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Simple Summary: PDAC remains as one of the deadliest types of cancer due to its late diagnosis, its
inherent aggressiveness, and the low efficacy of routinely used treatments (from surgery or radiother-
apy to systemic treatments). The search of new potential biomarkers is paramount in this context,
where CA19-9 is still the only recommended biomarker for the management of this disease. Thus, the
main goal of the present study was to assess the potential value as predictive/prognostic biomarkers
of several cytokines and growth factors in serum, as well as circulating immune populations in a
cohort of 64 PDAC patients.

Abstract: Despite its relative low incidence, PDAC is one of the most aggressive and lethal types of
cancer, being currently the seventh leading cause of cancer death worldwide, with a 5-year survival
rate of 10.8%. Taking into consideration the necessity to improve the prognosis of these patients, this
research has been focused on the discovery of new biomarkers. For this purpose, patients with BL and
resectable disease were recruited. Serum cytokines and growth factors were monitored at different
time points using protein arrays. Immune cell populations were determined by flow cytometry in
peripheral blood as well as by immunohistochemistry (IHC) in tumor tissues. Several cytokines
were found to be differentially expressed between the study subgroups. In the BL disease setting,
two different scores were proven to be independent prognostic factors for progression-free survival
(PFS) (based on IL-10, MDC, MIF, and eotaxin-3) and OS (based on eotaxin-3, NT-3, FGF-9, and
IP10). In the same context, CA19-9 was found to play a role as independent prognostic factor for
OS. Eotaxin-3 and MDC cytokines for PFS, and eotaxin-3, NT-3, and CKβ8-1 for OS, were shown to
be predictive biomarkers for nab-paclitaxel and gemcitabine regimen. Similarly, oncostatin, BDNF,
and IP10 cytokines were proven to act as predictive biomarkers regarding PFS, for FOLFIRINOX
regimen. In the resectable cohort, RANTES, TIMP-1, FGF-4, and IL-10 individually differentiated
patients according to their cancer-associated survival. Regarding immune cell populations, baseline
high levels of circulating B lymphocytes were related to a significantly longer OS, while these levels
significantly decreased as progression occurred. Similarly, baseline high levels of helper lymphocytes
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(CD4+), low levels of cytotoxic lymphocytes (CD8+), and a high CD4/CD8 ratio, were related to
a significantly longer PFS. Finally, high levels of CD4+ and CD8+ intratumoural infiltration was
associated with significantly longer PFS. In conclusion, in this study we were able to identify several
prognostic and predictive biomarker candidates in patients diagnosed of resectable or BL PDAC.

Keywords: pancreatic ductal adenocarcinoma (PDAC); biomarkers; resectable disease; borderline
disease; cytokines and growth factors; T lymphocytes; B lymphocytes; protein arrays; flow cytometry
and immunohistochemistry

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) currently ranks as the seventh leading
cause of cancer-related deaths worldwide [1,2], having very similar incidence and mortality
rates [3]. This generally relates to the fact that at the time of diagnosis, around 80% of
patients are at an advanced clinical-radiological stage. The absence of specific biomarkers
apart from carbohydrate antigen 19-9 (CA19-9), which is still considered as the unique
recommendation by the American and European guidelines for diagnosis and follow-up
of potentially resectable cases, and the non-specific signs and symptoms during the initial
stages of the disease, are the reason of the latter [4,5].

Historically, cytokines have been examined in different types of neoplasia with diag-
nostic and therapeutic purposes, as they are one of the major modulators of the immune
system, due to their pleiotropic nature [6]. Since Cohen introduced the term “cytokine” for
the first time in 1974, several studies have analyzed the role of these molecules as novel
diagnostic, predictive, and/or prognostic biomarkers in PDAC [7–13].

Compilation of data obtained from cytokine arrays enables the characterization of
PDAC disease, in order to design therapeutic protocols for PDAC treatment. In this regard,
several clinical trials intend to design different strategies, following the inhibition of some
of these cytokines that would promote PDAC onset or reduce life expectancy [14]. In this
line, a recent study evaluated the therapeutic effect of blocking IL-20 by 7E (anti- IL-20
monoclonal antibody) in an KPC (LSL-KrasG12D; Trp53flox/flox; Pdx-1-Cre) PDAC mouse
model and an KPC cell-injected orthotopic model, resulting in a prolonged survival of
mice, partially explained by the attenuation of PD-L1 expression in both models. The use
of 7E also reduced the polarization of macrophages to M2 phenotype, reducing their tumor
infiltration [15].

