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Simple Summary: According to skin disease reports by healthcare organizations, the number of cases
of skin disease is growing gradually over the years globally. In skin disease diagnosis, dermatologists
examine skin cells by using a dermatoscope. Due to the global shortage of expert dermatologists,
mainly in developing countries, an accurate early skin disease diagnosis is not possible. To automate
the examination of skin disease images, computer-aided diagnosis-based tools are used in healthcare
and medical environments. Computer-aided diagnosis employs machine learning including deep
learning models on skin disease images to detect and classify skin diseases. The present work
proposes a deep learning-based model to accurately detect skin diseases and classify them into a
family of skin diseases using skin disease images. The proposed system demonstrated a performance
improvement of 4% accuracy for skin disease detection and 9% accuracy for skin disease classification
compared to the existing deep learning-based models. The proposed computer-aided tool can be
used as an early skin diagnosis tool to assist dermatologists in healthcare and medical environments.

Abstract: Deep learning-based models have been employed for the detection and classification of
skin diseases through medical imaging. However, deep learning-based models are not effective for
rare skin disease detection and classification. This is mainly due to the reason that rare skin disease
has very a smaller number of data samples. Thus, the dataset will be highly imbalanced, and due to
the bias in learning, most of the models give better performances. The deep learning models are not
effective in detecting the affected tiny portions of skin disease in the overall regions of the image. This
paper presents an attention-cost-sensitive deep learning-based feature fusion ensemble meta-classifier
approach for skin cancer detection and classification. Cost weights are included in the deep learning
models to handle the data imbalance during training. To effectively learn the optimal features from the
affected tiny portions of skin image samples, attention is integrated into the deep learning models.The
features from the finetuned models are extracted and the dimensionality of the features was further
reduced by using a kernel-based principal component (KPCA) analysis. The reduced features of
the deep learning-based finetuned models are fused and passed into ensemble meta-classifiers for
skin disease detection and classification. The ensemble meta-classifier is a two-stage model. The
first stage performs the prediction of skin disease and the second stage performs the classification by
considering the prediction of the first stage as features. Detailed analysis of the proposed approach is
demonstrated for both skin disease detection and skin disease classification. The proposed approach
demonstrated an accuracy of 99% on skin disease detection and 99% on skin disease classification.
In all the experimental settings, the proposed approach outperformed the existing methods and
demonstrated a performance improvement of 4% accuracy for skin disease detection and 9% accuracy
for skin disease classification. The proposed approach can be used as a computer-aided diagnosis
(CAD) tool for the early diagnosis of skin cancer detection and classification in healthcare and medical
environments. The tool can accurately detect skin diseases and classify the skin disease into their
skin disease family.
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1. Introduction

In the present era, skin diseases are one of the leading infectious diseases among
people globally. Skin diseases are common in fair-skinned populations. Skin diseases
can be permanent or temporary and these are painless or painful. The number of cases
of skin cancer has been high in the recent year in the United States and Australia [1]. In
addition, the total cost involved in the treatment of skin diagnosis has been high compared
to other cancers and this was reported by the government of Australia and the United
States. A report by the Skin Cancer Foundation shows that the number of skin disease
cases continues to increase worldwide in the future [2,3]. Dermoscopy is a non-invasive
imaging technology that can examine skin lesions with a dermatoscope. This technology
removes the surface reflection of the skin and obtains more informative visual information
by going into deeper levels of the skin. This type of technology has enhanced the diagnosis
of skin cancer detection and classification. In developing countries and in the world,
the number of dermatologists is not sufficient, as skin diseases become high every year.
Moreover, dermatologists need to be experts with good experience in achieving good
accuracy otherwise the performance of dermatologists in accurately detecting skin disease
will not be high [2]. There may be a possibility that the appearance of multiple skin diseases
is similar and expert dermatologists’ accuracy on similar multiple skin disease diagnoses
will not be high.

To automate the diagnosis of skin lesion data samples, CAD tools were introduced [4].
CAD tools can be used for an early skin disease diagnosis. In the development of CAD-
based tools, to automate the process of skin disease detection and classification, researchers
employed various data mining and machine learning algorithms on the images of skin
diseases [5]. Various feature engineering and feature selection approaches were investigated
to accurately detect skin cancers by passing the features into various machine learning
and data mining algorithms. The survey of skin disease detection and classification shows
that there are various studies based on supervised, semi-supervised, and unsupervised
approaches [3]. The performance of supervised-based methods is high compared to the
semi-supervised and unsupervised approaches [6]. Thus, the current study considered
the supervised-based approach to accurately detect skin diseases and classify them into
their skin disease family. The major issue that exists in data mining and machine learning-
based skin disease detection and classification is that the model’s performance relies on
optimal features [7]. These features are extracted manually and require a domain-level
knowledge of image processing and skin diseases. This type of feature engineering and
feature selection process is not easy. This may require more cost, and time complexity
will be high.Most importantly, the attacker can compromise the CAD-based system if the
features are known using the concepts available in the domain of adversarial machine
learning. So, the machine learning-based CAD approach for skin disease detection and
classification may not be completely considered robust in an adversarial environment, since
the current healthcare system is connected to the internet and the healthcare networks and
their connected devices are open to attacks. In addition to the performance of the model,
the security of the model for skin disease detection and classification is important in the
healthcare environment. In addition to the robustness of the model, the generalization of
the model is important, i.e., there may be a possibility that the machine learning-based
model may not work well for new skin diseases or the variants of the existing skin disease
detection and classification.

A recent literature survey demonstrates that deep learning-based approaches were
employed for skin disease detection and classification [8]. The deep learning-based
approaches outperformed machine learning and data mining-based approaches in skin
disease detection and classification, using samples of skin images. Various studies reported
that the performance of deep learning is higher compared to the data mining and machine
learning-based studies on benchmark data sets, i.e., the International Skin Imaging
Collaboration (ISIC) archive. The studies have finetuned ImageNet-based pretrained
models for skin disease detection and classification and reported that the finetuned model
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performances are higher compared to the non-finetuned models. In addition to that,
the pretrained models require less time compared to the non-pretrained models. This
is mainly due to the reason that the ImageNet-based pretrained models were trained
with very big databases of natural images with several different classes. Though the
medical images are different compared to natural images, the weights learned on natural
images are finetuned with the medical images. This type of finetuned model shows
better performances in various medical image classification tasks including skin disease
detection and classification. The existing studies for skin disease classification using deep
learning-based pretrained models used SoftMax at the last layer with a fully connected
network for classification [3]. However, instead of using SoftMax, the features of the
finetuned models can be further passed into other classical machine learning classifiers
and this type of approach can be called a large-scale machine learning classifier. This
type of classifier has the capability to show better performances compared to the SoftMax
with a fully connected network. In addition to using one pretrained model for skin
disease detection and classification, an ensemble of pretrained models can be employed.
Since each pretrained model has the capability to extract its own features, there may be
a possibility that ensemble-based models can enhance the performance of individual
models. The survey shows that this type of ensemble approach demonstrates a better
performance compared to the individual classifiers [5]. The classes in the benchmark
datasets of skin diseases are highly imbalanced and most of the existing models for skin
disease classification are not effective in handling rare skin diseases. In order to handle
the data imbalance, authors have used data augmentation and Generative Adversarial
Network (GAN)-based approaches. However, these are not effective in handling the data
imbalance of skin diseases and though the studies reported good performances, there may
be a possibility that the models may not perform well on the datasets that are from different
modalities or patients from different regions. The proposed work’s major contributions are
given below

• The current work proposed an attention-cost-sensitive deep learning-based feature
fusion ensemble meta-classifier approach for skin cancer detection and classification.

• Detailed investigation and analysis of convolutional neural network (CNN)-based
pretrained model for skin disease detection and classification.

• Fusion of features from CNN-based pretrained models is proposed to enhance the
performance for skin disease detection and skin disease classification.

• Attention is integrated into the CNN-based pretrained model to extract the optimal
features to accurately detect skin diseases.

• Cost-weights are introduced during the training of a model to handle data imbalance
in the skin disease dataset.

