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Simple Summary: Cancer cells amplify in an uncontrolled fashion. The resulting tumor and metas-
tases need to ensure their survival in the body. To achieve this, cancer cells display increased
nutritional needs and an altered metabolism. These metabolic changes start to be targeted for thera-
peutic interventions in the context of a number of different cancers. Similar to cancer, cells infected
with viruses that cause cancer, so-called “oncoviruses”, have altered nutritional needs to support
the amplification and spread of new progeny viruses and to ensure the survival of infected cells in
the host. Here, we give an update on the similarities between the metabolic alterations observed in
many types of cancers and those induced by oncogenic viruses. Furthermore, we discuss the antiviral
activities of metabolic inhibitors used for the treatment of cancer.

Abstract: Viruses play an important role in cancer development as about 12% of cancer types are
linked to viral infections. Viruses that induce cellular transformation are known as oncoviruses.
Although the mechanisms of viral oncogenesis differ between viruses, all oncogenic viruses share the
ability to establish persistent chronic infections with no obvious symptoms for years. During these
prolonged infections, oncogenic viruses manipulate cell signaling pathways that control cell cycle
progression, apoptosis, inflammation, and metabolism. Importantly, it seems that most oncoviruses
depend on these changes for their persistence and amplification. Metabolic changes induced by
oncoviruses share many common features with cancer metabolism. Indeed, viruses, like proliferating
cancer cells, require increased biosynthetic precursors for virion production, need to balance cellular
redox homeostasis, and need to ensure host cell survival in a given tissue microenvironment. Thus,
like for cancer cells, viral replication and persistence of infected cells frequently depend on metabolic
changes. Here, we draw parallels between metabolic changes observed in cancers or induced by
oncoviruses, with a focus on pathways involved in the regulation of glucose, lipid, and amino acids.
We describe whether and how oncoviruses depend on metabolic changes, with the perspective of
targeting them for antiviral and onco-therapeutic approaches in the context of viral infections.

Keywords: oncogenic viruses; metabolism; viral persistence; cancer

1. Introduction

Reprogramming of energy metabolism is considered as a hallmark of cancer cells.
Transformed cells adopt metabolic changes to cope with their increased need for fast
growth and proliferation [1]. Glucose is a main source of cellular energy and generally
converted via glycolysis in the cytoplasm into pyruvate, which is then transferred into
mitochondria, where it serves as substrate for the tricarboxylic acid (TCA) cycle and
oxidative phosphorylation (OXPHOS). Under hypoxic conditions, OXPHOS is throttled,
and cells mainly rely on glycolysis, which produces ATP in an oxygen-independent manner.
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However, many cancer cells limit glucose utilization to glycolysis as opposed to OXPHOS
even under aerobic conditions. This metabolic anomaly was first observed in the thirties of
the last century by the German biochemist Otto Warburg and is known as the Warburg effect
or aerobic glycolysis [2,3]. As glycolytic ATP production is faster than OXPHOS, glycolysis
copes better with the increased need of energy and accelerated growth and proliferation in
cancer cells [4]. Indeed, increased transport and utilization of glucose is frequently observed
in cancer cells, which then channel glycolytic intermediates into biosynthetic pathways
such as the pentose phosphate shunt (PPP) for nucleotide production and regeneration of
the reducing equivalent NADPH, which is important for cellular redox homeostasis and
the synthesis of lipids and amino acids. Consistently, metabolic reprogramming of lipid
and amino acid metabolism is also frequently described in cancer [5–10]. A scheme of the
metabolic pathways is depicted in Figure 1.
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Figure 1. Reprogramming of cell metabolism in cancer. Metabolic pathways regulating glucose
metabolism, including glycolysis, TCA cycle and PPP, fatty acid metabolism, and glutaminolysis,
are generally altered in malignant transformation by altered signaling pathways, oncogenes, and
tumor suppressor genes. Abbreviations: GLUT, glucose transporter; HK, hexokinase; G6P, glu-
cose 6-phosphate; F6P, fructose 6-phosphate; F1,6P, fructose 1,6-biphosphate; ALDOA, aldolase A;
GA3P, glyceraldehyde 3-phosphate; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; PGK1,
phosphoglycerokinase 1; PGAM1, phosphoglycerate mutase 1; ENO1, α-enolase; PEP, phosphoenol
pyruvate; PKM2, pyruvate kinase isozyme type 2; LDHA, lactate dehydrogenase A; PKD1, pyru-
vate dehydrogenase kinase 1; PDH, pyruvate dehydrogenase; PPP, pentose phosphate pathway;
G6PD, glucose 6-phosphate dehydrogenase; NADPH, nicotinamide adenine dinucleotide phosphate;
X5P, xylulose 5-phosphate; R5P, ribose 5-phosphate; S7P, sedoheptulose 7-phosphate; E4P, erythrose
4-phosphate; TKT, transketolase; TALDO, transaldolase; CIC, citrate carrier; CPTI, carnitine palmitoyl
transferase 1; MCD, malonyl-coA decarboxylase; ACC, acetyl-coA carboxylase; FASN, fatty acid
synthase; ACS, acetyl-coA synthetase; α-KG, α-ketoglutarate; GLS, glutaminase; GLUD1, glutamate
dehydrogenase 1; IDH1, isocitrate dehydrogenase 1; Aco1, aconitase 1; 3PG, 3-phosphoglycerate;
SHMT, serine hydroxymethyltranferase.
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Viruses play an important role in cancer development and about 12% of cancer types
are linked to viral infections [11]. Viruses that induce malignant transformation are known
as oncoviruses and include, for example, Epstein–Barr virus (EBV), human papillomavirus
(HPV), human T cell lymphotropic virus (HTLV), hepatitis B virus (HBV), hepatitis C virus
(HCV), Kaposi’s sarcoma herpesvirus (KSHV), and Merkel cell polyomavirus (MCP) [12].
Although the mechanisms of viral oncogenesis differ, all these oncogenic viruses share
the ability to establish persistent chronic infections, often with no obvious symptoms for
years, during which they manipulate and alter cell signaling pathways that coordinate
cell cycle progression, apoptosis, and inflammation [13]. Furthermore, oncogenic viruses
introduce into their host cells metabolic adaptations similar to those observed in cancer
cells, as shown in Figure 2, and importantly, it seems that they depend on these changes for
their persistence and amplification.
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2. Reprogramming of Central Carbon Metabolism in Cancer Cells

Metabolic reprogramming is a vital hallmark of malignant cellular transformation.
The highly energy-demanding cancer cells often depend on glycolysis as a fast source
for energy production [7,14] and for carbon intermediates as substrates for nucleotide,
amino acid, and lipid biosynthesis [15,16]. Concomitantly with the increase in glucose
uptake, activities of the mitochondrial TCA cycle and OXPHOS are often preserved in
cancer [17–21]. These latter pathways ensure not only a sufficient supply of ATP but also
the synthesis of metabolic precursors required for increased biomass in proliferating cells,
maintenance of cellular redox homeostasis, and adaptation to the tumor microenvironment.
In addition to promoting anabolism in cancer cells, the metabolic shift towards glycolysis
also favors cell survival under stressful conditions, increases cell invasiveness, and helps
cells overcome immune surveillance [22]. Furthermore, amino acid metabolism and, in
particular, glutaminolysis are frequently induced in cancer cells to satisfy amongst others
the cellular need for nitrogen for biosynthesis of nucleotides, proteins, lipids, and many
other molecules. Furthermore, glutamine is important for the regulation of cellular redox
homeostasis [23].

2.1. Glucose Uptake

The transport of glucose across the cellular plasma membrane is a vital step and
precedes glycolysis. Expression of cytoplasmic membrane glucose transporters (GLUTs),
responsible for glucose uptake, is frequently deregulated in cancer [24]. GLUT1 expres-
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sion is upregulated in response to the oncogenes such as rat sarcoma oncogene (RAS),
c-mylocytomatosis oncogene (cMyc), and hypoxia-inducible factor 1α (HIF1α) [25–27]
and inhibited by tumor suppressor p53, phosphatase and tensin homolog (PTEN), and
microRNA-22 (mir-22) [28–30]. The overexpression of GLUT1 was found to be positively
correlated with the disease stage in various cancer types [31–33]. Additionally, the use
of GLUT1 inhibitor STF-31 induces apoptosis in cancer cells [34,35]. Furthermore, the
IKK–NF-κB axis, required for cellular transformation, is activated by the loss of p53, which
leads to overexpression of GLUT3 and aerobic glycolysis [36].

2.2. Glycolysis

Once across the plasma membrane, glucose is immediately phosphorylated by hexoki-
nases (HKs), which is the first rate-limiting step of glycolysis. Overexpression of HK1 and
HK2 in cancer cells has been previously reported, and HK1 overexpression is a poor prog-
nostic marker in colorectal cancer [37,38]. The HK2-mediated Warburg effect is essential
for cellular transformation and growth in many cancer types [39]. In prostate cancer cells,
loss of PTEN leads to overexpression of HK2 via activation of the Akt/mTORC1/4EBP1
axis and loss of p53 increases the stability of HK2 mRNA by inhibiting the biogenesis
of miR-143, which destabilizes HK2 mRNA in cancer cells [39,40]. Importantly, binding
of HK1 and 2 to mitochondria also protects cells from apoptosis via retro-translocation
of pro-apoptotic Bcl2 family members away from mitochondria, thus inhibiting death
receptor-mediated apoptosis [41]. Finally, binding of HK1 to mitochondria reduces glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) activity, thus redirecting glycolytic fluxes
towards PPP and dampening inflammatory cytokine production [42]. In addition to HK
and GAPDH, the expression of many intermediate enzymes of glycolysis, including phos-
phofrucktokinase (PFK), aldolase (ALODA), phosphoglycerate kinase 1 (PGK1), and alpha
enolase (ENO1), is regulated by oncogenes, including cMyc, HIF1α, β-catenin, and tumor
suppressor p53. These enzymes are overexpressed in many forms of cancers, which is often
associated with poor prognosis and treatment efficacies, and inhibition or knock out of the
corresponding genes has been shown to have anti-oncogenic effects [43–51].

Pyruvate kinases mediate the final rate-limiting and net ATP-producing step in glycol-
ysis. In cancer cells, the embryonic isoform PKM2 predominates over the adult isoform
PKM1 [52]. Switching the expression from PKM2 to PKM1 reverses the Warburg effect,
decreases tumorigenicity, and increases oxygen consumption through shunting glycolysis
to OXPHOS [53]. In normal cells, the produced pyruvate is converted to acetyl-coA via
pyruvate dehydrogenase (PDH), a step that links glycolysis to the TCA cycle and OXPHOS
by mediating pyruvate uptake into mitochondria. This reaction is inhibited in cancer cells
due to the overexpression of pyruvate dehydrogenase kinases (PDK), a family of PDH
complex inhibitors, leading to a reduced acetyl-coA supply to the TCA cycle [54]. It has
been shown that knocking down PDK2 in cancer cell lines increases oxygen consumption
and reactive oxygen species (ROS) production and induces apoptosis [55]. Noteworthy,
HIF1α increases the expression of PDK [54].

In cancer cells, pyruvate produced by aerobic glycolysis is converted to lactate via
lactate dehydrogenase (LDH). LDH is a homo- or heterotetramer composed of two subunits,
LDHA and LDHB. LDHA expression was found to be upregulated in cancer cells [56].
LDHA inhibitors FX11 and oxamate were found to reduce lactate production and retard
the growth of cancer cells [57,58]. Lactate is a key player in the process of carcinogenesis. In
many tumors, the level of lactate in cancer cells is elevated up to 40-fold. In cancer cells, the
rate of glycolytic fluxes frequently exceeds the capacity of mitochondria to oxidize produced
pyruvate due to the limited availability of free CoA molecules and a low NAD+/NADH
ratio. Overexpression of LDHA offers a faster alternative compared to the TCA cycle
to consume pyruvate and regenerate NAD+ levels through the production of lactate [6].
Elevated intracellular lactate increases the expression of monocarboxylate transporters
MCT1 and MCT4, which mediate the efflux of lactate outside the cells [59]. The release of
lactate is sufficient to stimulate angiogenesis and consequently carcinogenesis via activation
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of vascular endothelial growth factor (VEGF) in tumor endothelial cells [60]. Moreover,
high levels of lactate are associated with metastasis in different types of cancer [59]. Lactate
supports the immune escape of cancer cells via induction of a state of acidosis in the
extracellular microenvironment [61] and by its direct inhibitory effect on immune cells,
including macrophages [62] and T cells [63].

2.3. Pentose Phosphate Pathway (PPP)

The PPP, a major glucose catabolic pathway, is composed of an oxidative and a non-
oxidative phase. The rate-limiting step in the oxidative phase is the dehydrogenation of
glucose-6-phosphate (G6P) via glucose-6-phosphate dehydrogenase (G6PD). The products
of the oxidative branch of the PPP include not only the nucleoside precursor ribose-5-
phosphate (R5P) but also NADPH [64]. The increased metabolic activities in cancer cells
are associated with excessive ROS production and increased oxidative stress, which need
to be kept in check [65]. In addition to its role as an essential anabolic reducing factor in the
biosynthesis of nucleotides and fatty acids (FAs), NADPH is responsible for maintaining
cell survival under oxidative stress [66,67]. NADPH is the source of reductive potential
used by glutathione reductases (GR) to recycle oxidized glutathione into its reduced form,
which is needed for detoxification of ROS [68]. In line with these observations, G6PD
activity has been shown to be enhanced in several types of cancer [69–72]. Several growth
factors and oncogenes are capable of increasing the activity of G6PD, including platelet-
derived growth factor (PDGF), epidermal growth factor (EGF), phosphoinositide 3-kinase
(PI3K), Src, and Ras [73–76]. On the other hand, the tumor suppressors, p53 and PTEN,
reduce the PPP via binding and inhibition of the activity of G6PD [77–79].