From the therapeutic perspective IL-2, IL-15, IL-21, IL-12, GM-CSF, and IFN-α among
others have been tested in several clinical trials [14]. Despite these strenuous efforts, only
two of these cytokines have been approved by the FDA, IFN-α for the treatment of hairy
cell leukemia since 1986 or as adjuvant treatment for melanoma, and IL-2 for the treatment
of metastatic renal cancer and advanced melanoma since 1992 and 1998, respectively [14].
One of the major concerns regarding their use is related to their pleiotropic behavior,
as well as their redundancy or biological promiscuity, which may partly explain their
low efficacy profile and the considerable rate of side effects. This complex scenario has
undoubtedly facilitated the replacement of this type of immunomodulators by more specific
targeted therapies and other types of immunotherapies with a greater efficacy and better
toxicity profile. In this regard, the COMBAT trial tested the efficacy of BL-8040, a specific
CXCR4 antagonist, in combination with pembrolizumab and standard chemotherapy in
PDAC [16]. Surprisingly for this tumor entity, the triple therapy showed an objective
response rate (ORR) of more than 30% and a disease control rate (DCR) on 3 out of
4 subjects, with a median duration of response of 7.8 months, which indicated improved
results when indirectly compared with the only currently approved second-line regimen for
metastatic PDAC [16]. Similarly, the first results of a phase I/II clinical trial with olaptesed
(NOX-A12), a specific CXCL12 inhibitor, were recently presented in heavily pre-treated
PDAC and metastatic colorectal adenocarcinoma patients, concluding that 25% of patients
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achieved stable disease and long-term disease control by an increase of effector immune
cell infiltration of the tumor (NCT03168139) [17].

On the other hand, there is a growing interest on the analysis of circulating and
infiltrating immune cell populations in different neoplasia such as hepatocellular carcinoma,
colorectal cancer, follicular lymphoma, acute myeloid leukemia, and PDAC [18–21]. In
PDAC setting for instance, levels of CD3+, the helper (CD4+)/cytotoxic (CD8+) ratio, and
CD8+CD28+ populations were able to discriminate patients with PDAC from those with
benign disease or healthy donors. In resectable PDAC, CD8+CD28+ cell population has been
recently shown as an independent prognostic factor for OS [22]. Importantly, a decreased
ratio of circulating CD4/CD8 after two cycles of conventional chemotherapy may suggest
an improved OS in different settings of PDAC [23]. As in other tumor entities, the histologic
response to previous administered systemic therapy in PDAC, was clearly related to an
increased number of infiltrating CD8+ compared with upfront surgery patients [24].

Regarding other immune populations, B-cell tumor infiltration has been associated
with a better prognosis in several tumors (breast, colorectal, NSCLC, head and neck, ovarian,
biliary tract, melanoma, and liver) and its predictive value has recently been observed in
melanoma when combination of pembrolizumab and ipilimumab was used [25]. Regarding
pancreatic neoplasms, there are scarce and contradictory studies characterizing the role
of B lymphocytes in this setting. For instance, a study including 160 resectable PDAC
patients, demonstrated that in those with lower B-cell levels had a statistically significant
longer OS, with a clear role as an independent prognostic factor [22]. Discordantly, another
study with 73 subjects with pancreatic neuroendocrine tumors showed that high levels
of B cells were associated with longer PFS. These contradictory results might be partially
explained by the different functions of B lymphocytes, since they can induce an anti-
tumor response (generating tertiary lymphoid organs, production of antibodies and/or
antigen presentation), or a pro-tumor response (promoting tumor growth, aberrant tumor
angiogenesis, activation of myeloid derived suppressor cells-MDSCs- and preventing
lymphocyte responses) [26].

Based on the previous rational and background, in this study we have focused on the
search of predictive and/or prognostic biomarkers, characterizing the circulating and tissue
infiltrating T and B lymphocyte populations, and serum cytokines and growth factors,
in the setting of BL and resectable PDAC tumors in whom surgery was planned as the
main approach.

2. Materials and Methods

In this multicenter and prospective study, subjects with BL and resectable PDAC were
enrolled. The study was approved by the Ethics Committee of the Government of Navarre-
Spain (Pyto 2017/69) and The Spanish Agency of Medicine and Medical Devices-AEMPS
(AVB-NAB-2018-01). Eligible patients for the BL cohort were patients with 18 years old or
older, diagnosed with BL resectable PDAC (II-III stages), based on NCCN criteria [27], with
poor prognostic factors (suspected of micrometastatic disease, risk of positive margin dur-
ing surgery and/or CA 19.9 ≥ 300 UI/mL without jaundice). In the second cohort, eligible
subjects were those with suspected PDAC that were considered as initially resectable by
consensus of a multidisciplinary committee.