• To improve the performance of the SoftMax-based fully connected network classifiers,
a two-stage classification model is proposed.

• Comparison of the proposed model with other CNN-based pretrained models and
other existing studies.

The remaining parts of the paper are organized as follows. The literature survey of
skin disease detection and classification is included in Section 2. Detailed information on
the proposed method is discussed in Section 3. The description of datasets is included in
Section 4 and statistical metrics are included in Section 5. Results and discussion of the
proposed approach for skin disease detection and classification are included in Section 6.
Finally, the conclusion and feature works are included in Section 7.

2. Literature Survey

Skin disease detection and its classification is a long-standing problem in the field
of artificial intelligence. Prior to deep learning, various feature engineering methods
were employed on the skin disease image database and further various classical machine
learning algorithms were employed for skin disease detection and its skin disease family
classification. However, with the recent surge of deep learning methods in performance
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improvement in various applications in medical imaging, the literature survey shows that
methods of deep learning have been employed for skin disease identification and skin
disease classification. The detailed literature survey summary of the existing methods for
skin disease detection, skin disease classification, and available datasets for skin disease
is discussed in detail by authors [2,3,5,8]. The literature survey shows that deep learning
and artificial intelligence-based approaches outperform dermatologists’ performance in
accurately detecting skin diseases and classifying them into their skin disease family.
However, there are various scenarios in which the best-performed model in the existing
survey may not perform well. One such case study is rare skin diseases or skin diseases
that have a smaller number of data samples. In addition to this, the performance of the
models can be enhanced by adding clinical features. In this literature survey section, the
existing works summary and its main limitations are discussed by comparing it with the
proposed work.

The GoogleNet Inception v3 CNN architecture was employed for skin disease
classification and its performances were evaluated against dermatologists against different
test cases [9]. However, the model performances were not evaluated in detail and the
models are not robust and generalizable. The ResNet50-based model was proposed for
skin disease classification [10]. The model performances were assessed in different test
cases with the involvement of healthcare and dermatologists. Though the proposed model
achieved better performances compared to the existing methods, the models cannot be
employed in a real-time environment, and in addition, this study cannot be considered for
benchmarking the machine learning and deep learning models. The reason is the dataset
was collected from different publically available sources and there may be overlapping
of samples in training, validation, and testing datasets. This is one of the reasons the
study reported good performances in all the test cases. Multichannel CNN with Gabor
wavelet-based approach is proposed for skin disease classification [11]. The authors
reported the performance of the proposed model by using ISIC 2017 datasets. Since the
dataset is highly imbalanced, the proposed method’s detailed study of handling rare skin
diseases is required. Without this, the proposed method may not be considered robust for
skin disease classification. In addition to that, the authors have considered only a smaller
number of classes from the dataset, mainly the performance of the study demonstrated for
melanoma skin disease. A hybrid of classical image processing feature engineering, clinical
features, and automated feature engineering using ResNet-50 models is proposed for skin
disease classification [12]. The performances of the proposed study were demonstrated on
the datasets NIH SBIR dermoscopy studies and ISIC 2018. Though the model reported
better performances on both datasets, the authors did not show the performance of the
proposed model in handling rare skin diseases.

To develop a generalized skin disease classification model, the authors adopted the
domain adaptation deep learning approach using CycleGAN and its performance shown
on the HAM10000 dataset [13]. The proposed model is generalized, and its experiments and
results reported by the authors show that the model was able to classify the skin disease
samples by handling different cohorts with different shifts. The patch-based attention
approach is proposed for skin disease classification [14]. To handle the data imbalance
after patching the skin disease samples, the proposed approach uses various cost-sensitive
approaches. The authors report that the proposed approach performs better than the
existing methods and handles data imbalances during training. The performance of the
methods was shown on more than one skin disease dataset, including the HAM10000
dataset. CNN-based approach with a novel optimizer-based approach is proposed for skin
disease classification using the ISIC skin disease dataset [15]. However, the authors did
not demonstrate a detailed analysis of the proposed model to identify the robustness and
generalization to accurately detect skin diseases. In [16], the authors used the support of
binary classification and enhanced the performance of the GoogLeNet and Inception-v3
model by 7% in skin disease classification with seven classes. The proposed model is not
effective in an imbalanced skin disease database, and in addition, the model is not effective
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in extracting the tiny portions of the infected region from the overall skin image. To increase
the number of data samples for rare skin diseases, StyleGANs approach is employed. Later,
the authors developed a method for skin disease classification by fusing the CNN-based
pretrained models. Though the proposed method alleviates the data samples for rare skin
diseases, the proposed StyleGANs may not generate samples that are similar to the samples
collected from the patients in real time. This type of GAN-based approach may not be
considered accurate to handle rare skin diseases.

A fusion of handcrafted features and automated features from a CNN-based deep
learning model was used in accurately detecting skin diseases [17]. Since the proposed
model depends on hand-crafted feature engineering, the model time complexity is high
and this type of approach may not be appropriate in a real-time skin-disease classification
system in the healthcare environment. This is because deep learning itself can identify
the optimal features and in addition to this, segmentation using deep learning can be
incorporated. A two-stage approach was proposed for skin disease classification [18]. The
first stage does the segmentation and classification of the segmented data classified in
the classification stage. The authors employed fully resolution CNN in the first stage
for segmentation and Inception-v3, ResNet-50, Inception-ResNet-v2, and DenseNet-201
for classification. The authors have conducted a detailed study using ISIC 2016, 2017,
and 2018 datasets. The rare disease in ISIC datasets is handled using augmentation.
However, the data augmentation approach may not be the right approach to handle
the data imbalance and the literature survey on data augmentation shows that it cannot
improve the performance of rare skin diseases. To handle various image sizes of skin
disease, the authors have proposed a multiscale model with an ensemble of more than one
CNN-based pretrained model for skin disease classification [19]. The proposed approach
performances are demonstrated on the ISIC 2017 and 2018 datasets. Since the proposed
approach is cost-insensitive, the model performance may not be considered good in the
rare skin disease classification. With the aim to handle rare skin diseases in the ISIC 2018
dataset, the authors proposed a GAN-based approach for data augmentation and CNN for
classification [20]. The authors reported that the GAN-based data augmentation approach
with CNN performed better than the CNN. Data augmentation is not the right approach to
handle the imbalance in the skin disease data sets. It may be possible that the GAN-based
generated images are not entirely new samples and there will be a bias in learning.

The authors reported 7% improvement in accuracy by using clinical information along
with a skin disease image database [21]. This database is a privately collected dataset using
a phone camera. The dataset is balanced and moreover, there may be bias in training and
testing datasets. Since the authors have not demonstrated the datasets of training and
testing collected in different healthcare environments with different patients, the proposed
approach may not be considered robust for skin disease classification. An ensemble of
various pretrained model performances was shown for skin disease classification using
the ISIC 2018 dataset [22]. The proposed model may not be effective in achieving good
performance in classifying the rare disease as the proposed method is not giving any kind
of importance to the minor classes of skin disease during the training of an ensemble model.
To detect skin disease accurately, segmentation was employed before the classification [23].
The authors compared the proposed segmentation approach performance with U-Net,
and in all the test cases, the proposed approach demonstrated better performances. The
performance of CNN and other classical machine learning models’ performances were
demonstrated for classification. With several test cases, authors have demonstrated that the
proposed model shows better performances compared to the existing approaches using the
ISIC 2018 skin disease dataset. Though the proposed model is robust in accurately detecting
skin diseases, the authors did not show the proposed method’s performance in handling
rare skin diseases. A fusion of CNN-based pretrained models was proposed for skin disease
classification [24]. The performance of the proposed models was evaluated on the ISIC
2016 dataset. The authors report that the fused model demonstrates better performances
in detecting skin disease compared to the non-fused and existing studies. However, the
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detailed performance of the proposed study is not evaluated on ISIC 2016. Since the dataset
is highly imbalanced, it may be possible that the bias existed during learning a skin disease
model in training. The ResNeXt101-based model is evaluated for multi-class skin disease
classification using the HAM10000 dataset [25]. The authors reported that the proposed
model performed better than the non-pretrained and pretrained models. However, the
detailed performance of the proposed model is not shown for handling rare skin diseases.

A 34-layer residual network-based approach is proposed for skin disease classification
using the HAM10000 dataset [26]. The performance of the proposed approach is evaluated
in various clinical settings and the authors reported that the proposed approach performs
better than the existing methods, and in some test cases outperforms the dermatologists.
However, the robustness and generalizability of the proposed approach are not shown
in detail for skin disease classification. A decision fusion of GoogleNet, ResNet-101, and
NasNet-Large is proposed and its performances are shown on the skin disease classification
using the ISIC 2019 dataset [27]. The proposed method demonstrated better performances
compared to the related existing methods. However, the detailed evaluation and analysis
of the proposed method are not evaluated on rare skin disease classification. The inception-
v4-based model was proposed for skin disease classification [28]. The model uses a hybrid
of clinical features and images of skin disease and classifies the patient skin samples into
27 classes. The model performance on rare skin diseases is required to understand the
robustness of the proposed method in handling the imbalanced data set of skin diseases.
ResNet152 and InceptionResNet-V2 with a triplet loss-based approach were proposed for
identifying the skin disease and their performance was shown on a publically available
dataset [29]. The authors demonstrate that the method performed well compared to the
other methods, however, the detailed performance of the method is not demonstrated for
rare skin diseases or the minority classes of skin diseases. CNN-based model is proposed
for skin disease classification. The proposed model supports the multi-class skin disease
classification [30]. The performance of the proposed model is shown on the datasets of
ISIC-17, ISIC-18, and ISIC-19. These three datasets are well-known datasets and are used
for benchmarking the models of machine learning and deep learning in detecting skin
disease and classifying the detected skin disease to its skin disease family. All of these
three datasets are highly imbalanced, such as, some skin disease are rare, and contain
a smaller number of data samples. This may be one of the reasons that the proposed
method reports good performances even by using a non-pretrained CNN model. To handle
rare skin diseases, an attention-based GAN deep learning approach is proposed [31]. The
authors demonstrate that the proposed method generates skin disease samples that are
from different distributions and it is considered to be more effective than data augmentation.
However, even though the attention-based GAN has the capability to generate skin disease
samples from different distributions, the generated sample may not be the same as the data
samples collected from patients in real time.

The authors propose a three-stage approach for skin disease classification [32]. The first
stage employs MaskRCNN for segmentation and feature extraction using DenseNet in the
second stage and classification using a support vector machine (SVM). The proposed model
performances are demonstrated on the datasets of ISBI2016, ISBI2017, and HAM10000. The
experiments reported in the paper demonstrate that the proposed model achieves better
performances compared to the existing models. The proposed model is computationally
expensive and in addition, the proposed model performances are not shown in detail for
rare skin diseases. DenseNet201 network-based approach is proposed for skin disease
classification using HAM10000 dataset [33]. The proposed method demonstrated better
performances compared to the existing non-pretrained models. The authors did not show
detailed experiments on the generalization and robustness of the proposed method in
skin disease classification. A hybrid of MobileNet V2 and the long short-term memory
(LSTM)-based approach is proposed for skin disease classification [34]. This method has
outperformed the existing methods by showing more than 85% accuracy on the HAM10000
dataset. The robustness and generalizability of the proposed method for skin disease
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classification are not discussed in detail. The authors have demonstrated that the CNN-
based model performance is similar to the performance obtained from clinical experts [35].
However, the authors did not show a detailed analysis of the proposed approach in
different experimental settings. Thus, the proposed method cannot be considered robust
and accurate. The summary of the existing works on skin disease detection and skin disease
classification is summarized in Table 1.

Table 1. Summary of existing methods for skin disease classification.

Reference Methodology Dataset
Pretrained

Model

Effective
for
Class
Imbalance

Accuracy Attention
Large-
Scale
Learning

Feature
Fusion

[9] GoogleNet Inception v3 ISIC Archive Yes No 93.3% No No No

[10] ResNet50 ISIC Archive Yes No 82% No No No

[11] CNN ISIC 2017 Yes No 83% No No No

[12] ResNet-50 ISIC 2018 Yes No 94% No No Yes

[13] ResNet-152 HAM10000 Yes No 92% No No No

[14] SE-Resnext50 HAM10000 Yes Yes - Yes No Yes

[15] CNN ISIC Archive No No 97.49 No No No

[16] GoogLeNet Inception-v3 ISIC 2018 Yes No 67–73% No No No

[36] VGG, ResNet, AlexNet ISIC 2019 Yes No 95% No No No

[17]

VGG, ResNET-50,
Inception,
MobileNet, DenseNet,
Xception

ISIC 2018 Yes No 92.4 No Yes Yes

[18] Inception, ResNet
ISIC 2016,
2017, and
2018

Yes No 81.79 No No No

[19] EfficientNet ISIC 2016,
ISIC 2017 Yes No 86.2% No No Yes

[20] ResNet ISIC 2018 Yes No 95.2 Yes No No

[21] ResNet Private
dataset Yes No 79% No No No

[22] EfficientNet, ResNet ISIC 2019 Yes No - No No No

[23] CNN and Naïve Bayes ISIC Archive No No 93.6% No Yes No

[24]

VGG

ResNet

DenseNet

ISIC 2018 Yes Yes 87.06% No Yes Yes

[25] ResNeXt101 HAM 10000 Yes No 92.83% No No No

[26] ResNet HAM 10000 Yes No 80–90% No No No

[27] GoogleNet, ResNet-101, &
NasNet-Large ISIC 2019 Yes No 89% No No Yes

[28] Inception Private
dataset Yes No 70–75% No No No

[35] CNN Private
dataset No No - No No No

[29] ResNet152 and
InceptionResNet-V2

Private
dataset Yes No 87.42 No No No

[30] CNN

ISIC 2017

ISIC 2018

ISIC 2019

No No 85–90% No No No

[31] ResNet ISIC 2018 Yes Yes 70.1% Yes No No

[32] DenseNet

ISBI 2016

ISBI 2017

HAM10000

Yes No 93.6% No Yes No

[33] DenseNet HAM10000 Yes No 96.18 No No No

[34] MobileNet HAM10000 Yes No 85% No Yes No

Proposed
EfficientNetV2B0,
EfficientNetV2B1, &
EfficientNetV2B2

HAM10000,
ISIC Archive Yes Yes 99% Yes Yes Yes
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The detailed literature survey of the aforementioned works shows that ImageNet-
based pretrained models are employed for skin disease detection and its family
classification with the aim to enhance the performance of non-pretrained models.
However, the existing studies on skin disease databases demonstrate that the available
standard database in the literature is highly imbalanced, and also, some skin diseases are
rare. As a result, rare skin diseases contain very a much smaller number of data samples.
Thus, the existing models are not accurate in predicting this rare skin disease and the
existing models are highly dominant to the skin disease that are common and have a
very high number of data samples. In a skin image database, the disease is a tiny portion
of the overall skin image and it may be possible that the existing study might miss this
type of important tiny region in accurately identifying the skin disease. Even though the
CNN-based models have the capability to extract the important regions from the skin
disease image, extraction of important and optimal features from the infected region
in the overall image is limited by the CNN-based pretrained models. In addition, each
CNN-based pretrained models have the capability to extract its own features to accurately
identify the skin disease and classify the skin disease to its family. The features are unique
and disjoint from each other. In the proposed work, cost-sensitive learning is introduced
to the CNN-based pretrained model to avoid bias in learning during training, and equal
importance is given to all the classes of skin disease. The various EfficientNetV2-based
pretrained models were extracted and further, the dimension of the feature was reduced
using the dimensionality reduction approach, i.e., PCA. Further, the features are combined
and passed into the meta-classifier for skin disease detection and skin disease classification.
The stacked classifier is a two-level approach; the first level includes the random forest
(RFTree) and SVM for the prediction of skin disease, and later these predictions were
classified accurately using the logistic regression in the second level.

3. Proposed Methodology for Skin Cancer Detection and Classification

The proposed methodology for skin disease detection and skin disease classification is
shown in Figure 1. The details of the proposed architecture are given below.

The skin images of patients are preprocessed in the input layer. The preprocessing
includes transforming the dimension of the image into input dimensions of the CNN-based
pretrained model. After reading the image data, the data are transformed into the [0–1]
range by applying normalization.

The existing literature survey shows that the CNN-based pretrained models have
been employed for skin disease detection and classification. The pretrained models of the
ImageNet database are finetuned on the skin image database. This type of finetuned model
has demonstrated better performances compared to the non-finetuned models. This work
employs various CNN-based pretrained models for skin disease detection and classification.
The pretrained models considered in this work are Xception, VGG16, MobileNet, ResNet50,
InceptionV3, DenseNet121, EfficientNetB0, EfficientNetV2B0, EfficientNetV2B1, and
EfficientNetV2B2. All these models have an input layer, more than one hidden layer, and
a classification layer. In the hidden layer, the pretrained models contain more than one
convolution layer, pooling layer, and fully connected layers. Between the convolution and
fully connected layers, the model contains batch normalization and dropout layers.

The current work employs EfficientNetV2 model for skin disease detection and
classification. EfficientNetV2 model is a pretrained model on the ImageNet database.
This database contains 1000 classes of natural images and the models have learned a
rich feature representation by training a model using a very big image database. In this
work, the EfficientNetV2 pretrained model is finetuned on skin disease detection with
two classes by replacing the last layer of the EfficientNetV2 pretrained model and skin
disease classification with seven classes by replacing the last layer of the EfficientNetV2
pretrained model.
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Figure 1. Proposed methodology for skin disease detection and skin disease classification.

Recent years’ work demonstrates that many experiments carried out by researchers
find out the efficient CNN architecture in deep learning. The architecture maintains a
balance among accuracy, speed, FLOPs, etc. For example, to improve the performance of the
model with better accuracy, DenseNet and EfficientNet model were introduced. The same
authors of EfficienNet architecture studied the limitations of the EfficienetNet architecture
and developed a new architecture called EfficientNetV2. EfficientNetV2 is a family of
models such as EfficientNetV2B0, EfficientNetV2B1, EfficientNetV2B2, EfficientNetV2B3,
EfficientNetV2S, EfficientNetV2M, and EfficientNetV2L. In EfficientNetV2 architecture, the
authors developed techniques to improve the model performances with a smaller number
of parameters and improve the model inference time. The authors included the following
techniques in EfficientNetV2:

• Neural architecture search (NAS): To find optimal parameters and model design, the
authors employ random search and reinforcement learning techniques.

• Scaling: Authors have employed the compound scaling rule of the EfficientNet model.
However, the modification was conducted to the compound scaling scheme to avoid
memory issues due to the increase in the size of the image.

• Training: Authors employ new regularization methods, and training model guidelines
to improve the efficiency during training of an EfficeienNetV2 model.

• Progressive learning: The training of the model is accelerated by progressively
increasing the size of the image.

• Convolutions and their building blocks: The EfficientNetV2 models use various types
of convolutions, mainly Fused-MB Conv instead of MB Conv. The detailed architecture
information of Fused-MB Conv and MB Conv is shown in Figure 2.
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Figure 2. Architecture of MBConv and Fused-MBConv.

The above-modified methods make the EfficientNetV2 model achieve better
performance by increasing the speed during training a model compared to EfficientNet
models ranging from B0 to B7.

Since the CNN-based pretrained models are ineffective in handling the imbalanced
datasets, the current work integrates a cost-sensitive learning approach for CNN-based
pretrained models. During backpropogation, the current work follows an algorithmic
approach to include the misclassification costs to handle the bias in the training of a model.
The skin disease sample of patient S is connected with a cost item [C[class(S), t], where
class(S) and t are the actual and predicted class, respectively. The current work assigns less
cost to the classes that contain more data samples and high cost to the classes that contain a
lesser number of skin disease data samples. Since the values of the cost matrix are empty
at the beginning, the current work follows the Gaussian distribution to assign the values
for the cost matrix. These values in the cost matrix are finetuned across epochs. The loss
function for cost-insensitive CNN-based pretrained models is defined as

J = − ∑
s∈samples

∑
n

tn log predn (1)

The loss function for the cost-sensitive model is given below:

J = − ∑
s∈samples

∑
n

tn log prednC[class(s), n] (2)

where S is a loss function, predn denotes the predicted output of the nth output neuron,
tn is the target value, C[class(s), n] denotes the cost with class(s) and is the exact value of
sample s, and n is the predicted class of sample s.
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The EfficientNetV2 models such as EfficientNetV2B0, EfficientNetV2B1, and
EfficientNetV2B2 networks contain more than one convolutional layer and pooling layers
followed by a series of fully connected layers. There may be a possibility that passing
the high-dimensional feature representation learned from the series of a convolutional
and pooling layer to a fully connected layer results in overfitting and hinders the model’s
generalization ability. Since more than one fully connected layer is involved at the end
of the networks before classification, dropout and regularization layers are required.
There may be a possibility that the dropout and regularization layers result in the loss of
important features. To overcome the series of fully connected layers with dropout and
regularization layers, in this work, instead of passing the extracted features from finetuned
model to global average pooling, the current work sends the extracted features to an
attention layer. Global average pooling is a simple approach that estimates the average
output of each feature map in the previous layer. Since some of the features are more
important than others in each feature map of the previous layer, an attention mechanism is
introduced that turns pixels in the GAP on or off. Next, rescale results on the number of
pixels. The attention approach employed in this work is similar to global weighted average
pooling. Since the dimensionality of the features of the finetuned model is high, KPCA is
used. This helps to reduce the dimension of the features. KPCA is an improved version
of PCA. It employs a kernel that allows projecting the data onto a higher dimensional
space where the data points become linearly separable. Though there are many types
of kernels available, this work employs the Radial basis function (rbf). This is mainly
due to the reason that the data samples of skin disease are highly non-linearly separable.
This is mainly due to the reason that the skin disease is very similar to each other. There
may be a possibility that other kernels might perform better than the rbf kernel. Thus, a
detailed analysis of the importance of kernel and other hyperparameters of KPCA will
be considered as future work. The reduced feature representation of EfficientNetV0,
EfficientNetV1, and EfficientNetV2 are fused. Since there are many advanced feature
fusion methods available in the literature, employing them in the current work to learn
better feature representation to accurately detect skin disease and classify them into their
skin disease family will be considered as one of the significant directions toward future
work. Further, the reduced features were passed into the ensemble meta-classifier.

The meta-classifier is a two-stage classifier, the first stage contains SVM and RFTree for
prediction and the second stage contains the logistic regression for classification. SVM is a
kernel-based machine learning algorithm used for solving problems related to classification
and regression. SVM considers each data point in skin disease data samples in an n-
dimensional plane and partitions them into two classes. The hyperplane line is selected
based on the maximum margin among the two classes’ data points to distinguish the two
classes. The selection of the kernel plays an important role in achieving good performance.
The most commonly used kernels are rbf, linear, and poly. RFTree randomly constructs
multiple decision trees and applies the input datasets. The output classification of each
decision tree is considered to perform the ensemble learning to determine the final output.
One of the well-known ensemble methods used in classification is the maximum number
of RFTree trees voted for any particular class, considered as the outcome of the given
input. Logistic regression is the probability modeling of the outcome given an input
variable. Logical regression can be used for solving binary or multi-class problems. The
logistic function will be a Sigmoid function taking any input value and classifying it as 0
or 1 for the binary classification of skin diseases. These machine learning classifiers are
used in our framework to perform the ensemble meta-classifier-based feature fusion skin
disease detection and classification. The SVM, RFTree, and logistic regression classifiers
have parameters. The optimal performance depends on the parameters. This work has
run several trials of experiments to identify the best parameters for SVM, RFTree, and
logistic regression. The best parameters for SVM are tolerance = 0.0001, max iter = 5000,
kernel = linear, and regularization parameter C = 1.0. The important parameters and the
values of RFTree are n_estimators = 100 and max depth = 200. For both SVM and RFTree,
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random_state is set to 50. In logistic regression, tolerance, max_iter, and c is set to 0.0001,
100, and 1.0, respectively.

The steps involved in skin disease detection and skin disease classification using the
proposed model are shown in Algorithm 1. Skin disease and Healthy samples are inputs to
the proposed model and after that, the images are passed through several hidden layers
to extract the features to recognize skin diseases. Finally, the proposed model outputs the
label for the skin samples as either Healthy or Malignant in skin disease detection, and in
the case of skin disease classification, the skin samples are classified into corresponding
skin disease families.

Algorithm 1: Skin disease detection and classification.
Input: A set of Healthy and skin disease color images img1, img2,..., imgn.
Output: Labels y1, y2,..., yn.
for each color image imgi do

// EfficientNetV2B0 architecture
feature maps Fm0 = ConvolutionalLayers(imgi);
gwap features G0 = GlobalWeightedAveragePooling(Fm0);

// EfficientNetV2B1 architecture
feature maps Fm1 = ConvolutionalLayers(imgi);
gwap features G1 = GlobalWeightedAveragePooling(Fm1);

// EfficientNetV2B2 architecture
feature maps Fm2 = ConvolutionalLayers(imgi);
gwap features G2 = GlobalWeightedAveragePooling(Fm2);

// Dimensionality reduction
reduced features RFB0 = KPCA(G0);
reduced features RFB1 = KPCA(G1);
reduced features RFB2 = KPCA(G2);

// Feature Fusion
fused features FF = RFB0 + RFB1 + RFB2;

// Ensemble meta-level classifier
// Stage 1: Base-level classifiers
prediction P1 = SVM(FF);
prediction P2 = RandomForestClassifier(FF);

// Stage 2: Meta-level classifier
Compute yi = LogisticRegression(P1, P2);
// Skin disease detection
yi: 0 (Healthy) and yi: 1 (Skin disease);
// Skin disease classification
yi: 0 (Melanocytic nevi), yi: 1 (Melanoma), yi: 2 (Benign keratosis-like lesions),

yi: 3 (Basal cell carcinoma), yi: 4 (Actinic keratoses), yi: 5 (Vascular lesions), yi:
6 (Dermatofibroma);

end

The proposed model takes skin disease image samples as input and outputs a value as
either skin disease or healthy. Further, the model classifies the detected skin disease into its
skin disease family.
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4. Description of Datasets

The detailed statistics of skin diseases databases used in skin disease detection and
skin disease classification are provided in Tables 2 and 3, respectively. The data statistics
show that the datasets are highly imbalanced. Without the proper handling of this type
of dataset during training a model, there may be a possibility that due to bias, the models
demonstrate better accuracy. The models might not learn better feature representation of
the minority classes of skin diseases. To avoid this, the current work assigns the higher
cost weights for the minority classes and lower-cost weights for the majority classes of skin
disease during training a model. This type of assignment of cost-weights during training a
model helps to avoid bias and gives importance to all skin diseases.

Skin disease samples of Healthy and Malignant are shown in Figure 3. These images
are randomly chosen from the skin disease detection dataset. The images for skin disease
detection are taken from the publicly available data repository, the ISIC archive. The images
shown in Figure 3 demonstrate that the skin samples, both healthy and malignant, have
higher intra-class and inter-class similarity. Since most of the samples of healthy and
malignant look similar, there may be a chance that misclassification can be performed by
the dermatologists. The chances of misclassification rate are very high. To avoid this, this
work proposed a CAD-based tool by using an advanced deep learning approach with
meta-classifier learning that extract the optimal features to accurately discriminate between
the healthy and malignant.

Figure 3. Skin image samples of healthy and malignant from skin disease dataset.

A benchmark dataset for the development of CAD-based tools provided by the ISIC.
The HAM10000 (“Human Against Machine with 10000 training images”) skin disease
dataset is publicly available in the ISIC archive. The HAM10000 dataset is considered to be
one of the well-known datasets and it is used in many studies to benchmark the machine
learning and deep learning models for skin disease detection and skin disease classification.
This dataset was collected from different populations with different modalities. Patients are
from both male and female groups and most patients’ ages are in the range of 30 to 44. The
data of skin disease classification shows that the skin disease increases with the increase
in the age. Skin diseases are less for children aged less than 10. Skin diseases are most
prominent if males are compared to females according to the skin disease classification
dataset i.e., HAM10000. The most found skin disease among people is melanocytic nevi
and the least found is dermatofibroma. Skin diseases are taken from the different regions
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of the body. The regions are the back, lower extremity, trunk, upper extremity, abdomen,
face, chest, foot, neck, scalp, hand, ear, genital, and sacral. Most patients are affected by
skin disease in the back region and it is most prominent in men. Benign keratosis-like
lesions are affected in the region face and Melanocytic nevi are affected in body parts of
the patients except for the face. Melanocytic nevi diseases are the most prominent skin
disease in the age group between 0–75. People aged 80–90 are affected more by Benign
keratosis lesions. Skin disease in HAM10000 datasets is discovered by using histopathology
(53.3%), follow-up examination (37.0%), expert consensus (9.0%), and confirmation by
in-vivo confocal microscopy (0.7%). The samples were taken from different places in the
patient’s body. This dataset is composed of 10,015 dermatoscopic images. The ground truth
of the images is conducted by expert pathologists and medical experts. The images in the
HAM10000 dataset were collected from the Department of Dermatology at the Medical
University of Vienna, Austria, and Cliff Rosendahl in Queensland, Australia for a time
period of around 20 years. Thus, the database is good and contains skin patient samples for
various skin diseases. The images in HAM10000 are from seven different skin diseases. The
detailed information on skin diseases and the technology involved in the database creation
is discussed in detail by the authors [37].

Table 2. Statistics of skin disease detection dataset.

Class Training Testing Total

Healthy 1440 360 1800

Malignant or Skin Cancer 1197 360 1557

Total 2637 720 3357

Table 3. Statistics of skin disease classification dataset.

Class Training Testing Total

Melanocytic nevi (nv) 6034 671 6705

Melanoma (mel) 1005 108 1113

Benign keratosis-like lesions (bkl) 989 110 1099

Basal cell carcinoma (bcc) 463 51 514

Actinic keratoses (akiec) 290 37 327

Vascular lesions (vasc) 130 12 142

Dermatofibroma (df) 102 13 115

Total 9013 1002 10,015

The samples of healthy and skin disease samples are shown in Figure 3. Skin disease
samples of seven classes are shown in Figure 4. As shown in Figures 3 and 4, the
samples belonging to various classes in both datasets of skin disease detection, skin disease
classification are similar and they have high intra-class and inter-class variance. In addition
to that, the tiny affected region is important in accurately detecting and classifying the
skin disease to its family of skin diseases. There may be a possibility that the CNN-based
models might not give importance to these tiny regions. To avoid this, the current work
integrates attention to the CNN architecture that can focus on the infected regions in the
skin disease image.
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Figure 4. Skin disease samples of 7 classes in skin disease classification.

5. Statistical Metrics

The proposed model for skin disease detection and skin disease classification is
evaluated using the following statistical measures

Accuracy: The accuracy measure is estimated by dividing the total of correctly
classified skin data samples by the total number of skin disease data samples. The accuracy
metric gives equal importance to all the classes in the skin disease dataset. This may not be
considered to be a good metric to evaluate the proposed model because the dataset used in
skin disease classification is highly imbalanced.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)
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Precision: It is also called positive predictive value. It is the correct classification of the
skin disease samples to the sum of the correct classification of the skin disease and incorrect
classification of the skin disease in the given model. False positives should be less to get
high precision.

Precision =
TP

TP + FP
(4)

Recall: It is also called sensitivity. It is the correct classification of the skin disease to
the sum of the correct classification of the skin disease and the missed classification of the
skin disease in the given model. False negative should be less to obtain high recall.

Recall =
TP

TP + FN
(5)

F1-score: It is the harmonic mean of precision and recall

F1 score = 2× Precision× Recall
Precision + Recall

(6)

For a good skin disease detection and classification model, the precision, recall, and
f1-score is close to 1.

TP, TN, FP, and FN denote true positive, true negative, false positive, and false negative,
respectively, in accuracy, precision, recall, and f1-score. These are defined in the skin disease
dataset, as given below

• TP: The number of skin disease data samples correctly predicted as skin disease.
• FN: The number of skin disease data samples wrongly predicted as normal.
• TN: The number of healthy patient data samples predicted as healthy.
• FP: The number of healthy patient data samples predicted as skin disease.

Using a confusion matrix, the TP, TN, FP, and FN are obtained. The confusion matrix
counts the distribution of predictions across the actual labels of the skin disease dataset.
The dimension of the confusion matrix is nXn, and n denotes the number of classes in
the skin disease dataset. To estimate the performances of the proposed model at the class
level in both skin disease detection and skin disease classification, precision, recall, and
f1-score statistical metrics were considered in this work. The performances are reported for
both the macro and weighted metrics of precision, recall, and f1-score. Macro measures
are considered to be better for imbalanced datasets because the classes in the skin disease
datasets are considered equally while computing the arithmetic mean of precision, recall,
and f1-score of all the skin diseases. In the weighted metric, a support score is assigned
while computing the arithmetic mean of precision, recall, and f1-score of all the skin
diseases. The models are considered to be good if it shows high precision and high recall
for rare skin diseases.

6. Results and Discussions

The experiments were conducted on the Kaggle GPU platform with hardware
configurations: GPU P100 with 16 GB GPU memory, 13 GB CPU RAM, and 73.1 GB hard
disk and libraries such as Keras, TensorFlow, scikit-learn with Python 3.5 for machine
learning and deep learning model development.

CNN-based pretrained models were trained on skin disease detection and skin
disease classification. The CNN-based pretrained models considered in this work are
Xception, VGG16, MobileNet, ResNet50, InceptionV3, DenseNet121, EfficientNetB0,
EfficientNetV2B0, EfficientNetV2B1, and EfficientNetV2B2. These models contain several
network parameters and network structures. The optimal performance depends on these
network parameters and network structures. To find the best parameters for the network,
various trials of experiments were run for the parameters’ optimizer, learning rate, epochs,
and batch size. During training, the data samples in training and validation sets are
shuffled to avoid bias in the training of a model. The optimal parameters for learning
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rate, epochs, batch size, and optimizer were 0.001, 50, 64, and adam, respectively. Various
trials of experiments were run for optimizers such as adam, sgd, Adagrad, Adamax, and
Nadam. The experiments with adam demonstrated successive improvement in training
accuracy and validation accuracy and successive decrement in training loss and validation
loss across epochs. Based on this, the optimizer parameter value is set to adam for the rest
of the experiments. Next, to identify the optimal learning rate, the experiments were run
for the learning rate in the range of 0.0001–0.5. The experiment with 0.001 demonstrated
better training accuracy, validation accuracy, training loss, and validation loss during
training. Thus, the learning rate is set to 0.001. To find the optimal parameters for batch
size, the experiments were run for batches 32, 64, and 128. Due to limited access to
memory, the batch size was not increased after 128. The experiments with 64 and 128 were
almost similar in training accuracy and validation accuracy across epochs. Thus, the batch
size is set to 64. Though batch size 128 slightly shows better performances for training
accuracy and training loss, the batch size is set to 64. Because some of the CNN-based
pretrained models result in memory issues, to find out the best parameter for epochs, the
experiments were run for 70 epochs. However, all the models have not demonstrated
any successive improvement in training accuracy and successive decrease in training
loss after 50 epochs. Thus, we decided to set 50 epochs as optimal for the training of a
model to detect skin diseases and classify them into the skin disease family. The training
accuracy and training loss for the CNN-based pretrained models across 50 epochs for
skin disease detection is shown in Figure 5. Figure 6 shows the training accuracy and
training loss for the CNN-based pretrained models for skin disease classification. The
models belonging to the EfficientNetV2 family demonstrated better accuracy by showing
successive improvement in training accuracy and successive decrement in training loss
compared to other CNN-based pretrained models in both skin disease detection and skin
disease classification. Though the other models attained closer performance of training
accuracy and training loss as EfficientNetV2, most of the models other than EfficientNetV2
did not show the same performance during testing. This is mainly due to the reason
that most of the models other than EfficientNetV2 have reached the phase of overfitting
and the models were not able to discriminate well among classes during testing for
the new variants of skin disease images. VGG16 and MobileNet models demonstrated
less performance in training accuracy and training loss compared to other CNN-based
pretrained models in both skin disease detection and skin disease classification. Xception,
DensNet121, ResNet50, and InceptionV3 models’ performance in terms of training accuracy
and training loss were almost similar across epochs 50 but less compared to the models
of a family of EfficientNet in both skin disease detection and skin disease classification.
For skin disease detection, most of the models have demonstrated above 96% training
accuracy and less than 0.1 training loss. EfficientNet models have reached above 99%
training accuracy and less than 0.001 training loss for skin disease detection at the end of
epochs 50. Most of the models have reached an accuracy of 95% and loss of less than 1
by epochs in the range of 15–20 for skin disease detection. The experiments were run to
50 epochs because the models have demonstrated successive improvement in training
accuracy and training loss after 20 epochs. Similar performances were demonstrated by the
CNN-based pretrained models for skin disease classification. In particular, the family of
EfficientNet models has achieved 99% training accuracy with less than 0.01 training loss
for skin disease classification. Most of the CNN-based models have demonstrated above
95% training accuracy and less than 0.1 training loss at epochs in the range 20–25. The
experiments were continued until epoch 50 because the model has demonstrated a little
successive improvement after epoch 25.



Cancers 2022, 14, 5872 18 of 26

Figure 5. Training accuracy and training loss of CNN-based finetuned models for skin disease
detection (left to right).

Figure 6. Training accuracy and training loss of CNN-based finetuned models for skin disease
classification (left to right).

The total parameters for Xception, VGG16, MobileNet, ResNet50, InceptionV3,
DenseNet121, EfficientNetB0, EfficientNetV2B0, EfficientNetV2B1, EfficientNetV2B2 are
23025711, 15306055, 4344519, 25751943, 23967015, 8153159, 5427363, 5427363, 7953031,
and 9277433, respectively. The train parameters for Xception, VGG16, MobileNet,
ResNet50, InceptionV3, DenseNet121, EfficientNetB0, EfficientNetV2B0, EfficientNetV2B1,
fficientNetV2B2 are 22971183, 15306055, 4322631, 25698823, 23932583, 8069511, 5385347,
5385347, 7890983, and 9209865, respectively. The non-train parameters for Xception, VGG16,
MobileNet, ResNet50, InceptionV3, DenseNet121, EfficientNetB0, EfficientNetV2B0,
EfficientNetV2B1, fficientNetV2B2 are 54528, 0, 21888, 53120, 34432, 84648, 42016, 42016,
62048, and 67568, respectively. The trained models’ performances of CNN finetuned
models for skin disease detection are reported in Table 4. Table 4 shows that the proposed
model outperformed all the CNN-based pretrained models for skin disease detection
with an accuracy of 99%. Results of the CNN-based models are reported in terms of
Accuracy, weighted and macro precision, weighted and macro recall, and weighted and
macro f1-score. The proposed model has improved the accuracy by 2% of the family
of EfficientNetV2 models and 3% of the family of EfficientNet models. This shows
that each CNN-based pretrained models learn its own feature representation and these
features are unique. The proposed model takes advantage of the fusion of features of
the family EfficientNetV2 models to accurately detect skin disease. Models such as
ResNet50, InceptionV3, DenseNet121, and Xception demonstrated an accuracy of 92%,
93%, 93%, and 93%, respectively. These models performed lesser than the proposed model
by accuracy in the range of 6–7%. In addition, the performances shown by ResNet50,
InceptionV3, DenseNet121, and Xception on the test dataset for skin disease classification
are lesser compared to the family of models of EfficientNet. Both the MobileNet and
VGG16 demonstrated performances in terms of accuracy in the range of 88–89% for skin
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disease detection which is lesser than 10% accuracy compared to the proposed model.
Overall, both MobileNet and VGG16 performed lesser than the proposed model, a family
of EfficientNet models, and models such as ResNet50, InceptionV3, DenseNet121, and
Xception. Along with accuracy, the performances for skin disease detection are reported in
terms of macro and weighted precision, recall, and f1-score. The proposed model macro
precision, macro recall, and macro f1-score is 99%, 99%, and 99%, respectively. Similar to
the macro score, the proposed model showed 99% for weighted precision, weighted recall,
and weighted f1-score. This indicates that the proposed model is effective in handling
the imbalanced dataset. Macro and weighted performances of the proposed model are
2–3% higher compared to the family of EfficientNet models, 6–7% higher compared to the
models such as ResNet50, InceptionV3, DenseNet121, and Xception, and 10–12% higher
compared to the models such as VGG16 and MobileNet. Overall, the proposed method
outperformed the existing CNN-based models and a family of EfficientNet models with
better accuracy, precision, recall, and f1-score metrics for skin disease detection. The less
performance in terms of accuracy, precision, recall, and f1-score are shown by the models
such as MobileNet and VGG16.

Table 4. Detailed results for skin disease detection.

Model Accuracy Type Precision Recall F1-Score Confusion
Matrix

Xception 0.93
Macro 0.93 0.93 0.93 [342 18]

[34 326]Weighted 0.93 0.93 0.93

VGG16 0.89
Macro 0.89 0.89 0.89 [333 27]

[50 310]Weighted 0.89 0.89 0.89

MobileNet 0.88
Macro 0.89 0.88 0.88 [330 30]

[53 307]Weighted 0.89 0.88 0.88

ResNet50 0.92
Macro 0.92 0.92 0.92 [336 24]

[36 324]Weighted 0.92 0.92 0.92

InceptionV3 0.93
Macro 0.93 0.93 0.93 [338 22]

[31 329]Weighted 0.93 0.93 0.93

DenseNet121 0.93
Macro 0.93 0.93 0.93 [340 20]

[32 328]Weighted 0.93 0.93 0.93

EfficientNetB0 0.96
Macro 0.96 0.96 0.96 [350 10]

[19 341]Weighted 0.96 0.96 0.96

EfficientNetV2B0 0.97
Macro 0.97 0.97 0.97 [352 8]

[16 344]Weighted 0.97 0.97 0.97

EfficientNetV2B1 0.97
Macro 0.97 0.97 0.97 [355 5]

[16 344]Weighted 0.97 0.97 0.97

EfficientNetV2B2 0.97
Macro 0.97 0.97 0.97 [355 5]

[16 344]Weighted 0.97 0.97 0.97

Proposed 0.99
Macro 0.99 0.99 0.99 [357 3]

[5 355]Weighted 0.99 0.99 0.99
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For skin disease classification, the current work employed CNN-based pretrained
models, and its results are reported in Table 5. The proposed approach outperformed
all the other methods for skin disease classification in all the settings of test experiments.
The table contains the results of the CNN-based pretrained models in terms of Accuracy,
weighted and macro precision, weighted and macro recall, and weighted and macro
F1-score. Since the dataset of skin disease classification is highly imbalanced, the work
considers macro precision, macro recall, and macro f1-score. To demonstrate the differences
between macro and weighted, this work reports the performances of all the models in
both macro and weighted. As can be observed from the Table 5, the models show high
precision, high recall, and high f1-score even though the misclassification rate is high in
some rare skin diseases such as Dermatofibroma and Vascular lesions. The proposed
model showed macro precision, macro recall, and macro f1-score of 97%, 100%, and 99%,
respectively, and weighted precision, weighted recall, and weighted f1-score of 99%,
99%, and 99%, respectively. Though there is misclassification in the skin disease classes,
the weighted measure shows 99% for precision, recall, and F1-score. However, macro
precision, macro recall, and macro f1-score are considered to be best compared to weighted
metrics because these metrics facilitate showing the individual class’s score with support
instead of taking the average of all the classes. The family of EfficientNetV2 models
showed better macro precision, macro recall, and macro f1-score over EfficientNetB0.
The EfficientNetV2 models improved the macro precision, macro recall, and macro
weighted metric of EfficientNetB0 model by 18%, 8%, and 13%, respectively. In a
family of EfficientNetV2 models, EfficientNetV2B2 models outperformed the models
EfficientNetV2B0 and EfficientNetV2B1 in all the settings of the experiments during testing
a model for skin disease classification. The experiments are stopped at EfficientNetV2B2
models because there was no performance improvement by using other EfficientNetV2
models. Macro and weighted metrics of ResNet50, InceptionV3, and DenseNet121 models
are in the range of 50–65%, 50–65% and 80–90%, respectively. These models’ performances
are 30% lesser than the proposed model and a family of EfficientNet model compared to
macro metrics and 20% lesser compared to weighted metrics of the proposed model and a
family of EfficientNet models. Xception, VGG16, and MobileNet models showed macro
precision, macro recall, and macro f1-score in the range of 40–60% and weighted precision,
weighted recall, and weighted f1-score in the range of 80–90%. These model performances
are almost 30% less compared to the macro metric of the proposed model and 10% less
compared to the weighted metric of the proposed model. The proposed models showed an
accuracy of 99% for skin disease classification by improving the accuracy in the range of
8–9% for the family of EfficientNet models. Models such as DenseNet121, InceptionV3, and
ResNet50 showed an accuracy of 93%, 93%, and 92%, respectively, and their performances
are lesser compared to the proposed model and the family of EfficientNet models. Similar
to skin disease classification, models such as Xception, VGG16, and MobileNet showed
an accuracy of 83%, 79%, and 76%, respectively. The model performances of Xception,
VGG16, and MobileNet are lesser compared to the proposed model and other CNN-based
pretrained models such as a family of EfficientNet models, DenseNet121, InceptionV3,
and ResNet50. Overall, the proposed model showed better performances in accuracy and
both macro and weighted metrics compared to the other CNN-based pretrained models.
Since the proposed model has shown better performances in macro metrics compared
to the existing CNN-based models on skin disease classification, the proposed model
is considered to be effective in handling imbalanced skin disease datasets. Moreover,
the proposed model is able to detect and classify rare skin diseases such as Vascular
lesions and Dermatofibroma more accurately compared to other existing CNN-based
pretrained models.
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Table 5. Detailed results for skin disease classification.

Model Accuracy Type Precision Recall F1-Score

Xception 0.83
Macro 0.57 0.59 0.58

Weighted 0.84 0.83 0.84

VGG16 0.79
Macro 0.50 0.51 0.50

Weighted 0.80 0.79 0.80

MobileNet 0.76
Macro 0.46 0.44 0.44

Weighted 0.78 0.76 0.77

ResNet50 0.85
Macro 0.56 0.55 0.54

Weighted 0.86 0.85 0.85

InceptionV3 0.89
Macro 0.59 0.60 0.59

Weighted 0.88 0.89 0.88

DenseNet121 0.90
Macro 0.61 0.63 0.61

Weighted 0.89 0.90 0.89

EfficientNetB0 0.91
Macro 0.78 0.76 0.75

Weighted 0.91 0.91 0.91

EfficientNetV2B0 0.93
Macro 0.82 0.83 0.82

Weighted 0.93 0.93 0.93

EfficientNetV2B1 0.94
Macro 0.91 0.84 0.86

Weighted 0.95 0.94 0.94

EfficientNetV2B2 0.96
Macro 0.96 0.84 0.88

Weighted 0.96 0.96 0.96

Proposed 0.99
Macro 0.97 1.00 0.99

Weighted 0.99 0.99 0.99

The detailed results of each class in skin disease detection and skin disease
classification is reported in Tables 6 and 7, respectively. In skin disease detection, the
proposed approach demonstrated 99% accuracy, 99% precision, 99% recall, and 99%
f1-score for both Healthy and Malignant classes. For skin disease classification, the
proposed model showed 100% precision, 100% recall, and 100% f1-score for the skin
diseases Actinic keratoses, Dermatofibroma, and Vascular lesions. For Melanoma and
Melanocytic nevi, the proposed model demonstrated 96% precision, 100% recall, 98%
f1-score, and 100% precision, 98% recall, and 99% f1-score, respectively. The proposed
model for skin diseases such as Basal cell carcinoma and Benign keratosis-like showed
89% precision, 100% recall, 94% f1-score and 97% precision, 100% recall, and 99% f1-score,
respectively. Overall, the proposed approach demonstrated better performance in all the
classes in both skin disease detection and skin disease classification compared to other
existing CNN-based pretrained models.
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Table 6. Detailed results of Healthy and Malignant classes in skin disease detection.

Class Precision Recall F1-Score

Healthy 0.99 0.99 0.99

Malignant 0.99 0.99 0.99

accuracy 0.99

macro avg 0.99 0.99 0.99

weighted avg 0.99 0.99 0.99

Table 7. Detailed results of each classes in skin disease classification.

Class Precision Recall F1-Score

Actinic keratoses (akiec) 1.00 1.00 1.00

Basal cell carcinoma (bcc) 0.89 1.00 0.94

Benign keratosis-like lesions (bkl) 0.97 1.00 0.99

Dermatofibroma (df) 1.00 1.00 1.00

Melanoma (mel) 0.96 1.00 0.98

Melanocytic nevi (nv) 1.00 0.98 0.99

Vascular lesions (vasc) 1.00 1.00 1.00

accuracy 0.99

macro avg 0.97 1.00 0.99

weighted avg 0.99 0.99 0.99

The confusion matrix for the CNN-based pretrained models for skin disease detection
is included in Table 2. The proposed approach misclassification rate is 0.0111, which is
lesser compared to all the other CNN-based pretrained models. The model misclassifies
the three samples of Healthy as Malignant and five samples of Malignant as Healthy.
The misclassification rate of EfficientNetB0, EfficientNetV2B0, EfficientNetV2B1, and
EfficientNetV2B2 are 0.0401, 0.0333, 0.0292, and 0.0292, respectively. Models such as
ResNet50, InceptionV3, Xception, and DenseNet121 showed misclassification rates of
0.0811, 0.0736, 0.0722, and 0.0722, respectively. The high misclassification rate is shown
by models such as VGG16 and MobileNet. The misclassification rate of VGG16 and
MobileNet are 0.1021 and 0.1153, respectively. All the models including the proposed
approach demonstrated a high misclassification rate for the Malignant. This indicates
that the model’s enhancement is required to avoid these misclassifications. There may
be a possibility to avoid misclassification in the Malignant class by providing more
data samples from different patients across different ages from different modalities. In
addition to that, a detailed investigation and analysis of the proposed method needs to
be analyzed to understand the misclassification. The optimal features that are used to
accurately detect the Malignant data samples need to be analyzed in detail to understand
the misclassification. This type of study of the proposed model can be considered as one of
the significant directions toward future work.

The confusion matrix for the CNN-based pretrained model for skin disease
classification is shown in Figure 7. The proposed model showed a 0.0138 misclassification
rate, which is less compared to all the CNN-based pretrained models. The misclassification
rate of EfficientNetB0, EfficientNetV2B0, EfficientNetV2B1, and EfficientNetV2B2 are
0.09, 0.07, 0.06, and 0.04, respectively. Models such as ResNet50, InceptionV3, and
DenseNet121 showed a high misclassification rate compared to the models of a family
of EfficientNet. The high misclassification shown by the models Xception, VGG16, and
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MobileNet is compared to all the other CNN-based pretrained models in skin disease
classification. The proposed approach classified all the samples of Actinic keratoses,
Basal cell carcinoma, Benign keratosis-like lesions, Dermatofibroma, Melanoma, and
Vascular lesions. For Melanocytic nevi, the proposed model misclassified six samples as
Basal cell carcinoma, three samples as Benign keratosis-like lesions, and five samples as
Melanoma. Most importantly, except the proposed models, the other existing models
have shown a high misclassification rate for rare skin diseases such as Vascular lesions
and Dermatofibroma. The models such as ResNet50, InceptionV3, VGG16, MobileNet,
Xception, and DenseNet121 have failed to classify a single sample correctly for Vascular
lesions and Dermatofibroma. This indicates that these models are not effective in highly
imbalanced skin disease datasets. Though these models are effective in other classes and
demonstrated accuracy above 85%, the existing models are not effective for rare skin
diseases in both skin disease detection and skin disease classification. In addition to rare
skin diseases, the models other than the proposed approach and a family of EfficientNet
showed a high misclassification rate. Since the proposed approach is a fused model of a
family of EfficientNetV2, it outperformed a single-finetuned EfficientNetV2 model and
EfficientNet model in both skin disease detection and skin disease classification. Overall,
the proposed model has demonstrated less misclassification rate for all the classes in skin
disease classification compared to other CNN-based pretrained models.

The proposed model has outperformed the CNN-based pretrained models in all the
test settings in both skin disease detection and skin disease classification. Most importantly,
the proposed model integrates the cost weight to the deep learning model, which helped to
demonstrate a better classification rate compared to the existing approaches. In addition
to that, the proposal of a meta-classifier in the final classification helped to achieve
generalization and to make the model to be more robust in detecting the skin disease and
classifying the skin disease to its family. Since the proposed model is an ensemble of various
EfficientNetV2 models, the model has learned better feature representation to accurately
detect and classify skin diseases. The result of the ensemble feature representation of
pretrained model has performed better than the single CNN-based pretrained model.
In the proposed work, the CNN-based pretrained model and the classification model
are not integrated together during training in skin disease detection and the skin disease
classification model. Thus, proposing a loss function to integrate the CNN-based pretrained
model and classification model will be considered one of the significant directions toward
future work. The proposed model employs a KPCA-based dimensionality reduction to
reduce the features of CNN-based pretrained models. There may be a possibility that
the loss of features can happen in this stage. Detailed analysis and experiments can be
demonstrated using the different dimensions of features for skin disease detection and
classification. This type of experimental work can be considered future work. The proposed
model is a hybrid of CNN-based pretrained models and meta-classifiers. The detailed
model parameters of the CNN-based pretrained models for skin disease detection and
classification are reported. However, discussion of algorithm complexity analysis to the
experimental part in skin disease detection and classification is important and this will be
another direction towards future works.



Cancers 2022, 14, 5872 24 of 26

Figure 7. Skin disease classification confusion matrix using Proposed Model, EfficientNetB0, ResNet50, InceptionV3, and DenseNet121 (left to right).
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7. Conclusions and Future Works

This paper proposed an attention-cost-sensitive deep learning-based feature fusion
ensemble meta-classifier approach for skin cancer detection and classification. The
proposed model integrates attention to the deep learning model to detect the infected tiny
regions of the overall skin image. To give importance to the minority classes during the
training, cost-weights were introduced. The proposed work assigns higher class weights
to the classes that have fewer skin disease data samples and lower-class weights to the
classes that have a high number of skin disease data samples. The proposed model fuses
the features of EfficientNetV2 pretrained models, and the dimensionality reduction of the
features is conducted using KPCA. Further, the reduced features are passed into ensemble
meta-classifiers. In the first stage of the ensemble meta-classifiers, the prediction of the
skin disease is conducted using RFTree and SVM, and the logistic regression performs
the classification by considering the probability of the first-stage classifiers as features. In
all the experimental settings of the proposed model, the proposed model outperformed
the existing methods for both skin cancer detection and skin cancer classification. The
proposed model improves the accuracy by 4% compared to the existing approaches for
skin disease detection and 9% for skin disease classification. Since clinical features play an
important role in enhancing the detection rate of skin diseases, the clinical features of skin
diseases can be included along with skin images. This type of fused features of clinical and
non-clinical can improve the performance of the model in accurately detecting the skin
disease and classifying them into their disease family. The deep learning models are not
robust in an adversarial environment and there may be a possibility that the deep learning
models can be bypassed by following the techniques available in the field of adversarial
machine learning. Thus, the detailed evaluation of the proposed model to detect and
classify skin diseases in an adversarial environment will be considered as future work.
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