The reversible non-oxidative phase of the PPP consists of transfer reaction series that
result in the production of sugars, including pentoses, for anabolic purposes [80]. This phase
of the pathway is under the control of transketolase (TKT) and transaldolase (TALDO),
enzymes that link the non-oxidative phase of PPP to glycolysis. TKT catalyzes the reversible
conversion of xylulose-5-P and ribose-5-P to glyceraldehyde-3-P and sedoheptulose-7-P
and the conversion of xylulose-5-P and erythrose 4-P to glyceraldehyde-3-P and fructose-6-
P. TALDO reversibly catalyzes the conversion of glyceraldehyde-3-P and sedoheptulose 7-P
to erythrose 4-P and fructose-6-P. Thus, the non-oxidative branch replenishes metabolites
of the oxidative branch and regulates the flux of glycolysis by providing fructose 6-P and
glyceraldehyde 3-P [81]. Several studies have reported upregulation of TKT and TALDO
in several types of cancer [82–84]. Moreover, TKT overexpression has been correlated
with tumor invasiveness and poor cancer prognosis in lung, prostate, and breast cancer
cells [73,85].

2.4. Tricarboxylic Acid Cycle (TCA)

The TCA cycle has been recognized as a central hub not only for ATP production
but also for the production of biosynthetic precursors. Contrary to the assumption that
mitochondrial functions are reduced in cancer cells, many lines of evidence confirm the
indispensable activity of the mitochondrial TCA cycle in many different types of cancer.
While non-proliferating cells maximize the energy production in the TCA cycle from
oxidizable substrates, in cancer cells, the TCA cycle is important for the provision of
intermediates for lipid, nucleotide, and amino acid synthesis rather than ATP [6]. This
continuous efflux of biosynthetic precursors from the TCA cycle is known as cataplerosis.
For cancer cells to preserve TCA cycle activity, cells must provide the necessary substrates.
This compensatory supply is known as anaplerosis [86]. Cells use different carbon fuels,
including glucose, glutamine, and FA, to maintain anaplerosis [43].

3. Reprogramming of Fatty Acid Metabolism

Compared to normal cells, cancer cells are characterized by lipid accumulation in the
form of lipid droplets. The lipid requirement is increased during tumorigenesis for the
synthesis of membranes and signaling molecules [8]. De novo synthesis of FA is activated
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in several cancers via the increased expression of the transport protein citrate carrier (CIC)
responsible for transporting the mitochondrial citrate to the cytoplasm [87]. Additionally,
ATP citrate lyase (ACLY), the first rate-limiting enzyme in FA de novo synthesis, is up-
regulated in several types of cancer [88–91]. Overexpression of ACLY is associated with
increased tumorigenesis and gene knockout inhibits tumor growth. The cytosolic form of
acetyl-coA carboxylase 1 (ACC1) catalyzes another rate-limiting step of FA synthesis, the
conversion of acetyl-coA to malonlyl-coA [92]. The tumor suppressor LKB1 inhibits FA
synthesis via activation of the central metabolic sensor, adenosine monophosphate acti-
vated protein kinase (AMPK), which inactivates ACC1 [93]. The terminal step of de novo
FA synthesis is catalyzed by fatty acid synthase (FASN). Higher activity of FASN supports
tumor cell survival and overexpression was reported in different types of cancers [94,95].

4. Reprogramming of Amino Acid Metabolism

Rapidly proliferating cancer cells have increased requirements for amino acids not only
for protein synthesis but also as important metabolites and metabolic regulators. Several
amino acids were shown to have special importance in cancer metabolism. In particular,
glutamine is considered very important, as the most abundant amino acid. Dependence on
glutamine metabolism, also referred to as “glutamine addiction”, is a hallmark of cancer
cell metabolism.

Glutamine is converted to α-ketoglutarate via glutaminolysis, which fuels the TCA
cycle [96]. Conversion of glutamine into citrate by isocitrate dehydrogenase (IDH) can
feed into lipogenesis. Cytoplasmic citrate is converted into malate and then pyruvate
in an enzymatic process that produces NADPH required for redox homeostasis [97,98].
Additionally, glutamine can serve as a nitrogen donor to support the increased demand for
nucleotide synthesis [96,99,100] and contribute to the biosynthesis of uridine diphosphate-
N-acetylglucosamine (UDP-GlcNAc), which is needed for protein glycosylation and endo-
plasmic reticulum stress responses in cancer cells [101]. Glutamine also plays a pivotal role
in regulating the increased levels of ROS in tumor cells as it is a precursor for glutathione
synthesis [99].

The expression of cancer-specific isoforms of glutaminase (GLS), a key enzyme of
glutaminolysis and responsible for converting glutamine into glutamate, is regulated by the
oncogene cMyc [102,103]. cMyc was found to induce glutamine conversion into glutamate
under normo- and hypoxic conditions. Under glucose deprivation conditions, glutamine
was found to be the main precursor for the synthesis of TCA intermediates such as fumarate,
malate, and citrate, confirming the ability of glutamine to fuel the TCA cycle [104]. cMyc
also induces the expression of enzymes involved in nucleotide biosynthesis pathways,
which increase the need for glutamine as a nitrogen donor for nucleotide biosynthesis [100].
Glutamine metabolism was shown to inhibit autophagy in cancer cells through the activa-
tion of the mTOR pathway [105]. The highly selective glutaminase inhibitor CB-839 has
been tested in clinical trials for cancer treatment. While monotherapies have failed overall,
CB-839 is showing promising effects in some combination therapies [106–110].

Several cancer subtypes hyperactivate the anabolic serine and glycine synthesis side-
branch of glycolysis, which provide vital precursors for the synthesis of proteins, nucleic
acids, and lipids that are essential to cell proliferation. Additionally, serine/glycine biosyn-
thesis influences the cellular anti-oxidative capacity, thus maintaining tumor homeosta-
sis [111]. The glycolytic intermediate 3-phosphoglycerate (3-PG) is the precursor for de
novo serine synthesis. Serine can then be converted into glycine, a process mediated by
serine hydroxymethyltransferase 1 or 2 (SHMT1/2). Furthermore, serine contributes to
the methionine cycle and impacts the availability of S-adenosyl methionine, the donor of
methyl groups for epigenetic regulation of RNA and DNA [112].

Proline is a secondary amino acid that is stored in collagen. Proline metabolism
is related to ATP production, protein and nucleotide synthesis, and redox homeostasis.
Rewiring of proline metabolism has been shown to be tumor type dependent [113–117].
Proline is also a precursor for polyamine synthesis. Polyamines such as spermidine and
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spermine are polycationic alkylamines [118]. These small molecules are involved in many
central processes of cell survival and proliferation, including protein and nucleic acid
biosynthesis, chromatin structure stabilization, differentiation, apoptosis, protection against
oxidative stress, and intercellular communication [118–121]. In cancer cells, polyamine
metabolism is often dysregulated, and elevated intracellular polyamine levels are needed
for transformation and tumor progression [122].

5. Role of Oncogenes, Tumor Suppressors, and Cell Signaling in Regulating Cancer
Cell Metabolism

Oncogenes and tumor suppressor genes are key players in the process of carcinogene-
sis as they regulate cellular proliferation, growth, and/or cell cycle arrest [123]. Many lines
of evidence have confirmed and analyzed in depth the roles of these factors in regulating
metabolic enzymes and metabolic signaling pathways important for growth, proliferation,
and regulation of cellular redox homeostasis [5,124].

5.1. PI3K/Akt/mTOR Pathway

The highly conserved PI3K/Akt/mTOR signaling pathway is commonly deregulated
in cancer. Activation of this signaling pathway has important roles in tumorigenesis [125].
The binding of growth factors to its receptors activates PI3K, which in turn activates
the downstream serine/threonine kinases Akt and mTOR. Activation of this pathway
increases the membrane expression of transporters for glucose, amino acids, and other
metabolites [126–130]. Activated Akt was found to stimulate the expression and activity
of glycolytic enzymes, leading to increased glycolysis and lactate production [131–133].
Moreover, PI3K and Akt increase lipid synthesis via an increase in the expression of
lipogenic genes [134,135]. On the other hand, mTOR inhibits autophagy, enhances ribosome
biogenesis, and increases protein, FA, and nucleotide synthesis [136–139]. Additionally,
mTOR stimulates aerobic glycolysis via an increase in the expression HIF1α transcript
levels and its glycolytic gene targets [137].

In normal cells, PI3K signaling is tightly controlled via the lipid kinase PTEN, which
counteracts all metabolic features of the PI3K/Akt/mTOR pathway [140]. Systemic overex-
pression of PTEN in transgenic mouse models resulted in a metabolic phenotype charac-
terized by diminished aerobic glycolysis and glutaminolysis [141]. The tumor suppressor
p53 is a key regulator of metabolic homeostasis [142]. p53 is able to inhibit PI3K signaling
via activation of the tumor suppressor genes tuberous sclerosis complexes (TSC) 1 and 2,
PTEN, and AMPK [143,144].

5.2. Hypoxia-Inducible Factor (HIF1α)

Hypoxia, or low oxygen tension, significantly affects the process of tumorigenesis.
Under normoxic conditions, HIF1α is hydroxylated, which leads to its immediate degra-
dation via the Von Hippel–Lindau (VHL) E3 ubiquitin ligase complex. Under hypoxic
conditions, the implied hydroxylases become inactive, thus leading to HIF1α stabiliza-
tion [145]. HIF1α is a transcription factor complex that is activated in many cancers and its
expression is usually associated with a poor prognosis [146]. It regulates and coordinates
cellular responses to hypoxia by inducing genes encoding glucose transporters, glycolytic
enzymes, and LDHA in order to enhance glycolysis and lactate production while blocking
the access of glycolytic products to mitochondria by targeting PDK1 [147–149]. Moreover,
HIF1α participates in maintaining a functional TCA cycle via glutamine-driven anaplerosis
to compensate the limited supply of glycolytic carbon [21]. Furthermore, it activates the
reductive carboxylation of glutamine to provide another carbon source for de novo FA
synthesis in vitro [97,150].

5.3. cMyc

cMyc, the human homolog of a retroviral gene, is commonly amplified in cancer and
plays significant roles in the metabolic adaptation of cancer cells [6]. It can be induced



Cancers 2022, 14, 5742 8 of 29

directly or indirectly in response to hormone- or growth-factor-sensitive signal transduction
pathways such as PI3K/Akt/mTOR, Wnt/β-catenin, and EGFR/RAS/MAPK [151]. cMyc
induces the expression of glycolytic genes, including GLUT1, HK2, and LDHA [27,152]. It
promotes the production of the cancer-specific isoform PKM2 by directing the splicing of
the pyruvate kinase M pre-mRNA [153]. cMyc is also known to activate glutaminolysis by
regulating the expression of GLS isoforms [103,104,154,155] and activate the transcription
of enzymes required for nucleotide synthesis [156–158]. Finally, cMyc was found to increase
the expression of enzymes involved in serine biosynthesis [159]. However, the proliferation
of cancer cells was found to mainly depend on the exogenous serine supply via extracellular
uptake, with extracellular glycine being unable to compensate for the loss of serine [160].
Intracellular serine may be converted to glycine under the activity of SHMT, which is a
direct target for the oncogene cMyc [157].

6. Metabolic Reprogramming in Oncoviruses

Many similarities have emerged between the metabolic pathways that are modulated
in cancer cells versus those altered in cells infected with oncoviruses, as schematically
shown in Figure 2. Furthermore, many of the transcription factors, oncogenes, and tumor
suppressors that drive metabolic changes in cancer cells are also targeted by oncoviruses, as
shown in Figure 3. While virally induced metabolic changes are generally not considered
to drive cellular transformation per se, they may facilitate the transformation process in a
setting of oxidative stress, genomic instability, and inflammation, as frequently induced by
oncoviruses. Importantly, the replication and spread of many oncogenic viruses depend on
the metabolic changes in the host cell, which offers important opportunities to target viral
replication and the associated cancer using the same therapeutic targets.
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6.1. Epstein–Barr Virus (EBV)

EBV is a double helix gamma herpes virus that preferentially infects B lymphocytes
and epithelial cells [161]. It has been associated with several malignancies [162,163]. After
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primary infection in B cells, EBV usually starts a latent infection where latent viral proteins
stimulate viral DNA replication and cell proliferation. Alternatively, EBV produces infec-
tious virions during the lytic replication phase [164]. The stimulation of lytic reactivation
is induced by transcription transactivator proteins ZEBRA and BRLF1 [165]. Several vi-
ral genes with oncogenic activity have been identified in the EBV genome, including six
nuclear antigens (EBNA1, EBNA2, EBNA3A, EBNA3B, EBNAC, and EBNA-LP) and two
latent membrane proteins (LMP1 and LMP2) [166,167].

Early EBV infection induces a transient hyperproliferation period that is suppressed
by DNA damage responses and cell cycle arrest. Proliferation-arrested EBV-infected cells
showed decreased expression of TCA cycle and OXPHOS enzymes and reduced mitochon-
drial respiration compared to uninfected B cells. On the other hand, hyperproliferative EBV-
infected cells that transform into lymphoblastoid cells showed increases in both glycolysis
and OXPHOS [168]. LMP1 overexpression in nasopharyngeal epithelial cells is associated
with increased glycolysis and lactate production via increased expression of HK2, PKM2,
and LDHA1 [169–171]. In concordance with these finding, LMP1 was found to increase
HK2 and GLUT1 expression indirectly through decreasing the expression of homeobox
gene C8 or, alternatively, by enhancing the degradation of prolyl HIF-hydroxylases, thus
stabilizing HIF1α [172]. EBV infection of B lymphocytes directly promoted temporal induc-
tion of MCT1 and MCT4 through the viral proteins EBNA2 and LMP1, respectively [173].
Targeting of a recently identified HK isoform, HK domain component 1, has shown ther-
apeutic effects against EBV-induced lymphoma by modulating mitochondrial functions
and suppressing EBV replication in mouse models [174]. Glut1-specific chemical inhibitors
have been shown to kill NPC cells in vitro [175]. In addition, EBV-encoded microRNAs
are highly expressed in EBV-positive tumors and impact glucose metabolism by targeting
PTEN/PI3K/Akt, cMyc, and NF-κB and ERK pathways [176,177].

Additionally, EBV infection also affects amino acid metabolism. In addition to enhanc-
ing glycolytic enzymes, LMP1 was found to increase glutamine uptake in nasopharyngeal
carcinoma cells [178]. Furthermore, an upregulation of GLS1 isoforms was recently shown
to stimulate mitochondrial metabolism and cell proliferation in EBV-infected cells [178].
Cell proliferation and the viability of latently EBV-infected cells were sensitive to pharma-
cological inhibition of GLS1 isoforms [178]. EBV infection was also found to upregulate
extracellular serine uptake and de novo serine synthesis [179]. However, methionine re-
striction, or methionine cycle perturbation, was shown to cause hypomethylation of EBV
genomes and de-repress latent membrane protein and lytic gene expression in Burkitt cells.
Additionally, methionine metabolism was shown to regulate EBV latency genes required for
B cell immortalization [180]. Finally, mTOR inhibitors reduced the capacity of EBV-positive
cells to undergo lytic replication in a cell-type-dependent fashion [181].

With respect to nucleotide metabolism, EBV infection of primary B cells was found to
upregulate cytidine triphosphate synthases CTPS1 and CTPS2, which is consistent with the
observation that purine dNTP biosynthesis is critical in the early stages of EBV-mediated B
cell immortalization [182]. Furthermore, EBNA2 and/or EBNA-LP were needed for the
induction of CTPS1 in newly infected B cells. Finally, CTPS1 depletion impaired EBV lytic
DNA synthesis [183].

The transcriptional factor, EBNA2, was found to induce cMyc expression [184]. EBNA2
and EBNA5 inhibit ubiquitination-induced degradation of HIF1α [185]. The p53 pathway
has been found to be inactivated by EBNA3C [186].

EBV also modulates the host cell lipid metabolism. The EBV viral protein BRLF1
expression induces the expression of FASN via activation of the MAPK pathway [187].
Newly EBV-infected B cells are characterized by increased expression of proteins involved
in FA and cholesterol metabolism [188]. In EBV-driven cancer cell lines, inhibition of FASN
was associated with a decrease in the BRLF1-mediated lytic viral genes, indicating that FA
synthesis is required for EBV viral gene expression [187].
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6.2. Human Papilloma Virus (HPV)

HPV is a non-enveloped double-stranded DNA virus. Sexually active adolescents
are highly susceptible to this infection. The viral genome is composed of three regions:
the early region (E), which encodes E1 to E7 proteins necessary for viral replication and
cellular transformation; the late region (L), which encodes capsid proteins L1 and L2; and
the long control region, which contains the origin of replication and transcription factor
binding sites [189]. Low-risk HPV types are associated with formation of benign warts.
High-risk HPV types, and in particular HPV 16 and 18, are considered to be the most
powerful oncogenic viruses, responsible for about 5% of all cancer cases [190–192]. E6 and
E7 from high-risk HPV are considered oncoproteins.

The E7 protein of HPV 16 binds to PKM2 and induces a shift from its active tetrameric
form to a less active dimeric form in HPV16 E7-transformed 3T3 fibroblasts. The dimeric
form is more common in tumors and displays lowered substrate activity [193,194]. High
levels of the dimeric form of PKM2 are associated with increased glycolytic intermedi-
ates such as fructose biphosphate, essential for amino acid biosynthesis, and increased
NADPH biosynthesis, which is needed to regulate ROS levels [195]. To maintain the func-
tionality of the TCA cycle, E7 was shown to promote anaplerotic pathways by activating
glutaminolysis [193].

Moreover, E7 degrades the tumor suppressor RB [196] and both E6 and E7 inhibit
p53 [197–199] and activate the PI3K/Akt/mTOR signaling pathway [200]. HPV16 E6
induces a Warburg effect by interrupting the association between HIF1α and the tumor
suppressor von Hippel–Lindau (VHL) and E3 ligase, thus stabilizing HIF1α [201], and
has also been reported to interact with cMyc [202,203]. Altered PI3K/Akt signaling was
further associated with mitochondrial uncoupling and induction of oxidative stress [204].
In addition to E6 and E7, E5 was also shown to induce glycolysis by stimulating ERK1/2
and Akt signaling [205]. The E2 proteins, negative regulators of E6 and E7, localize to
mitochondria, where they induce oxidative stress and modulate OXPHOS [206]. HPV18
E2 was found to localize to several respiratory complexes in mitochondria and this was
associated with mitochondrial damage and increased ROS production, which stabilized
HIF1α and induced glycolysis [207]. Analysis of the metabolic secretome of one normal
and three cancerous cervical cell lines, of which two were HPV positive, showed that the
HPV+ cancer cell lines exhibited features of Warburg metabolism, with increased glucose
metabolism and upregulated PPP activity. Furthermore, HPV+ cancer cell lines displayed a
profile of cysteine/glutathione metabolites that suggested that they differentially deploy
glutathione metabolism to maintain a favorable cellular redox balance [208]. Analysis
of TCGA data disclosed upregulation of several genes involved in FA metabolism in
HPV-positive head and neck squamous cell carcinoma in comparison to HPV-negative
cases [209].

6.3. Human T Cell Leukemia Virus 1 (HTLV-1)

HTLV-1, the causative agent of adult T cell leukemia/lymphoma (ATL), is the first
retroviral agent known to induce human cancer [210]. In addition to classical retroviral
genes, the viral genome encodes two oncoproteins, the transactivator protein Tax and
the helix basic zipper proteins, HBZ [211]. After infection and viral entry, reverse tran-
scription of the single-stranded RNA genome takes place in the cytoplasm and the linear
double-stranded viral DNA is integrated into the host cell genome. The integrated proviral
DNA can be latent or it may be actively transcribed [212]. The virus uses GLUT1 as the
entry receptor without clear metabolic alteration after infection [213]. However, hypoxia,
frequently encountered by circulating T cells in the lymphoid organs and bone marrow,
significantly enhances HTLV-1 reactivation from latency. Furthermore, it has been shown
that culturing naturally infected CD4+ T cells in glucose-free medium or inhibition of
glycolysis or the mitochondrial electron transport chain strongly suppress HTLV-1 tran-
scription, suggesting that these metabolic processes regulate HTLV-1 proviral latency and
reactivation in vivo [214].
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Tax and Hbz are two viral oncogenes known to be essential for cellular transformation.
Tax is known to activate the PI3K/Akt and NF-κB pathways and inhibits the tumor suppres-
sor p53 [215]. Tax expression is important for the lymphoproliferative and immortalizing
effect of HTLV-1 infection [216,217]. Tax increases ROS production, which induces genomic
DNA damage and cellular senescence. Additionally, the Tax-dependent activation of NF-κB
signaling induces cellular senescence. This effect can be countered through co-expression
of HBZ [218]. Both Tax and HBZ induce aberrant cell proliferation and apoptosis [219].
HBZ was shown to activate the mTOR signaling pathway [220]. Recently, the HTLV-1 p30II

protein was found to suppress Tax- and HBZ-induced oxidative stress and mitochondrial
damage [220]. However, a recent study showed that GR expression and activity and glu-
tathione levels in HTLV-1 patients were reduced compared to healthy control patients, and
this reduction was negatively correlated to viral loads [221]. These findings confirm the
role of HTLV-1-induced oxidative stress and mitochondrial damage in viral pathogenesis.

Finally, the Hippo signal effector, YAP, known for its implication in the regulation
of glutaminolysis, was found to be activated in ATL and its activation to be essential to
maintain cellular proliferation of HTLV-1-infected cells. The activation was found to be
induced via Tax protein through NF-κB [222].

6.4. Hepatitis B Virus (HBV)

HBV, a hepatotropic, enveloped DNA virus from the family Hepadnaviidae, is a major
viral cause of hepatocellular carcinoma [223]. About 300 million people are chronically
infected with HBV worldwide. The viral genome harbors four overlapping open reading
frames (ORFs) named C, P, S, and X. The ORF C encodes the core protein (HBc) and its
related proteins E antigen (HBe) and the precure protein (p22cr), the ORF P encodes the
polymerase (pol), the ORF S encodes three types of surface antigens (HBs), and lastly, the
ORF X encodes the oncogenic protein X (HBx) [224,225]. After HBV infection, HBV DNA is
converted into covalently closed circular DNA (cccDNA), which accumulates in the nucleus
as a stable episome, leading to persistent infection [226]. Both immunological and viral
factors participate in the development of HBV-induced hepatocellular carcinoma. Chronic
infection induces oxidative stress and inflammation that trigger liver fibrosis, characterized
by the accumulation of extracellular matrix proteins, including collagen. In the long term,
this leads to degradation of the liver microenvironment and cancer development [227].
However, integration of the viral DNA into the host genome can lead to HCC independently
of liver damage [228].

The oncogenic viral protein HBx in addition to the pre-S and S polypeptides can
activate the PI3/Akt/mTOR, Jak/Stat, Pyk2, Wnt/β-catenin, and the EGFR/RAS/MAPK
pathways [229]. HBx also inhibits the tumor suppressors p53 and RB. HBx transgenic
mice showed impaired glucose metabolism and increased expression of genes involved
in gluconeogenesis [230]. However, in an in vitro model for HBV replication, increased
expression of glycolytic factors (FBP aldolase, TPI, PGK1, G6P isomerase) and TCA cycle
enzymes (MDH, CS, SDH) and elevation of key glycolytic and TCA metabolites has been
reported [231,232]. Increased glycolysis resulted in the activation of nucleotide synthe-
sis [231]. Upregulation of G6PD, the first and rate-limiting enzyme of the PPP, by HBx has
been reported [231,233].

Increased glucose uptake, glycolysis, and lactate production were also reported to
be induced by a pre-S2 mutant in an mTOR-dependent fashion [234,235]. Using multi-
omics analyses to characterize the HBc-transfected hepatoma cell line HepG2, HBc protein
was shown to enhance amino acid, lipid, and glucose metabolism in hepatocellular car-
cinoma [236]. HBc was shown to bind directly and activate enzymes involved in glycine
metabolic pathways and phenylalanine degradation. The ability of HBc to modulate glu-
cose and lipid metabolism was found to be regulated via Max-like protein (MLX), which
can be recruited to the nucleus in an HBc-dependent manner. MLX binds to and upreg-
ulates the glycolytic proteins aldolase C and phosphoenolpyruvate carboxykinase [236].
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Knocking down MLX was shown to inhibit Myc-induced metabolic changes and apoptosis,
suggesting a role of MLX protein in glycolysis and lipid metabolism in carcinogenesis [237].

In respect to amino acid metabolism, HBV infection was found to significantly in-
crease the expression of glutamine synthetase in liver tissues compared to normal control
livers from uninfected patients. Furthermore, in HBV patients with HCC, glutamine syn-
thetase levels were higher than in HBV carriers without HCC [238]. HBx protein has
been shown to induce mitochondrial fragmentation via Drp1 stimulation, and mitophagy
via parkin, PINK1, and LC3B stimulation [239]. Lipid accumulation, induced by HBV or
due to mitochondrial dysfunction, is associated with an increase in HBV gene expression.
This process implies induction of lipogenic transcription factors such as sterol regulatory
element-binding protein 1 (SREBP-1) and peroxisome proliferator-activated receptor γ [240].
HBV transgenic mice showed increased expression of factors involved in lipid and steroid
biosynthesis and metabolism, including retinol-binding protein 1, SREBP2, ATP citrate
lyase, and FASN [241,242]. Furthermore, HBV replication and release are sensitive to FASN
inhibitors [243,244]. However, HBx has also been reported to stimulate FA oxidation [245].
Finally, HBx overexpression was shown to induce lipid accumulation in HepG2 cells and
HBx transgenic mice by the induction of lipogenic transcription factors and FA-binding
protein 1 [246–249] and inhibition of lipid secretion [250], suggesting that it can induce
hepatic steatosis. Furthermore, HBV-replicating cells showed elevated levels of enzymes
involved in phosphocholine synthesis [231]. In vitro and in HBV-infected humanized mice,
elevated levels of factors related to uptake (LDLR), biosynthesis (HMGCR) and transcrip-
tional regulation (SREBP2) of cholesterol [251,252] and hCYP7A1, the rate-limiting enzyme
for the conversion of cholesterol into bile acids [251], were detected.

6.5. Hepatitis C Virus (HCV)

HCV, a hepatotropic single-stranded positive-sense RNA virus from the family Fla-
viviridae, is another important cause of hepatocellular carcinoma [223]. About 1% of the
world population are chronic HCV carriers. The viral genome consists of a single large
ORF that encodes a single polyprotein that is processed by host and viral proteases to yield
the structural proteins core and two envelope glycoproteins as well as seven non-structural
proteins (NS) [253].

Similar to HBV infection, chronic HCV infection is associated with oxidative stress and
inflammation, which triggers fibrosis and leads to carcinogenesis on the long term [227].
Moreover, chronic HCV infection is generally associated with metabolic disorders such
as insulin resistance and steatosis [254,255]. HCV-induced steatosis is associated with
increased risk of hepatocellular carcinoma, particularly in the context of genotype 3 [256].

HCV infection was found to activate the N-Ras/PI3K/Akt/mTOR pathway [257]
and to inhibit the tumor suppressor p53 [258]. HCV core, NS3, NS5A, and NS5B proteins
are responsible for activating PI3/Akt/mTOR and the EGFR/RAS/MAPK pathways and
inhibiting the pro-apoptotic proteins p53 and RB [229]. Furthermore, HCV infection in vitro
is characterized by increased glucose consumption and lactate production, confirming the
activation of glycolytic fluxes, thought to be due to stabilization of HIF1α [259–261]. A
proteome analysis using an HCV cell culture model showed upregulation of key enzymes
involved in glycolysis, the PPP, and the TCA cycle, favoring biosynthetic pathways [262].
NS5A interacts with and activates HK2 in the hepatoma cell line Huh7.5, increasing glycol-
ysis [259]. Additionally, the D2 domain of NS5A is able to activate glucokinase isoenzyme,
thus inducing lipogenesis in liver cells. Glucokinase is the predominant isoenzyme of
hexokinase in non-cancer cells [263]. Recent studies showed the importance of an active
glycolytic pathway for viral replication and the release of virions from infected cells. Di-
choloroacetate, a PDK inhibitor that allows reshuttling of pyruvate towards the TCA cycle,
suppressed viral replication [264]. Huh7 cells cultured in galactose instead of glucose
did not support viral release due to inhibited glycolysis and activation of OXPHOS [265].
However, contradictory data show that HCV reduces GLUT surface expression and induces
gluconeogenesis [266].
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HCV NS5A was found to affect lipid metabolism by targeting the AMPK/SREBP-1
pathway [267]. Activation of SREBPs was shown to be due to PI3K/Akt signaling [268]. In-
terestingly, HCV replication is modulated by the interaction between NS5B and FASN, con-
firming the importance for lipid metabolic reprogramming for HCV persistence [269–271].
Furthermore, additional factors and enzymes involved in cholesterol and lipid synthesis,
saturation, and secretion have been shown to be essential for HCV replication, virion pro-
duction, and secretion [272–278]. Additionally, HCV and, in particular, NS5A promote GLS
expression, glutamine uptake, and glutaminolysis in a cMyc-dependent manner [261,279].

Using a combination of metabolic, proteomic, and transcriptomic analyses of HCV-
infected cells, increased glucose consumption and metabolism were confirmed. Further-
more, an intracellular accumulation of very-long-chain FAs was detected due to reduced
peroxisomal activity [280].

6.6. Kaposi Sarcoma-Associated Herpesvirus (KSHV)

KSHV is a large enveloped double-stranded herpesvirus-8, mainly associated with the
development of Kaposi’s sarcoma in untreated HIV patients and other immunocompro-
mised patients [281]. The viral genome harbors about 100 genes [282]. As a herpesvirus,
KSHV is capable of latency and lytic replication. In latent infection, the viral genome per-
sists as a multicopy extrachromosomal circular episome. Cancer cells are usually latently
infected and express viral oncogenes such as latency-associated nuclear antigen (LANA),
viral cyclin (v-cyclin), and Kaposin [283].

KSHV LANA is known to inhibit the tumor suppressors p53 and RB [284,285]. Mi-
crovascular endothelial (TIME) cells infected with KSHV show enhanced glucose uptake,
glycolysis, and lactate production and reduced oxygen consumption rates, suggesting
lower OXPHOS activity [286]. Inhibiting LDH activity with oxamate showed a reduction in
KSHV viral production after lytic infection in TIME cells, which indicates the importance
of glycolysis for KSHV viral particle production [287]. Furthermore, oxamate reduced the
expression of early and late viral genes such as open reading frame (ORF) 45 and ORF 59
(early genes) and ORF26 and K8.1 (late genes) [287]. KSHV infection has been shown to
induce glycolytic metabolism by several groups via increased HIF1α expression and stabi-
lization [288–290]. The virus-encoded G-protein-coupled receptor (vGPCR) is a direct target
of HIF1α and is a major inducer of metabolic changes induced by KSHV infection. Viral
mutants lacking vGPCR are unable to induce metabolic changes [291]. PI3K/Akt/mTOR is
another signaling pathway stimulated by KSHV that leads to increased glycolysis [292].
Inhibition of PI3K/Akt was found to decrease the glycolytic fluxes in infected cells [293].
KSHV also induced the expression of PPP enzymes, including G6PD, TKT, and TALDO,
in a nuclear elongation factor 2 (Nrf2)-dependent fashion. Nrf2 was not only found to be
induced in infected cells but also in Kaposi’s sarcoma infection-associated lesions [294].

Mass spectrometric analysis of KSHV-infected TIME cells showed an increase in long-
chain FA production. While the precursors of FA synthesis, choline and phosphocholine,
were also increased, there was a decrease in the degradation products of phospholipids,
glycerophosphorylcholine, and glycerol-3-phosphate. Exposure of infected TIME cells
to FASN inhibitors significantly increased cell death [295]. However, FA synthesis in
Kaposi’s sarcoma is downregulated and not needed for the expression of early and late
KSHV genes [287]. Overproduction of cholesterol esters is shown in latent KSHV infections
and inhibition of cholesteryl esterification impairs neo-angiogenesis, suggesting a role
of the cholesterol ester biosynthetic pathway in Kaposi’s sarcoma development [296].
Nevertheless, RNA sequencing analysis of Kaposi’s sarcoma biopsies showed a significant
downregulation of several lipid metabolic pathways, including FASN, compared to normal
tissues [297].

Cells latently infected with KSHV are glutamine addicted and depend on glutaminol-
ysis for survival. Lytic infection also depends on glutaminolysis [287,298]. KSHV infec-
tion increases glutamine uptake by upregulating the expression of glutamine receptor
SLC1A5. Furthermore, the enhanced glutamine metabolism is due to overexpression of
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GLS, GDH1, and glutamic-oxalacetate transaminase 2 enzymes, essential for glutaminoly-
sis [299]. Instead of fueling the TCA cycle, glutaminolysis in KSHV-infected cells serves
as nitrogen supply for nucleic acid biosynthesis [299]. Moreover, metabolic analysis on
three-dimensional cell cultures showed that KSHV infection enhanced nonessential amino
acid and in particular proline and the associated polyamine metabolism [300]. Hypusine, a
polyamine-derived amino acid, was shown to enhance LANA expression via hypusination
of the eukaryotic initiation factor 5 A (eIF5A) [301,302]. Moreover, inhibition of polyamine
biosynthesis or eIF5A hypusination decreased LANA expression, reduced viral episomal
maintenance, and suppressed viral infection [301,302].

6.7. Merkel Cell Polyomavirus (MCV)

MCV is a non-enveloped, double stranded DNA virus that is thought to be the cause
of the majority of Merkel cell carcinoma cases. The viral genome harbors early and late
gene regions on opposite strands, with a central non-coding control region containing the
origin of replication [303]. After viral infection, the early region is expressed immediately
and undergoes splicing into two T antigen oncoproteins, large and small. The late region
encodes the viral structural capsid proteins, viral protein 1 (VP1) and viral protein 2
(VP2) [304]. MCV infection is usually persistent and asymptomatic. Nevertheless, VP1
antibodies can be detected in healthy subjects and Merkel cell carcinoma patients but at
lower levels [305]. Antibodies against T antigens are hardly detected except in Merkel cell
carcinoma patients and can be used to monitor disease progression [306].

Viral T antigens are expressed persistently in Merkel cell carcinoma and participate in
the process of tumorigenesis. T antigens were found to inhibit the tumor suppressors RB
and p53 and stabilize the cMyc signaling pathway [307–309]. Transcriptome analysis of
normal human fibroblasts with inducible expression of small T antigen showed upregula-
tion of glycolytic genes and the monocarboxylate lactate transporter SLC16A1. These cells
showed increased lactate production, suggesting a reduced OXPHOS activity [310].

7. Conclusions

This review outlines the similarities of the metabolic reprogramming observed in
transformed cells and cells infected with oncogenic viruses. Indeed, viral infection and
amplification require the use of the cellular metabolic machinery to synthesize viral proteins,
nucleic acids, and lipids, similar to the biosynthetic needs for cell proliferation. Furthermore,
redox homeostasis in infected cells needs to be controlled in order to balance its effects
on viral replication versus host cell survival and thus viral persistence. Similarly, cancer
cells are known to depend on a tight regulation of oxidative stress. Finally, the secretion of
certain metabolites (here, we discussed only lactate) is important to ensure cell survival for
both cancer and infected cells in an inflammatory microenvironment.

Metabolic reprogramming is not exclusive to oncogenic viruses. Similar changes are
often observed in the context of infections with non-oncogenic viruses. The oncovirus-
induced metabolic changes outlined here are therefore not sufficient for the induction of
carcinogenesis. However, in the context of inflammation and oxidative stress, the presence
of “pro-cancerogenic” metabolism is likely to facilitate malignant transformation induced
by viruses.

Specific metabolic dependencies in cancer have been the basis for effective therapeutics,
including inhibitors that target IDH, and folate and thymidine metabolism [311]. Many of
these inhibitors have been tested for their efficacies to inhibit viral replication, as discussed
above and detailed in Table 1, suggesting that targeting the host cell metabolism is a
therapeutic strategy for viral infections. Furthermore, in some cases, dual therapeutic
effects in the context of oncogenic infections have been observed: the inhibition of viral
replication and the spread and elimination of transformed cells. These findings warrant
further exploration of the dependencies of viruses on host cell metabolism, particularly for
viruses where no direct-acting antiviral that specifically targets the virus exists.
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Table 1. Antiviral effects of metabolic inhibitors.

Metabolic Drug Target Enzyme Virus Model/Cell System Outcome Reference

STF-31 GLUT1 EBV kills NPC cells in vitro [175]

2-deoxy-D-Glucose Hexokinase, PI3K/Akt HTLV-1 PBMCs suppresses viral transcription [214]

HBV Huh7
suppresses viral protein

production (HBV delivered with
adenovirus)

[312]

oxamate LDHA KSHV TIME decreases virion production [287]

dichloroacetate PDK HCV Huh7.5 decreases viral replication [264]

rapamycine mTOR EBV cell type dependent induces of lytic cycle [181]

CB-839/BPTES Glutaminase HCV Huh7.5 inhibits replication and infection
establishment [261]

KSHV TIME decreases virion production [287]

difluoromethylornithine ornithine decarboxylase 1 KSHV TIME/BCBL-1 decreases virion production [302]

N1-guanyl-1,7-diaminoheptane (GC7) deoxyhypusine synthase KSHV TIME/BCBL-1 decreases virion production [302]

cerulenin FASN HCV Huh7 decreases viral replication [313]

C75 FASN HCV Huh7 decreases virion production [270]

GSK1995010 FASN HBV HepG2.2.15.7 decreases viral replication [243]

4-(1-(5-(2-cyclopropyl-4-methyl-1H-imidazol-5-yl)-
2,4-dimethylbenzoyl)-3-fluoroazetidin-3-

yl)benzonitrile
FASN HBV HepG2NTCP inhibits HBs secretion [244]

LCQ908/pradigastat diacylglycerol O
acyltransferase 1 HCV clinical phase trial/Huh7.5 inhibits replication in vitro but

not in vivo [274]

BMS-200150/BMS-20101038 microsomal transfer protein HCV Huh7.5 decreases virion release [275,276]

3J [314] Stearoyl-CoA desaturase HCV Huh7.5 decreases viral replication and
assembly [277]

25-hydroxycholesterol SREBP HCV Huh7 decreases viral replication [313]
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Table 1. Cont.

Metabolic Drug Target Enzyme Virus Model/Cell System Outcome Reference

5-tetradecyloxy-2-furoic acid (TOFA) acetyl-coA carboxylase KSHV TIME decreases virion production [287]

CP640186 acetyl-coA carboxylase HBV HepG2.2.15.7 decreases viral replication [243]

2-(1-((R)-2-(((1s,4S)-4-hydroxycyclohexyl)oxy)-2-
(2-methoxyphenyl)ethyl)-5-methyl-6-(oxazol-2-yl)-

2,4-dioxo-1,4-dihydrothieno[2,3-d]pyrimidin-
3(2H)- yl)-2-methylpropanoic

acid

acetyl-coA carboxylase HBV HepG2NTCP inhibits HBs secretion [244]

(R)-4-((diethylamino)methyl)-N-(2-
methoxyphenethyl)-N-(pyrrolidin-3-yl)benzamide

subtilisin kexin
isozyme-1/site-1 protease HBV HepG2NTCP inhibits HBs secretion [244]
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