2.1. Human Samples

Peripheral blood samples were obtained throughout patient follow-up; before starting
any type of systemic treatment, after radiological reassessment (the radiological assessment
was performed after neoadjuvant treatment, after 2–3 months of this neoadjuvant treat-
ment), 48 h after surgical procedure, and a year after surgery or at radiological progression
of the disease (whichever happened earlier). Blood was collected in EDTA containing tubes
(Greiner Bio-One, Kremsmünster, Austria) for plasma and immune cell population isolation,
and in clot accelerator tubes Z Serum Sep Clot Activator (Greiner Bio-One, Kremsmünster,
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Austria) for serum isolation. All blood samples were processed freshly. Tumor samples
were obtained only from those patients that could be resected surgically.

2.2. Human Cytokine Antibody Array

Cytokines and/or growth factors were analyzed by a protein array (Human Cy-
tokine Antibody array −80 Targets-, ab133998, Abcam, UK) following manufacturer’s
recommendations.

Briefly, the protein content of serum samples was quantified using Bradford reagent.
Membranes were blocked with blocking buffer at room temperature (RT) for 30 min
and incubated overnight at 4 ◦C with 100 µg of serum protein diluted in 1 mL blocking
buffer. The next steps include two overnight incubations, at 4 ◦C, with biotinylated anti-
cytokine antibody mix following HRP-conjugated streptavidin, with serial washing of
the membranes between each incubation step. Finally, membranes were incubated with
detection buffer for 2 min and revealed by ChemidocTM MP Imaging System (Bio-Rad,
Hercules, CA, USA). Signals were quantified using Image LabTM software (Bio-Rad) and
normalized using the six positive controls present on each membrane, using the mean of a
control group to normalize the array data. To normalize the values, the following calculus
was performed:

X(Ny) = X(y) ∗ P1/P(y)

where X (Ny) = normalized signal intensity for spot “x” on array “y”; X(y) = mean signal
density for spot “x” on array for sample “y”; P1 = mean signal density of 6 positive control
spots of healthy donors; P(y) = mean signal density of positive control spots on array “y”.
After this normalization, the relative expression levels of each cytokine in our samples
of interest were compared. For statistical analysis Perseus software (Version 1.6.5) [28]
was used, where the previously obtained normalized data “log2” was applied. Then the
data were normalized with adjustment, and the correspondent statistical test as two-way
Student´s t-test between groups was performed. The p-values and fold changes obtained
were then represented with the Scatter Plot tool.

2.3. Flow Cytometry

The immune populations of interest were isolated from peripheral blood using Ficoll
density gradient (17-1440-02, GE Healthcare, Marlborough, MA, USA) and purified for
labelling with fluorophore-conjugated antibodies, are detailed in Supplementary Table S1. T
cells were classified according to CD27/CD28 expression markers into poorly differentiated
(CD27+ CD28+, TPD), intermediately differentiated (CD27negative CD28+, TID), and highly
differentiated (CD27negative CD28low/negative, THD) subsets. B cells were characterized
as CD11b− CD19+.

The cells were examined in a FACSCantoTM II flow cytometer (BD-Becton Dickinson,
Franklin Lakes, NJ, USA) equipped with FACSDiva v.6.0 software (BD-Becton Dickin-
son, NJ, USA). The analysis was performed using FlowJo Software (FlowJoTM Version 10.
Ashland, OR: Becton, Dickinson and Company; 2019).

2.4. Immunohistochemistry

CD4 and CD8 IHC was performed at the Pathology Department of the HUN, in the
automatic Leica Bond Max device (Leica Biosystems, Wetzlar, Germany), using Refine
15 protocol and FFPE slides from human specimens. The IHC stains were analyzed by
expert pathologists, following the criteria used in the clinical setting. Briefly, all IHC were
observed under the microscopy and three intensity groups were considered, according to
the area of CD4 or CD8 infiltration. The categories were the following: low, intermediate,
and high infiltration. Antibodies are detailed in Supplementary Table S1.

2.5. Data Collection and Statistical Analysis

Assuming a 95% confidence level, a drop-out hazard of 0.1 per person-year, and a
relapse rate of 0.3 per person-year for the neoadjuvant group, the sample size needed to
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detect as significant, with 80% power, a rate ratio for the neoadjuvant group with favorable
outcome with respect to that with unfavorable outcome of 2.25, the sample size will be 44
neoadjuvant-treated patients. Since no baseline data are available for the case of adjuvant
treatment and considering that the disease-free survival of these patients could be similar to
that PFS for neoadjuvant subjects, around 15 patients will likewise be recruited to perform
the study in this cohort. