glutathione, a natural copper partner in cells; its deletion can cause cuproptosis [4].
Numerous studies showed that GLS was a key gene for the treatment of HCC [22,23]. Lipt1
is a gene involved in the lipoic acid pathway that combines fatty acylation and copper
components in the TCA cycle in mitochondria. It is a key cell-death medium that is induced
by copper ionophores [4]. DLAT is an enzyme component of the pyruvate dehydrogenase
(PDH) complex, which is a target of acylated proteins [4]. PDH can inhibit the TCA cycle [4].
At the same time, the combination of PDH and copper in the acylated TCA cycle might
cause DLAT acylation-dependent oligomerization, resulting in cuproptosis [4]. Collectively,
these findings suggested that CRGs might affect the development and prognosis of HCC,
thereby demonstrating the predictive potential of the four-gene signature model.

In addition, the functional enrichment analysis showed that the CRGs were enriched
in pathways that were related to cell division. A previous study reported that copper could
participate in regulating cell growth and proliferation as a dynamic signal metal and metal
flow regulator, such as mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 [24].
This study suggested that the effects of cellular copper concentration on cell division and
proliferation might be a regulating mechanism of cuproptosis in HCC.

Currently, the combination of an immune checkpoint inhibitor (ICI) and vascular
endothelial growth factor (VEGF) inhibitor is used as a first-line treatment for advanced
liver cancer. The efficacy of ICI treatment depends on TIME; therefore, the TIME of HCC is
very important for its advanced treatment [25]. A previous study reported that ferroptosis
was associated with the TIME of HCC [14]. The patients with high scores in the ferroptosis
model showed poor anti-tumor immune function and a worse prognosis. The low-risk
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group had a better prognosis to predict the OS compared to that of the high-risk group. In all
three cohorts, the proportion of macrophages and Tregs in the high-risk group was higher as
compared to that in the low-risk group. The poor prognosis of HCC patients was correlated
with the increase in the proportion of Tregs or tumor-associated macrophages [26–28],
which further verified the predictive potential of this model. Moreover, the cytolytic
activity score of the low-risk group was high, and the HCCs with high cytolytic activity
were associated with enhanced immunity and better survival [29], which also verified the
accuracy of the model prediction results. It was noteworthy that the APC co-stimulatory
score and MHC class I score in the low-risk group were lower compared to those in the
high-risk group. This indicated that there were differences in the antigen presentation and
T cell activation processes between the high- and low-risk groups. This might be one of the
specific mechanisms of cuproptosis in HCC. Additionally, the scRNA-seq analysis of T cells
obtained from HCC patients in this study was also performed. The results showed that the
Tprolif and Treg cell subsets were the most related cells to cuproptosis. It was worth noting
that the Tprolif cells could highly express HAVCR2, CTLA4, LAG3, TIGIT, and PDCD1,
which are the markers related to immune exhaustion. Zhang et al. [26] also showed that
the same group of MKI67+ CD8+ T cells could transform the developmental direction of
depleted CD8+ T cells. In melanoma, a study [30] showed that this group of cells was
the most profound in the earlier stages of the dysfunctional program in the CD8+ T cells.
Moreover, this group of cells could also cause the dysfunction of CD8+ T cells, including
the depletion of T cells [30]. The lymphoid cells in ascites also contain these proliferative T
cells, which might be due to the migration of tumor tissue to the abdominal cavity, resulting
in potential immunosuppression of the tumor [26]. These studies showed that the HCC
patients with cuproptosis had a poor prognosis, which might be related to the expression
of these immunosuppressive genes in their enriched Tprolif cells. These findings provided
new insights into the effective combination of immunotherapy for HCC patients.

In the latest study [31], it was found that the expression levels of CRGs in tumor and
normal liver tissues were significantly different and were significantly correlated with the
poor survival rate of HCC. This indicated that CRGs might become an important marker
and new target for the early diagnosis, precise treatment, and prognostic evaluation of HCC.
At present, studies on cuproptosis in HCC have been carried out in succession. Irrespective
of the scoring model based on CRGs, cuproptosis-related lncRNAs, or cuproptosis-related
miRNAs in previous studies, they have obtained similar results as were obtained in the
current study: the patients with higher cuproptosis-related scores had lower OS [32–36].
In addition, the drug sensitivity analyses conducted by Lei Ding et al. [32] and Qiongyue
Zhang et al. [35] suggested that the sample with high cuproptosis-related scores had lower
IC50. This indicated that the sample with a high cuproptosis-related score might benefit
more from most types of chemotherapies. The advantage of this study was establishing
a four-genes-based model using an algorithm, which was more conducive to the clinical
study. In addition, this study not only used the public datasets to establish the model and
verify the model but also used the public datasets and our in-house cohort to verify the
results, which greatly improved the reliability of the data. At the same time, qRT-PCR
and multiple immunofluorescence experiments were performed to verify the results at the
mRNA and protein levels, which further enhanced the reliability of the study. Furthermore,
this study analyzed the immune infiltration related to cuproptosis at a single-cell level,
which was helpful to explain the mechanism of cuproptosis in HCC. Nevertheless, there
were certain limitations to this study as well. First, CRGs are continuously being explored;
therefore, only 19 genes were included, which might not be comprehensive enough. Second,
only one marker was considered for the establishment of the prognostic model; therefore,
many important prognostic genes of HCC might not be included. Finally, the correlation
between risk score and immune activity was not experimentally addressed before and
requires further studies.
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5. Conclusions

In conclusion, a new HCC prediction model, containing four CRGs, was constructed
based on cuproptosis. The model showed an independent association with OS in all three
cohorts, thereby showing the potential to predict the prognosis of HCC. Moreover, this
study also revealed that the cuproptosis-related HCC was significantly enriched in the
Treg cells and macrophages and was closely related to the depletion of proliferative T cells,
thereby providing a basis for the combined immunotherapy of HCC.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14225713/s1, Figure S1: Survival analysis of nine cuproptosis-
related prognostic genes obtained by univariate Cox regression analysis. The patients with high
expression of ATP7A, CDKN2A, DLAT, GLS, LIPT1, LIPT2, MTF1 or PDHA1 had lower OS (P < 0.05);
Figure S2: The relationship between clinicopathological characteristics and four genes in TCGA
cohort. CDKN2A (A–F), GLS (G–L), LITP1 (M–R), DLAT (S–X); Figure S3: Four-gene signature model
predicts recurrence-free survival in TCGA cohort (A) and in-house cohort data. Time-dependent ROC
curves (B) and (D) of risk score prognostic performance; Figure S4: (A) UMAP plot showing immune
cell distribution from 6 samples based on scRNA-seq. (B) UMAP plot showing the distribution of the
six cell types of each sample for 6 samples.
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