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Simple Summary: Colorectal cancer (CRC) is the third most common and second most deadly
type of cancer worldwide. The early detection and accurate characterization of colorectal cancer
are associated with improved outcomes. With increasing emphasis on early cancer detection and
the use of minimally invasive microsurgical techniques, the development of accurate diagnostic
technologies to identify tumors and define their boundaries in real time becomes of paramount
importance. The current research identifies potential cancer biomarkers and associated light-based
instrument specifications to manufacture next-generation medical devices for CRC detection. These
specifications have been chosen so that miniaturized instruments can be integrated into colonoscopes.
Cancer biomarkers are listed to enable the use of complementary biochemical methods to analyze
biological tissues. The impact of using next-generation colonoscopes in reducing cancer deaths can
be assessed once medical devices are manufactured.

Abstract: Colorectal cancer (CRC) is the third most common and second most deadly type of cancer
worldwide. Early detection not only reduces mortality but also improves patient prognosis by
allowing the use of minimally invasive techniques to remove cancer while avoiding major surgery.
Expanding the use of microsurgical techniques requires accurate diagnosis and delineation of the
tumor margins in order to allow complete excision of cancer. We have used diffuse reflectance
spectroscopy (DRS) to identify the main optical CRC biomarkers and to optimize parameters for the
integration of such technologies into medical devices. A total number of 2889 diffuse reflectance
spectra were collected in ex vivo specimens from 47 patients. Short source-detector distance (SDD)
and long-SDD fiber-optic probes were employed to measure tissue layers from 0.5 to 1 mm and from
0.5 to 1.9 mm deep, respectively. The most important biomolecules contributing to differentiating
DRS between tissue types were oxy- and deoxy-hemoglobin (Hb and HbO2), followed by water
and lipid. Accurate tissue classification and potential DRS device miniaturization using Hb, HbO2,
lipid and water data were achieved particularly well within the wavelength ranges 350–590 nm
and 600–1230 nm for the short-SDD probe, and 380–400 nm, 420–610 nm, and 650–950 nm for the
long-SDD probe.

Keywords: diffuse reflectance spectroscopy; colorectal cancer; optical spectroscopy; optical
diagnostics; colonoscopy; surgical guidance; metabolomics; biomedical optics; biophotonics;
multivariate analysis; chemometrics

1. Introduction

Colorectal cancer (CRC) is the third most common type of cancer worldwide, repre-
senting 11.3% (1.85 million) of diagnosed cancer cases and resulting in 10.2% (0.88 million)
of cancer-related deaths in 2020 [1,2]. The large mortality caused by CRC can be attributed
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to late-stage detection leading to poor patient prognosis. This, along with the significant
morbidity and cost associated with standard surgery and associated adjuvant treatment
modalities has led to the widespread adoption of screening methods to detect cancer at an
early stage [3]. This is paralleled by a proliferation of minimally invasive methods such as
Endoscopic Mucosal Resection (EMR), Endoscopic Submucosal Dissection (ESD), Transanal
endoscopic microsurgery (TEM) and Transanal Minimally Invasive Surgery (TAMIS) to
deal with these early lesions [4]. Currently, standard CRC screening tests such as the
detection of blood in the stool have high false positive rates and accurate CRC detection
is achieved by colonoscopy followed by relevant biopsies. However, screening and early
diagnostic are limited by suboptimal compliance and lack of accessibility. With this in mind,
global initiatives to develop early CRC detection methods have focused on CRC biomarkers
and monitoring biochemical changes in tissues and biofluids. The high specificity of such
biomarker detection methods is associated with their ability to detect low concentrations
of specific molecules [5]. In tissue, structural changes are related to molecular concentra-
tions in the millimolar range, whereas metabolic, immunologic and genetic features are
associated with micromolar, nanomolar, and picomolar ranges, respectively [5]. Metabolic
markers (e.g., enzymes, pO2, pH, and minerals) and immunologic markers (e.g., growth
factors, hormones and cytokines) can be directly expressed in tissue at sufficient levels
for real-time and non-invasive detection by optical techniques. Therefore, in vivo optical
detection of tissue metabolic biomarkers is attractive to identify and localize precisely
the tumor area, for example at colonoscopy, with no requirements for sample prepara-
tion for analysis of tissue sections, biofluids, and other samples used for cancer screening
purposes. However, optical techniques can only be integrated into medical devices (e.g.,
colonoscopes) if technology allows for miniaturization and cost-effectiveness. One of the
main cost-effective and miniaturizable techniques capable of probing tissue endogenous
biomolecules is diffuse reflectance spectroscopy (DRS), which includes elastic scattering
spectroscopy and near-infrared (NIR) spectroscopy for point measurements and can be
translated to imaging by using hyperspectral imaging techniques.

DRS is an optical technique capable of tissue identification based on its biochemical
composition and microstructure [6–10]. DRS works by sending light to the interrogated
biological tissue and detecting the diffusively reflected light (i.e., the light that emerges from
the tissue surface after being scattered inside it). Since the detected light traveled inside
the tissue, it contains information about the tissue’s optical properties such as scattering
and absorption [11–18]. Light scattering is dependent on the refractive index mismatches
of tissue including sets of molecules (e.g., collagen fibers and fibrils), organelles (e.g.,
mitochondria), cell membranes, and inhomogeneity of the intracellular and extracellular
environment [10,19–21]. Therefore, scattering is associated with the tissue microstructure.
On the other hand, absorption is associated with the tissue biomolecular composition,
as its absorption bands are dependent on the molecular energy levels (including elec-
tronic [10,22–45], vibrational [46–56] and rotational levels [57]). Tissue absorption is related
to biological chromophores (or absorbing biomolecules), which were previously investi-
gated in a number of clinical and preclinical studies [58]. These chromophores include
β-carotene, bile, bilirubin, ceroid, collagen, deoxyhemoglobin (Hb), oxyhemoglobin (HbO2),
methemoglobin (MetHb), water, lipid, and melanin [58]. The chromophores probed with
DRS are typically present in biomolecule concentrations from micromolar to nanomolar [5].
These concentrations describe metabolic and immunologic features of contrast between
normal and cancer tissues [5].

Previous DRS studies have investigated the average concentration of specific tissue
biomolecules (i.e., chromophores) based on spectral fitting models of diffuse reflectance, dif-
fuse transmittance and fluorescence [24,26,32,58–67]. These concentrations were analyzed
in clinical breast cancer studies about tumor vascularity [68], blood oxygenation [69], quan-
titative chemical information of oxy- and deoxyhemoglobin (HbO2 and Hb, respectively),
water, and lipids [70–72]. Bile, blood, water and lipid concentrations were also reported
for clinical studies on liver cancer [61,73]. In addition, previous NIR spectroscopy studies
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on brain, muscle, mammary, lung and prostate cancers of rats and mice reported altered
vasculature, oxygen dynamics and HbO2, Hb, water, lipid, protein and DNA content in
tumor tissues [74–82]. In terms of CRC detection, DRS studies reported that hemoglobin
concentration and blood oxygenation can be used to differentiate between normal and
tumor tissues [83–87]. Indices of statistical differences in biomolecule concentrations have
been reported for application in colorectal cancer surgery [88]. In addition, DRS was used
together with machine learning methods for direct tissue classification. These studies
include those distinguishing tumor tissue from healthy surrounding tissues in the oral
cavity (head and neck cancer) [89], breast [90,91], lung [92], and liver [93,94]. Recent studies
have investigated the detection of colorectal cancer during surgery [88,95–101]. In terms of
primary colorectal cancer, DRS and related optical spectroscopic techniques have mainly
been used to guide colonoscopy by distinguishing the normal mucosa and malignant tissue
inside the colon (luminal side). However, DRS studies analyzing multiple chromophores in
an extended NIR wavelength range into the short wavelength infrared (SWIR) region are
rare. To the best of our knowledge, this is the first CRC study optimizing wavelength ranges
of reflectance spectra based on the combination between statistical tests and machine learn-
ing methods. In addition, the extended wavelength range between 350 and 1920 nm has
been probed and our analysis objectively determined the biomolecules most important for
tissue classification based on their depth-dependent absorption and scattering. As a final
novel point of our study, our objective analysis does not need any homogeneous-medium
assumptions such as those required by reflectance spectral fitting models to work.

In this study, we analyzed the spectral regions of best diagnostic potential and the
biochemical sources of the classification between normal mucosa and tumor tissues based
on the DRS spectral machine-learning features associated with chromophore absorption.
The importance of these sources for such classification was determined by (1) assessing
the amplitude of partial least-squares components (PLSCs) at relevant wavelength ranges
of tissue scattering and absorption, (2) comparing the shape of the PLSC loading curves
and chromophore absorption spectra, and (3) evaluating the classification performance
(sensitivity, specificity, accuracy and area under the receiver operating characteristic curve)
for wavelength ranges of statistically significant difference at a significance level of p = 0.001
of t-test after ensuring normality by using Anderson-Darling and Lilliefors tests. Our
study evaluated the tissue classification in both superficial and deeper layers by using
probes with short and long source-to-detector distances (SDD) of 630 µm and 2500 µm,
respectively. Biomolecules were probed in a wide wavelength range from 350 nm to
1920 nm, which allowed for the collection of tissue structural and biomolecular signals at
different depths. Our DRS spectral dataset contained 2889 spectra of freshly excised ex
vivo tissues of 47 patients, which was used for robust and reliable analysis of the tissue
biochemistry.

2. Materials and Methods
2.1. Diffuse Reflectance Spectroscopy (DRS) Instrumentation

The DRS equipment used in this study, illustrated in Figure 1, consisted of a broadband
light source (HL-2000-HP, Ocean Optics, Edinburgh, United Kingdom) with emission
ranging from 350 nm to 2400 nm, a quadrifurcated fiber optic probe with source-to-detector
distance (SDD) of 630 µm (BF46LS01 1-to-4 Fan-Out Bundle, Thorlabs, Munich, Germany),
a trifurcated fiber optic probe with SDD of 2500 µm (Fibertech Optica, Anjou, Canada), a
visible/near-infrared (NIR) wavelength spectrometer (QE-Pro, Ocean Optics, Edinburgh,
UK) and a NIR/SWIR spectrometer (NIR-Quest, Ocean Optics, Edinburgh, UK). The fiber
optic probes were made of low-OH silica in order to allow better transmission at the SWIR
range. These probes were used for both illumination and collection of the reflected light
to be detected by the spectrometers. The visible/NIR spectrometer collected light in the
wavelength range between 350 nm and 1140 nm, while the NIR/SWIR spectrometer detects
light from 1090 nm to 1920 nm. The overlapping region was used to merge the spectra into
one broadband spectrum from 350 nm to 1920 nm. Once reflected light was detected by the
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spectrometers, the intensity readings were preprocessed in order to obtain the tissue DRS
spectra according to Section 2.5.
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Figure 1. Schematic drawing of our DRS system. The obtained broadband reflectance contains
information about a larger variety of tissue biomolecules compared to studies probing shorter
wavelength ranges [61,86,87,102–111]. Broadband reflectance spectra were obtained by merging the
visible and NIR spectra based on the overlapping spectral region between the two spectrometers
(from 1090 nm to 1140 nm). The spectral merging procedure is described in detail in [11,12] and in
Section 2.5. Briefly, in the overlapping spectral region, the two spectra are added with a smoothing
weighting.

2.2. Probing Superficial or Deeper Tissue Layers

By using the 630 µm SDD probe (630 µm fiber center-to-center distance, Figure 1),
our DRS system collected reflectance signals from 0.5 to 1 mm deep into tissue (between
450 and 1590 nm). In this case, the probe contained 600 µm core diameter fibers for both
illumination and collection and will be referred to as a short-SDD probe throughout this
article. In order to collect light from deeper tissue layers (between 0.5 and 1.9 mm deep
between 450 and 1590 nm), we used a 2500 µm SDD probe (long-SDD probe) containing
one source fiber in the center and 10 collection fibers surrounding it. Each 5 collection fibers
were positioned linearly in the proximal end of the fiber to match the slit of the visible/NIR
and NIR/SWIR spectrometers to optimize the light detection configuration. The source and
collection fibers of the long-SDD probe had 600 µm and 200 µm core diameters, respectively.

In order to estimate the chromophores and depth interrogated by each probe, we used a
spectral fitting algorithm to extract the optical properties from our DRS measurements. The
fitting was based on a look-up table of Monte Carlo simulations of the light propagation into
tissues and iteratively modifying chromophore concentrations and scattering properties.
As a probe depth estimate for each wavelength, we used the depth of the maximum fluence
value at the mean position between the source and detector. Then, the minimum and
maximum probed depth were reported in this study with the purpose of illustrating the
independence of the datasets acquired with each probe and its impact on the evaluation of
the biochemical composition of superficial or deeper tissue layers.

2.3. Optical Data Collection

Our data collection started with the background and reference measurements. Refer-
ence measurements were taken by positioning each probe on a specialized holder able to
keep a fixed distance between the fiber optic probes and our reflectance standard (FWS-
99-01c, Avian Technologies LLC, New London, CT, USA). Since the holder was closed to
avoid interference from ambient light, it was used to take both reference and background
measurements. Probe contamination was avoided by covering our probes with transparent
polyvinyl chloride (PVC) film during measurements. After each set of measurements, the
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plastic film was removed and the probes were cleaned with ethanol 70%. The same probes
were used for every clinical measurement throughout this study. Every measurement
was performed by positioning the probe as close to a perpendicular angle to the tissue
surface as possible. Measurements of both probes were performed at similar locations
within millimeters of each other. Briefly, we positioned the sample on a board with a
coordinate system, which allowed us to come back to a similar position for both probes.
the experimental procedure is described in detail in [11,12]. After completing the data
collection, the data were safely stored for subsequent analysis. In this study, we collected
a total of 1363 spectra for the short SDD probe (630 µm SDD) and 1526 for the long SDD
probe (2500 µm SDD). Each spectrum is an average of a triplicate measurement in the same
tissue location.

2.4. Clinical Protocol and Research Ethics

Our study included 47 patients undergoing bowel resection at the Mercy University
Hospital (Cork, Ireland). Patient demographics and tumor characteristics are shown
in Table 1. The study was approved by the Clinical Research Ethics Committee of the
University College Cork. Our procedure consisted of collecting around 15 measurements
of ex vivo mucosal tissues and 15 tumor tissues on the specimen after surgical resection.
Measurements were taken from a typical area of 100 cm2. After a specimen was resected,
the colonic lumen was exposed. The specimen was rinsed with water and cleaned afterward
in order to remove the excess blood and any remaining feces from the mucosal surface.
Then, the mucosa and tumor regions were identified by experienced surgeons. The time
between the specimen removal and the start of the data collection was on average 40 min.
All data collection was performed within an average time of 1 h after surgical resection.
Physiological conditions were kept as much as possible throughout the data collection by
keeping the tissue moist with a wet wipe. In order to correlate spectral readings with the
tissues measured, the coordinate of every reading was registered by using a picture of the
specimen over a grid. The boundary of each tissue type was determined by experienced
surgeons. After the acquisition of all-optical DRS data, the specimen was returned to the
Pathology Department for processing and analysis according to standard protocols. The
ground truth of cancer tissue types was obtained by histopathology analysis.

Table 1. Patient demographics, cancer types and tumor staging classification.

Patient and Cancer Characteristics Number of Patients/Tumors

Total 47

Gender
Male 32

Female 15

Age (years)

Median 69
Minimum 40
Maximum 89

Interquartile range 13.5

Cancer types Adenocarcinoma 47

T (tumor) stage

pT1 5
pT2 7
pT3 26
pT4 9

N (lymph node) stage

N0 19
N1a 9
N1b 12
N1c 1
N2 1
N2a 4
N2b 1
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2.5. Data Preprocessing and Feature Selection

First, both visible and NIR tissue intensity spectra had their background subtracted
and the resulting signal was divided by the reflected intensity of the reference (reflectance
standard) according to the expression:

Re f lectance(λ) =
1

Re f erence re f lectivity
× Tissue re f lected intensity− Background intensity

Re f erence re f lected intensity− Background intensity
(1)

Next, the broadband reflectance spectra were obtained by merging the visible and
NIR spectra based on the overlapping spectral region between the two spectrometers (from
1090 nm to 1140 nm). The merging was performed by interpolating the overlapping region
of the two spectrometers and performing the following weighted sum:

Re f lectance(λ) =
100

∑
i = 0

((100− i)× re f lectance o f VIS spectrometer + i× re f lectance o f NIR spectrometer)
100

(2)

The result is a smooth reflectance curve where the reflectance measured by each
spectrometer has a higher contribution at their respective wavelength regions of higher
sensitivity. As preparation for classification tests based on k-nearest neighbors (which may
be prone to overfitting when using numerous variables in comparison to the sample size),
feature extraction was performed by using partial-least squares (PLS).

PLS is a supervised method of orthogonal transformation used for linear dimension
reduction in a given dataset. PLS is used to create a new set of linearly independent vari-
ables (partial least squares components or PLSCs) which maximize the covariance between
the predictors (reflectance values for each wavelength) and responses (tissue types) [112].
As PLSCs are weighted sums of the original variables (or predictors), the combination of
weights of the first PLSCs shows the wavelength regions which are responsible for most of
the discrimination between two classes (tissue types). More details about the calculation of
PLSCs and the importance of predictors for better tissue discrimination can be accessed
from the publications of Brereton et al. [113] and Gromski et al. [114], respectively. We also
emphasize that our PLSCs are the same as the principal components (PCs) of PLS.

In this study, the bias due to the incomparable scales of observations (reflectance
values) at specific variables (reflectance at particular wavelengths) was avoided by scal-
ing/normalizing observations between −1 and +1 for each wavelength. By compensating
for the difference in scale on reflectance values, this scaling ensures the feature extraction
equally takes into account the contributions of each wavelength on the new set of variables
based on the PLS maximization of the discrimination between the two tissue types. This
contribution is translated into the weights (loadings) of each wavelength on the variables
selected to develop a tissue classification model. Finally, data preprocessing and analysis
were performed using home-made MATLAB routines (MathWorks Inc., Natick, MA, USA).

2.6. Extraction of Spectral Features

The spectral features for differentiation between normal mucosa and cancer tissues
were extracted by using the first four PLSCs, which were selected to avoid overfitting by
stopping to include new PLSCs when accuracy increments were lower than approximately
2%. These features were interpreted based on the amplitude and spectral shape of PLSC
loadings. The amplitude was used to determine the contribution of specific wavelength
ranges to tissue classification, which were associated with the main absorbing ranges of
typical tissue biomolecules (or chromophores). The spectral shape was associated with
characteristics of the chromophore absorption spectra. More details of the interpretation of
the spectral features are described in Section 4.2.

In order to provide information about which wavelength ranges were related to
most of the tissue biomarkers associated with cancer detection, delineation and potential
carcinogenesis, we evaluated the tissue classification performance parameters (sensitivity,



Cancers 2022, 14, 5715 7 of 26

specificity, accuracy and area under the receiver operating characteristic curve; AUC)
achieved by using wavelength ranges selected via statistically significant difference verified
by a student t-test. First, normal distributions of DRS readings at each wavelength and
tissue type were verified through Anderson-Darling and Lilliefors normality tests. Next, a
student t-test was applied to the same distributions. Wavelength ranges leading to p < 0.001
were selected for building our tissue classification model. This model was built by applying
PLS to the data on the relevant wavelength ranges and selecting the four highest-order
PLSCs to be used with a weighted KNN classification algorithm. The weighted KNN
algorithm used 10 neighbors and squared inverse distance between observations.

Based on the results of the KNN classification, its performance was evaluated by using
two-fold cross-validation for 20 iterations. Each iteration consists of randomly dividing
the dataset into training and test sets of equal size. The classification model was generated
by using the training set and, then, applied for tissue classification on the test set. The
process is repeated with the first test set used as the training set and vice versa. At the end
of this process, the output was the mean of each classification performance parameter. The
process is repeated 20 times. Then, the mean and standard deviation of the output of the
20 iterations were calculated. The reproducibility of these parameters was evaluated by the
obtained standard deviations.

A flowchart summarizing the spectral analysis is shown in Figure 2.
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3. Results
3.1. Tissue Classification Features Based on PLSC Amplitudes

Our first analysis for the selection of the features relevant to tissue classification was
based on the PLSC loadings. The interpretation of the PLSC loadings is described in
Section 4.2. Figure 3 illustrates that the PLSC1 loadings of the short-SDD probe exhibit the
highest and second-highest absolute amplitudes in the range from 600 nm to 1350 nm and
from 350 nm to 600 nm, respectively. A similar behavior is observed on the amplitudes of
the PLSC1 of the long-SDD probe, whose first, second and third highest absolute amplitudes
occur between 450 nm and 600 nm, between 650 nm and 1350 nm, and between 1350 nm and
1900 nm, respectively. These amplitudes suggest that most of the differentiation between
mucosal and cancerous tissues may originate from the absorption and scattering processes
below 1350 nm. Processes at the visible wavelength range 350–600 nm are predominantly
related to blood absorption, and information regarding the near-infrared range 700–1350
nm could be associated with relatively lower absorption of oxyhemoglobin (HbO2) and
deoxyhemoglobin (Hb), lipid and water at slightly deeper tissue layers.
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Figure 3. PLS components (PLSCs) for the classification between cancerous and mucosal/submucosal
tissues. (A) Raw and (B) absolute values of PLSC loadings for the short-SDD probe and (C) Raw and
(D) absolute values of PLSC loadings for the long-SDD probe.

On the PLSC2, PLSC3 and PLSC4 of the short-SDD probe, overall higher absolute am-
plitudes can be found for wavelengths below 700 nm and above 1350 nm, whereas the same
components for the long-SDD probe have amplitude loadings more uniformly distributed
over the full spectral window between 350 nm and 1900 nm. Particularly for PLSC4 of the
long-SDD probe, the amplitude is higher for wavelengths above 1350 nm. While the high
amplitudes below 700 nm for the short-SDD probe reinforce potentially relevant features of
tumor detection at the UV-visible region (dominated by blood absorption), tissue classifica-
tion using other wavelengths is unclear from only absolute PLS-loading amplitudes. With
this in mind, we analyzed the shape of the PLSCs based on the wavelength regions and
spectral shape of the chromophore absorption spectra, as shown in Section 3.3. On the other
hand, this analysis is subjective and does not allow us to define specific wavelength ranges,
as these would depend on subjective thresholds of the amplitude of PLSC loadings and the
choice of how many PLSCs to be considered for thresholding. In addition, although PLSC1
is more important for tissue classification, the weight of each PLSC on the importance of
wavelength ranges is unclear.
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3.2. Wavelength Selection and Tissue Classification

Since analyzing the PLSC loadings may lead to subjective observations, we performed
a more objective analysis by selecting wavelengths through statistically significant differ-
ences in the t-test (p < 0.001). In order to ensure that t-test could be applied to our dataset,
Anderson-Darling and Lilliefors normality tests were applied to the data of each individual
wavelength. Normal distributions were identified for all the wavelengths of both probes,
except for those between 536 nm and 545 nm for the short-SDD probe. However, we con-
firmed statistically significant difference (p < 0.001) is obtained at those wavelengths upon
application of the Wilcoxon rank-sum test (data not shown) and obtained no difference in
tissue classification by including or excluding this wavelength range (Table 2).

Table 2. Tissue classification performance * of PLS-KNN for the short-SDD probe using wavelengths
selected by t-test (p < 0.001). Blue fields represent the performance using visible/NIR light detec-
tion available in Si-detector-based spectrometers, orange fields cover the performance using NIR
wavelengths detected by InGaAs-based spectrometers and green fields show the performance of both
types of wavelength range combined. Means and standard deviations were taken from the outcomes
of 20 iterations of 2-fold cross-validation.

Wavelengths Sensitivity Specificity Accuracy AUC
350–540 nm,
540–590 nm (78.2 ± 0.9)% (75.8 ± 1.6)% (77.1 ± 1.0)% (0.854 ± 0.007)

350–590 nm (78.4 ± 1.1)% (74.9 ± 1.4)% (76.7 ± 0.8)% (0.85 ± 0.005)
600–1230 nm (79.8 ± 0.9)% (84.4 ± 1.4)% (81.9 ± 0.8)% (0.894 ± 0.005)
350–590 nm,
600–1230 nm (78.6 ± 0.7)% (75.4 ± 1.0)% (77.1 ± 0.7)% (0.854 ± 0.006)

1530–1700 nm (70.9 ± 1.1)% (67.0 ± 1.6)% (69.1 ± 1.0)% (0.771 ± 0.009)
1730–1850 nm (69.1 ± 1.0)% (69.5 ± 1.3)% (69.3 ± 0.9)% (0.765 ± 0.007)
1530–1700 nm,
1730–1850 nm (76.4 ± 0.9)% (77.7 ± 1.1)% (77.0 ± 0.7)% (0.845 ± 0.006)

350–590 nm,
600–1230 nm,

1530–1700 nm,
1730–1850 nm

(85.5 ± 0.8)% (84.0 ± 1.0)% (84.8 ± 0.7)% (0.919 ± 0.004)

350–1920 nm (85.6 ± 0.9)% (80.4 ± 1.1)% (83.2 ± 0.8)% (0.905 ± 0.005)
* Results corresponding to 2-fold cross-validation from 20 iterations of random sampling of training and test
sets. Our validation provides a sufficiently robust estimation of classification performance metrics since the
standard deviation of measurements within each individual patient is less than twice the standard deviation of all
measurements of all patients. In addition, no clear trend among specific patients has been identified in our dataset
of 47 patients. A typical measurement means and standard deviation for one patient can be found in Figure S1 of
the Supplementary Material.

After confirmation of normality for most of the wavelengths, we applied a t-test for
each wavelength. We used the wavelength ranges where a statistically significant difference
(p < 0.001) was obtained (Figure 4) to select bands relevant for tissue classification.

By using the wavelength ranges of Figure 4 as well as combinations of those ranges
for UV-visible or NIR, tissue PLS-KNN classification models were built and compared with
the model using all the wavelengths. The classification performance of each model can be
found in Tables 2 and 3.



Cancers 2022, 14, 5715 10 of 26

Cancers 2022, 14, x FOR PEER REVIEW 10 of 27 
 

 

Table 2. Tissue classification performance* of PLS-KNN for the short-SDD probe using wavelengths 

selected by t-test (p < 0.001). Blue fields represent the performance using visible/NIR light detection 

available in Si-detector-based spectrometers, orange fields cover the performance using NIR wave-

lengths detected by InGaAs-based spectrometers and green fields show the performance of both 

types of wavelength range combined. Means and standard deviations were taken from the out-

comes of 20 iterations of 2-fold cross-validation. 

Wavelengths Sensitivity Specificity Accuracy AUC 

350–540 nm, 540–590 nm (78.2 ± 0.9)% (75.8 ± 1.6)% (77.1 ± 1.0)% (0.854 ± 0.007) 

350–590 nm (78.4 ± 1.1)% (74.9 ± 1.4)% (76.7 ± 0.8)% (0.85 ± 0.005) 

600–1230 nm (79.8 ± 0.9)% (84.4 ± 1.4)% (81.9 ± 0.8)% (0.894 ± 0.005) 

350–590 nm, 600–1230 nm (78.6 ± 0.7)% (75.4 ± 1.0)% (77.1 ± 0.7)% (0.854 ± 0.006) 

1530–1700 nm (70.9 ± 1.1)% (67.0 ± 1.6)% (69.1 ± 1.0)% (0.771 ± 0.009) 

1730–1850 nm (69.1 ± 1.0)% (69.5 ± 1.3)% (69.3 ± 0.9)% (0.765 ± 0.007) 

1530–1700 nm, 1730–1850 nm (76.4 ± 0.9)% (77.7 ± 1.1)% (77.0 ± 0.7)% (0.845 ± 0.006) 

350–590 nm, 600–1230 nm,  

1530–1700 nm, 1730–1850 nm 
(85.5 ± 0.8)% (84.0 ± 1.0)% (84.8 ± 0.7)% (0.919 ± 0.004) 

350–1920 nm (85.6 ± 0.9)% (80.4 ± 1.1)% (83.2 ± 0.8)% (0.905 ± 0.005) 

* Results corresponding to 2-fold cross-validation from 20 iterations of random sampling of train-

ing and test sets. Our validation provides a sufficiently robust estimation of classification perfor-

mance metrics since the standard deviation of measurements within each individual patient is less 

than twice the standard deviation of all measurements of all patients. In addition, no clear trend 

among specific patients has been identified in our dataset of 47 patients. A typical measurement 

means and standard deviation for one patient can be found in Figure S1 of the Supplementary 

Material. 

After confirmation of normality for most of the wavelengths, we applied a t-test for 

each wavelength. We used the wavelength ranges where a statistically significant differ-

ence (p < 0.001) was obtained (Figure 4) to select bands relevant for tissue classification. 

 

Figure 4. Selected spectral regions (blue) where statistically significant differences (p < 0.001) are 

found for (A) short-SDD probe and (B) long-SDD probe. The red line indicates the 0.001 cutoff for 

the p-value. 

By using the wavelength ranges of Figure 4 as well as combinations of those ranges 

for UV-visible or NIR, tissue PLS-KNN classification models were built and compared 

with the model using all the wavelengths. The classification performance of each model 

can be found in Tables 2 and 3. 
  

Figure 4. Selected spectral regions (blue) where statistically significant differences (p < 0.001) are
found for (A) short-SDD probe and (B) long-SDD probe. The red line indicates the 0.001 cutoff for the
p-value.

Table 3. Tissue classification performance * of PLS-KNN for the long-SDD probe using wavelengths
selected by t-test (p < 0.001). Blue fields represent the performance using visible/NIR light detec-
tion available in Si-detector-based spectrometers, orange fields cover the performance using NIR
wavelengths detected by InGaAs-based spectrometers and green fields show the performance of both
types of wavelength range combined. Means and standard deviations were taken from the outcomes
of 20 iterations of 2-fold cross-validation.

Wavelengths Sensitivity Specificity Accuracy AUC
380–400 nm (86.0 ± 0.9)% (85.0 ± 0.9)% (85.6 ± 0.7)% (0.925 ± 0.004)
420–610 nm (85.6 ± 0.5)% (87.2 ± 0.6)% (86.3 ± 0.3)% (0.93 ± 0.004)
650–950 nm (89.6 ± 0.6)% (89.7 ± 1.0)% (89.7 ± 0.6)% (0.96 ± 0.004)
380–400 nm,
420–610 nm,
650–950 nm

(87.0 ± 0.8)% (85.5 ± 0.8)% (86.3 ± 0.7)% (0.931 ± 0.003)

1200–1220 nm (67.8 ± 1.2)% (63.3 ± 1.9)% (65.7 ± 1.1)% (0.707 ± 0.013)
1250–1380 nm (77.1 ± 1.0)% (80.7 ± 1.0)% (78.8 ± 0.7)% (0.87 ± 0.006)
1600–1690 nm (62.4 ± 1.1)% (58.3 ± 1.6)% (60.4 ± 0.8)% (0.654 ± 0.008)
1200–1220 nm,
1250–1380 nm,
1600–1690 nm

(77.6 ± 1.0)% (84.7 ± 1.1)% (81.0 ± 0.8)% (0.883 ± 0.006)

380–400 nm,
420–610 nm,
650–950 nm,

1200–1220 nm,
1250–1380 nm,
1600–1690 nm

(89.1 ± 0.7)% (90.2 ± 0.7)% (89.6 ± 0.5)% (0.957 ± 0.004)

350–1920 nm (89.3 ± 0.6)% (90.2 ± 0.7)% (89.7 ± 0.5)% (0.959 ± 0.003)
* Results corresponding to 2-fold cross-validation from 20 iterations of random sampling of training and test
sets. Our validation provides a sufficiently robust estimation of classification performance metrics since the
standard deviation of measurements within each individual patient is less than twice the standard deviation of all
measurements of all patients. In addition, no clear trend among specific patients has been identified in our dataset
of 47 patients. A typical measurement means and standard deviation for one patient can be found in Figure S1 of
the Supplementary Material.

Table 2 indicates that the spectral regions 600–1230 nm and 350–590 nm are the
first and second most important for tumor detection by using the short-SDD probe, as
accuracy is higher for these wavelengths. When tissue classification is performed only with
wavelengths of the first spectral region, the achieved sensitivity (79.8± 0.9)% and specificity
(84.4 ± 1.4)% are comparable to that obtained by using all the selected wavelength regions
combined. This result suggests that the difference between mucosa and tumors is generated
from the combination of absorption of Hb, HbO2, lipid and water as well as an optical
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scattering of tissue layers slightly below the tissue surface. In particular, Hb and HbO2 may
play a significant role in classification across the superficial tissue layers, as the spectral
regions leading to the highest discrimination cover all their absorption wavelengths.

In terms of the combination of wavelength ranges, the specificity achieved by combin-
ing the 350–590 nm and 600–1230 nm wavelength ranges was lower than using 600–1230 nm
alone. This lower classification performance may be associated with higher absorption
and scattering properties between 350 and 590 nm, which may lead to higher separation
between the centers of the mucosa and tumor distributions recognized by PLS, while less
contrast between the two distributions was achieved due to higher variation in reflectance
values. On the other hand, higher classification performance over all parameters was
obtained by combining the ranges 1530–1700 nm and 1730–1850 nm. Then, the information
provided by Hb and HbO2 in both wavelength ranges may be redundant, whereas signals
associated with water and lipid absorption may be complementary. The information from
all the selected wavelength ranges is also complementary, as their combination leads to
higher classification performance compared to all ranges tested in this study, including a
3.6% higher specificity than that obtained by using all wavelengths (350–1920 nm).

Table 3 shows that wavelength ranges below 950 nm led to higher sensitivity than
those above 1200 nm for the long-SDD probe. This indicates that Hb and HbO2 are the
chromophores that most contribute to accurate tumor detection in deeper tissue layers.
Similarly to the short-SDD probe, the highest classification performance was achieved
by using wavelengths on the optical window (in this case, 650–950 nm). Additionally,
since the performance obtained for the long-SDD probe is higher than that obtained by
using the short-SDD probe, signals of deep tissue layers may contain more relevant in-
formation for tissue discrimination, and probes could be designed in future studies to
obtain information from relevant tissue depths. The importance of deeper tissue layer
information is further reinforced by the higher classification performance achieved by using
the ultraviolet (380–400 nm) and visible (420–610 nm) wavelengths alone compared to the
best performance obtained by using the short-SDD probe.

Although the higher performance achieved by using the range 650–950 nm compared
to shorter wavelengths may be attributed to the contribution of water and lipid absorption
in the optical window, NIR wavelength ranges led to relatively low classification perfor-
mance. In this case, the most informative NIR range was 1250–1380 nm, where features of
higher variations in lipid and water absorption can be simultaneously observed (Figure 5).

Similar behavior was observed between the classification performance achieved by
using the long-SDD probe and the short-SDD probe. By combining wavelength ranges
containing ultraviolet and visible wavelengths, lower classification performance was ob-
tained compared to the 650–950 nm range alone. In addition, the combination of NIR
wavelength ranges improved tissue classification. Those results suggest that information
from water and lipid absorption at deeper tissue layers probed by using long SDDs may be
complementary and useful for cancer detection, while signals from Hb and HbO2 absorp-
tion may not bring useful information for tissue classification. Finally, the combination of
selected wavelength ranges led to the achievement of as good performance as using the
entire wavelength range (350–1920 nm) investigated in this study.
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Figure 5. Wavelength regions with spectral features of mucosa and tumor scattering coefficients and
each tissue chromophore shown at the (A) Reduced scattering spectra of mucosa and tumor tissues
of both short-SDD and long-SDD probes, (B) chromophore absorption spectra and (C) PLSCs of the
short-SDD probe.

3.3. Relationship between Tissue Classification Features and Tissue Biochemistry/Microstructure

Once the importance of wavelength bands and their combinations were assessed, we
used the shape of the PLSC loadings to understand the biochemical and microstructural
sources of tissue classification. This section covers the results of our analysis, whereas
the interpretation of spectral features of tissue classification is discussed in Section 4.2.
Our analysis comprised of the determination of contributions of tissue scattering and
chromophore absorption based on the shape of the PLSC loadings at wavelength bands of
highest absorption of tissue chromophores as well as the “flatness” of PLSC loadings (in-
dicative of the predominant contribution of tissue scattering). The selection of wavelength
bands for subsequent interpretation is illustrated in Figure 5.

Figure 5 shows the spectral ranges where particular features of specific chromophore
absorption can be observed. As an example, the red region shows the features of oxy-
hemoglobin (HbO2) and deoxyhemoglobin (Hb), including bands between 380 nm and
450 nm (peaks of HbO2 at 414 nm, 542 nm and 576 nm [21], and peaks of Hb at 433 nm,
556 nm and 757 nm). In the case of the latter peak of Hb (at 757 nm), we assume the feature
is from Hb instead of lipid (peak at 761 nm) due to the higher Hb absorption and potentially
higher Hb concentration in biological tissues (resulting in overall higher tissue absorption
due to Hb). In addition, the used bile spectrum (from Nachabe et al. [61]) includes the
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water contained in the sample, as is obvious from the spectral range above 950 nm When
the shape of the PLSC loadings is relatively flat and monotonic as a function of wavelength,
we attributed scattering as the most important factor contributing to tissue classification
using such PLSC. It is important to remember that, even though the chromophore spectra
are not shown for wavelengths longer than 1600 nm in Figure 5, double absorption peaks
between 1700 nm and 1800 nm are associated with lipid, whereas the increase in absorption
close to 1900 nm is related to water [115,116]. By analyzing the spectral shape of the PLSCs,
we obtained Table 4 below.

Table 4. Scattering and absorption features of the superficial tissue PLSCs.

Scattering and Absorption Features

PLS (Short-SDD
probe)

VIS Scat NIR Scat Hb HbO2 MetHb Water Lipid

PLSC1 X X X

PLSC2 X X X X X

PLSC3 X X X X

PLSC4 X X X X

PLS (Long-SDD
probe)

PLSC1 X X X X

PLSC2 X X X X X X

PLSC3 X X X X

PLSC4 X X X X

Based on the loadings of PLCS1, Table 4 suggests that the features contributing to
tissue classification between mucosa and tumor are mostly related to Hb, HbO2 and water
for the short-SDD probe and the Hb, HbO2, water and lipid for the long-SDD probe. For
both probes, absorption features from the same chromophores of PLSC1 appear in PLSC2,
which also contain features of scattering in visible and near-infrared wavelength ranges. In
addition, absorption features of Hb, HbO2, water and lipid can be observed on the loadings
of PLSC3 and PLSC4 of both probes. On the other hand, features of lipid absorption appear
only at the loadings of PLSC3 and PLSC4 of the short-SDD probe, whereas characteristics of
the same chromophore are exhibited in the loadings of PLSC1, PLSC2, PLSC3, and PLSC4
of the long-SDD probe.

4. Discussion
4.1. Impact of Depth-Resolved Determination of Wavelength Ranges and Biomarkers for Tissue
Classification

Our study investigated the most important wavelength regions for discriminating
colorectal mucosa and cancer tissues and how these regions can be related to the biomarkers
contributing to this discrimination (discussed in Section 4.2). Furthermore, we provide
information for two tissue probed depths, as these depths are dependent on the source-to-
detector distance of our fiber optic probes (Section 4.2). Our optimization of wavelength
ranges of reflectance spectra and evaluation of main biomarkers contributing to the clas-
sification of normal mucosa and tumor tissues is an extension of our previous work [11]
showing the successful classification of these tissues by using support vector machines,
as well as our study [12] estimating biomolecule concentrations by using a spectral fitting
algorithm based on Monte Carlo simulations of light propagation in tissues (assuming
homogeneous tissue models).

To the best of our knowledge, previous DRS studies did not perform an objective
analysis of the importance of wavelength ranges for discrimination between mucosa and
cancer tissues. These studies have been reviewed in our previous publication [11] and
have only investigated specific wavelength ranges from 300 to 800 nm or from 900 to
2500 nm. No comparison between wavelength ranges objectively selected by statistical
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methods has been performed by using DRS for CRC detection. With that in mind, our
study provides the objective analysis of the importance of ultraviolet, visible and near-
infrared wavelength ranges for classification between colorectal mucosa and tumor tissues,
which is especially useful (1) to design new optical spectroscopy and imaging systems
restricted to specific wavelength ranges (for cost-effectiveness, performance maintenance
upon miniaturization and integration into medical devices, higher accuracy at specific
wavelengths, and higher spatial resolution), (2) to determine the range of probed tissue
depths where improved tissue classification can be achieved and where optical tissue
biomarkers tend to significantly influence tissue classification, (3) to identify which tissue
biomarkers are the most important for discrimination between mucosa and cancer tissues
based on DRS signals.

Our study improves the subjectivity of analysis of amplitude and shape of PLSC load-
ings (Figure 3) by adding an objective analysis based on the selection wavelength ranges
for tissue classification based on p < 0.001 (statistically significant difference) for the t-test
and comparison of PLS-KNN classification performance metrics by using each combination
of selected wavelength ranges. Higher classification performance at wavelength ranges
of specific tissue chromophores (biomolecules) indicates the most important wavelength
ranges and respective biomarkers to classify normal mucosa and cancer (Section 3.2). This
classification performance adds to biomarker identification based on features of tissue
scattering and chromophore absorption based on the amplitude (Section 3.1) and shape
(Section 3.3) of PLSC loadings since statistical wavelength selection and subsequent classifi-
cation cannot identify scattering contributions spread out all wavelengths. The scattering
contribution to tissue classification is only observed by analysis of PLSC loading shapes as
a function of wavelength.

In this study, the analysis of PLSC loadings suggests that tissue scattering is secondary
but still important for tissue classification since only PLSC2 loadings resemble scattering
coefficient curves as a function of wavelength (Section 3.3). However, it is worth noting that
different combinations of optical properties (scattering and absorption coefficients) lead to
probing a different depth in tissue. Probing different depths means that each wavelength
of each DRS spectrum extracts biomarkers (chromophore concentrations and scattering
properties) at a different tissue depth. Additionally, the higher source-detector distance
increases the chances of collecting light which traveled longer and deeper into tissue.
Therefore, short-SDD and long-SDD probes capture information on biomarkers at different
depths, as these depths depend on both probe geometry and tissue optical properties. Based
on Monte Carlo simulations of light propagation in tissues performed in our previous
study [11], the probed depth of the short-SDD probe was mostly within 0.5–1 mm for
wavelengths between 450 and 1590 nm, whereas that of the long-SDD probe varied between
0.5 and 1.9 mm for the same wavelength range. Statistical methods presented in this paper
enable objective depth-resolved biomarker identification and selection of wavelength
ranges. This depth-resolved analysis is not achievable by spectral fitting models assuming
that tissue is homogeneous because tissue heterogeneity is neglected to keep the number
of fitted parameters to a minimum. At the cost of a tissue homogeneity assumption, such
spectral fitting models can retrieve average tissue scattering properties and chromophore
concentrations. Although average concentrations are easy to interpret, they contain neither
information about tissue depths nor wavelength ranges to best differentiate normal and
cancerous tissues.

Previous studies have calculated sensitivity and specificity for tumor detection based
on biomolecular concentrations obtained from assumptions of homogeneous media, es-
pecially using spectral fitting models of diffuse reflectance, transmittance and fluores-
cence [24,26,32,58–67]. In imaging and tomography applications, these concentrations are
typically extracted from the absorption at a few wavelengths and used as diagnostic indexes
in different applications [117], whereas point spectroscopy evaluates a larger number and
often a wider range of wavelengths. However, the potential of point spectroscopy is not
fully exploited if homogeneous media assumptions are made, as useful information can
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potentially be extracted from such a larger number of wavelengths and depths probed. Our
previous work [12] has shown that biomolecular concentrations are different depending
on the probed depth by varying the probe SDD and by using a spectral fitting model for
homogeneous tissue. In this study, the importance of measurements at each wavelength is
considered separately. The probed depth of reflectance at each wavelength is different and
incorporated into our analysis using statistical tests and machine learning methods. Analyz-
ing DRS measurements of each wavelength separately means that information is extracted
from tissue biochemistry and microstructure at multiple depths. Therefore, the importance
of chromophores obtained in this study is based on more complete information compared
with previous studies and exploits the full potential of DRS point spectroscopy measure-
ments. By using our depth-resolved analysis, tissue biomarker information was interpreted
by using PLSC loadings while the objective selection of optimized tissue classification
parameters was determined by evaluating classification performance directly.

4.2. Spectral Features for Colorectal Cancer (CRC) Detection

The present study investigated the spectral regions and biomolecules associated with
cancer development by identifying the most important spectral features for the differ-
entiation between normal and cancerous tissues. This identification was performed by
using partial least-squares (PLS). One of the advantages of using PLS methods is that they
can provide insight into the variables most likely to be responsible for the differentiation
between two groups via the interpretation of weights and loadings. With this in mind, PLS
is typically used in exploratory studies focusing on which variables are best discrimina-
tors [113]. In molecular biology applications (e.g., metabolomics, proteomics, lipidomics,
glycomics and others), these variables can be related to biomolecules via features of their
generated physical processes present in the measured signal (e.g., the fluorescence emis-
sion of specific molecules in a tissue fluorescence measurement) [114]. In terms of optical
techniques, this approach was used by Wang et. al., who found that NADH, collagen, and
porphyrin were related to oral cancer detection by using fluorescence spectroscopy [118].
In this study, biomolecular contribution to the DRS signal is related to absorption features
of tissue chromophores such as oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb), lipid
and water, as well as scattering tissue features related to size and refractive index of the
main scatterers. As a result, absorption and scattering features related to discrimination
can be observed on the PLS loadings, since these loadings are based on the differentiation
between mucosa and tumor tissues present on the DRS signal.

PLSC loadings can be interpreted based on their amplitude and spectral shape.
Higher absolute amplitudes of PLSC loadings on spectral regions of absorption of specific
molecules mean these molecules are associated with the PLSC(s). The same association is
reinforced if the spectral shape of the PLSC loadings is similar to that of the biomolecular
absorption spectra within the pertinent spectral regions. The first PLSCs are more relevant
for tissue discrimination. Therefore, analyzing the absolute amplitudes and spectral shape
of loadings of the first PLSCs allows us to determine which biomolecules are potentially
more relevant for differentiating mucosal and cancerous tissues.

By analyzing parameters such as loadings of principal component analysis (PCA) or
PLS, it is possible to determine which biomolecules are involved with the classification
between groups of tissues. The loadings of PLS components are typically analyzed in
metabolomics [114], where the focus is determining which variables (related to chemicals)
are best discriminators for certain tissue groups (e.g., cancerous and healthy tissue) rather
than understanding whether tissue classification is possible [113]. A similar rationale is
used to analyze spectral features associated with other physical phenomena related to
biomolecules. For optical techniques such as fluorescence spectroscopy, biomolecules
include NADH, FAD, collagen, elastin, porphyrins and lipopigments [24,26,27,32,60,67,119–
121], whereas Fourier-transform infrared (FTIR) spectroscopy and Raman spectroscopy
probe chemicals such as amino acids, proteins, lipids, carbohydrates, nucleic acids, por-
phyrins, and water [47,49,122,123]. A more extensive list of altered biochemical composition
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in CRC was reported by previous studies on lipidomics, proteomics, metabolomics, ge-
nomics, glycomics and other molecular biology sciences [124–133]. Out of all biomolecules
in the extensive list of CRC tissue discriminators, our DRS study focuses on biomolecules
with detectable absorption (chromophores) in the wavelength range between 350 and
1920 nm. These biomolecules include β-carotene, bile, bilirubin, ceroid, collagen, deoxy-
hemoglobin (Hb), oxyhemoglobin (HbO2), methemoglobin (MetHb), water, lipid, and
melanin.

Previous studies using PLS to investigate biomolecular features in optical measure-
ments are scarce. By using fluorescence spectroscopy, Wang et al. [118] used PLS loadings to
determine that the biomolecules involved with oral cancer detection were collagen, NADH
and porphyrins. This determination was based on the peaks of the loadings as a function
of wavelength, which occurred at 390 nm and 470 nm for the 320 nm excitation, and at
460 nm and 640 nm for the 360 nm excitation. Apart from the study of Wang et. al., our
study used the amplitudes and shapes of PLSC loadings to identify CRC biomarkers and
corresponding wavelength ranges based on the loadings of the four first PLSCs. These
loadings suggest that only Hb, HbO2, lipid, water and light scattering in tissue contribute to
PLS features to be used for tissue classification (Section 3.3). In a qualitative analysis based
on the amplitude of PLSC1 loadings, Hb and HbO2 were the most important biomolecules
for tissue classification since the highest and second highest absolute amplitudes (Figure 3)
occurred between 350 and 1350 nm for both probes used (Section 3.1). Light scattering,
lipid and water were of secondary importance, since only PLSC2 appears to contribute
to scattering, and the wavelength range between 1350 and 1900 nm has the third highest
absolute amplitude only for PLSC1 of the long-SDD probe (Section 3.1). It is important to
note that all PLSCs used for tissue classification exhibit spectral features of water, and all
PLSCs except PLSC1 and PLSC2 of the short-SDD probe have lipid features. The absence
of PLSC1 and PLSC2 features for lipids suggests that no superficial lipid signal up to 1 mm
deep contributes to CRC detection, as the maximum probed depth for the short-SDD probe
is ~1 mm. Additionally, scattering may have contributed to PLSCs other than PLSC2 even
though its contribution may not show any strong trend on the PLSC loadings (Figure 3).
Finally, one reason the scattering properties may not be more relevant for tissue classifi-
cation is due to the relatively short source-detector distance providing a low sensitivity
to alterations in scattering properties between tissue types. This means there might be a
scattering-related contrast between tissues that our instrument is not sensitive to because
of our future endeavors of translating our findings to an endoscopic in vivo study requiring
that the short-SDD probe and all supporting equipment fit within the endoscope. Non-
endoscopic applications targeting the classification of normal mucosa and cancer tissues
relying on longer SDD and/or quantities associated with tissue scattering may still be
useful to find scattering differences between these tissues.

4.3. Considerations on Biomolecular Concentrations and Probed Depth for CRC Detection

Based on the current literature evidence that Hb, HbO2, lipid and water concentrations
differ in normal tissues and tumors, our results agree that these biomolecules can be used
for tumor detection. In our study, the features of each biomolecule were illustrated in the
shape of the PLSC loadings, while the molecular relevance for differentiation between
colorectal mucosa and tumor could be determined with the amplitude of the loadings and
higher classification performance of selected wavelength ranges. In general, there is an
agreement between the wavelength ranges leading to higher classification performance and
higher absolute amplitudes of the PLSC1 loadings. Since taking these ranges solely based
on the loadings is subjective, we used a more objective analysis by selecting ranges of p <
0.001 in the t-test. This analysis suggested that Hb and HbO2 information relevant to tumor
detection can be collected from specific wavelength ranges within the UV-visible region and
the optical window. A combination of these ranges may not lead to more accurate tissue
classification. On the other hand, classification can be improved by probing water and
lipid at several near-infrared (NIR) ranges which provide complementary information for
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tissue discrimination. Our results regarding the importance of Hb, HbO2, lipid, water and
scattering for CRC detection agree with results based on our objective statistical analysis and
add to the results of our previous work [11], which suggested that wavelengths in the optical
window contribute to higher accuracies of CRC detection. When neglecting local blood
oxygen saturation (StO2) for reflectance spectral fitting under the homogeneous medium
assumption, it is worth noting that lipid and scattering contributions to tissue classification
become more important than contributions of total hemoglobin content [12]. However,
when considering StO2 and distribution of chromophores scattering properties over all
probed tissue layers in DRS, near-infrared spectroscopy, elastic scattering spectroscopy and
hyperspectral imaging, previous in vivo and ex vivo studies have shown that contributions
of Hb and HbO2 are comparable to those of lipid and water [11]. These contributions are
evidenced by similar accuracies obtained when using wavelength ranges between 400 and
1000 nm (91.2 ± 0.9 accuracy) and between 1000 and 1920 nm (92.2 ± 1.3 accuracy) for the
short-SDD probe [11].

In terms of wavelength ranges for differentiation between normal and cancer tissues,
those in the optical window resulted in the highest classification performance for both
short-SDD and long-SDD probes. This performance could have been achieved by con-
sidering the information on a number of biomolecules at variable depths and targeting
wavelengths of higher light penetration. Our study suggests the latter is one of the main
discriminatory factors, as probing deeper tissue layers with the long-SDD probe also led
to higher performance compared with the short-SDD probe. Since more accurate tissue
classification is achieved by using wavelengths at the optical window and using the long-
SDD probe, the most relevant biomolecular changes associated with CRC detection, and
potential carcinogenesis may occur at deeper tissue layers, which can be exploited by future
studies.

Similar to the short-SDD probe, the highest classification performance was achieved
by using wavelengths on the optical window (in this case, 650–950 nm). Additionally, since
the performance obtained for the long-SDD probe is higher than that obtained by using the
short-SDD probe, signals of deep tissue layers may contain more relevant information for
tissue discrimination. This evidence can be further reinforced by the higher performance
achieved by using the ultraviolet (380–400 nm) and visible (420–610 nm) wavelengths alone
compared to the best performance obtained by using the short-SDD probe.

Our analysis of wavelength selection indicated that probing specific wavelength
ranges for Hb, HbO2, water and lipid absorption lead to similar classification accuracies as
those achieved by using the wavelength range 350–1920 nm (Tables 2 and 3). These ranges
may be used for future instrument design by keeping the geometrical configuration of the
probe used in this study. In addition, extending the wavelength range towards longer NIR
wavelengths may add information from other biomolecules as well as the contribution
of the complementary data of water and lipid. With this in mind, future studies may
investigate the complementarity of water and lipid information at wavelengths longer than
1920 nm and include features of other biomolecules absorbing at NIR and mid-infrared
wavelengths (e.g., proteins, carbohydrates and nucleic acids).

4.4. Strength of the Cross-Validation of Our Model

In this study, we have used our PLS model to show the importance of objectively
chosen wavelength ranges in tissue classification. Our tissue classification model was not
used to assess the maximum classification performance to be obtained by testing several
machine learning algorithms with our dataset. In fact, we have previously shown that
higher classification performance can be obtained [11]. For correct interpretation of the
influence of each wavelength range in the tissue classification, it is extremely important
that our PLS model is general enough so that high classification performance parameters
(sensitivity, specificity, accuracy and AUC) are not obtained due to overfitting by using
large subsets of the dataset to build our classification model.
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Although 5-fold cross-validation is frequently used for validation, this study used
two-fold cross-validation in order to show a robust tissue classification in our dataset
by using 50% of the data as a training set (two-fold) instead of 80% (5-fold). Two-fold
cross-validation also allows the model to be tested in a larger dataset compared to 5-fold
cross-validation, while the model is trained in a smaller subset of the total dataset. If the
model is not general enough, training the model with smaller random subsets of the dataset
while testing it in larger random subsets can lead to lower classification performance
parameters. Therefore, robust classification through two-fold cross-validation means a
stronger potential of generalization of the model upon an increase in sample size, especially
compared to validation using more than 50% of the dataset for training and less than 50%
for testing.

4.5. Limitations of Our Study

In order to evaluate oxygenation changes that could affect the results of the present
study, we conducted a pilot observation of the DRS signal in 3 patients. We observed no
significant variations in average Hb and HbO2 of 7 mucosa sites and 7 tumor sites 15 min
from the beginning of our measurements (data not shown). In this case, the DRS signal was
monitored every 5 min during the collection time period. In terms of expected biochemical
differences when translating our findings to in vivo studies, we expect a similar behavior
showed by Baltussen et al. [88] in fat, tumor, and healthy colorectal wall tissues. The
authors exhibited a statistically significant difference in blood concentration (%) and StO2
(%) when measured ex vivo (within 1 h after resection) compared to in vivo. According
to their study, both blood content and StO2 increased, presumably due to an increase in
blood volume in the capillaries after excision [134], exposure to air and decreased oxygen
consumption by the cells in the specimen. Their study also suggests the water content
decreases due to dehydration (vaporization and leakage) of the resected tissue, which
was minimized in this study by keeping the tissue moist with wet wipes. However, it is
important to remember that measurements by Baltussen et al. were taken by probing a
different tissue depth compared to our study (probe with SDD 1.29 mm center-to–center
distance) and the analyzed tissues are different from colorectal mucosa. Additionally, the
behavior of StO2 (%) is still not well understood, as results of Baltussen et al. disagrees
with those of Salomatina et al. [135], who evaluated mouse ear tissues 5 to 10 min after
excision (ex vivo) of tissue and after 24 and 72 h of storage.

Parts of our methodology are dependent on results achieved by using our dataset
of almost 3000 measurements on 47 patients, which is assumed to be sufficiently robust
for all analyses presented in this study. To ensure the wavelength selection was robust,
the statistical test was based on all collected data. One should be aware that the wave-
length selection was independent of the machine learning model. Therefore, classification
performance metrics were affected by which wavelength ranges were selected, but not
by the process to select wavelengths. It is worth noting that wavelengths were not used
directly as descriptors/features of our machine learning (ML) models/classifiers. The four
selected PLS components (PLSC) have been used as spectral features for tissue classifica-
tion. A number of PLSCs have been selected as the minimum number of PLSCs before
only increments of ~2% accuracy were gained upon inclusion of a new PLSC (data not
shown). This threshold has been chosen to provide the best possible description of the
data while avoiding overfitting. The four PLSCs were calculated on the entire dataset
before two-fold cross-validation was performed for KNN models. Since PLSC loadings for
tissue classification have been determined based on all the collected data (including the
test set for the 20 iterations of two-fold cross-validation), it is important to note that the
classification performance metrics were not calculated for optimized ML models in which
spectral bands and PLSCs are selected at specific subsets of our dataset (discovery set) and
subsequently training classifiers. Our classification performance metrics were used for
the comparison of results obtained for each objectively/statistically selected wavelength
range with the aim of placing wavelength ranges in the order of importance for tissue
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classification, and subsequently, the main cancer biomarkers upon the association between
these ranges and tissue chromophores and scattering properties were identified. For the
estimation of classification performance metrics obtained with wider wavelength ranges,
one should check our previous study [11].

Regarding the validation of our tissue classification model, the two-fold cross-validation
with random sampling was performed spectrum-wise and not patient-wise. Hence, the
data from different patients can be present in both training and test sets, but the same spec-
trum will only belong to either the training set or test set for each fold of cross-validation.
However, this does not mean that the results of this study are invalid or that classification
performance metrics have been overestimated. It is important to consider that the intra-
patient is comparable to the inter-patient variation in our dataset (the standard deviation
of measurements within each individual patient is less than twice the standard deviation
of all measurements of all patients). A typical mean and standard deviation across all
measured locations of one patient for both tumor and normal mucosa measured with both
probes is given in Figure S1 in Supplementary Material. No clear trend has been identified
in the data of specific patients, possibly due to the limited number of patients. If such a
trend is identified in future studies, a patient-wise validation of our model would estimate
the classification performance metrics of Tables 2 and 3 most likely as robustly. Since this
trend has not been identified, a spectrum-wise validation of our tissue classification model
could potentially be stronger because this validation includes the data of more patients
compared with a patient-wise validation. This is especially important given that our study
was limited to 47 patients.

Furthermore, the ultimate aim of our study is to classify normal mucosa and cancer
tissues at each location within the same patient. Therefore, robust validation of our tissue
classification model should consider both measurements of different patients as well as
measurements from the same patient, but at different tissue locations, as we did in our
study.

Our study focused on biochemical and DRS spectral differences between mucosa and
cancer tissues, which, from a clinical perspective, would be especially useful for guidance
on cancer margins and tumor delineation. Future studies exploring tumor detection will
include data from tissues with non-cancer pathology. This would include a variety of
non-neoplastic processes commonly seen in CRC patients including inflammatory bowel
disease, radiation-induced fibrosis, and scarring following local excision of cancers.

From a research perspective, the results of our study can be used to design optimized
optical instruments targeting the specific wavelength ranges and tissue probed depth, as
well as to evaluate the feasibility of employing biochemical analysis methods targeting Hb,
HbO2, water and lipid for tissue classification. These methods include other optical sensors
and/or combinations with existing instruments for CT, MRI, electrical measurements, mass
spectrometry, and others. Simulations of light transport in tissues and DRS measurements
may benefit from estimating accurate data of the chromophores most relevant for tissue
classification. The same applies to the creation of 3D cell models (e.g., spheroids) mimicking
mucosal and cancerous tissues in tissue engineering studies, where the right tissue types
and thicknesses should accurately reproduce the tissue biochemistry.

5. Conclusions

In the present study, we evaluated the most important tissue biomarkers and wave-
length ranges for CRC detection by using diffuse reflectance spectroscopy in the visible/near-
infrared wavelength range from 350 nm to 1920 nm. In this range, the biomolecules most
relevant for classification between normal and cancer tissues were Hb, HbO2, lipid and wa-
ter. Tissue classification using Hb and HbO2 data can be achieved with wavelength ranges
350–590 nm or 600–1230 nm for superficial tissue (short-SDD probe), and 380–400 nm,
420–610 nm, and 650–950 nm for deeper tissue layers (long-SDD probe). Information
collected in those wavelength ranges is redundant and the combination between them
did not enhance the classification. On the other hand, water and lipid information are
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complementary and may improve cancer detection and investigation of carcinogenesis
upon extension of the wavelength range. Our results suggested that information from
deeper tissue layers either accessed by probing the optical window or through the long-
SDD probe can differentiate normal and cancer tissues more accurately. Wavelength ranges
and probe geometrical configuration used in this study may be used for more specific
future instrument design. From a practical perspective, these wavelength ranges and
geometrical configurations will be used to develop an optical system for CRC detection
during colonoscopy and intra-operatively. By optimizing the features for discrimination
between normal and cancerous tissues, tissue identification is performed in real-time with
a single reading of about 2–3 s. By means of the integration of real-time tissue identification
into a flexible fiberoptic probe which could be passed down the working channel of an
endoscope, optical spectroscopy may provide a powerful tool that can be used to detect
cancer cells and direct management in real time. In addition, this spectroscopic technique
can detect more subtle mucosal abnormalities such as sessile serrated polyps, which may
be difficult to identify during colonoscopy. Once instruments with wavelength ranges and
probe geometrical configuration found in this study have been miniaturized and integrated
into colonoscopies, next-generation instruments can be manufactured and their impact in
reducing CRC morbidity and morbidity can be assessed in future in vivo studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14225715/s1, Figure S1: Mean and standard deviation
across broadband reflectance spectra of all measured locations of both tumor and normal mucosa
measured with (A) the short-SDD and (B) the long-SDD probe for one patient.
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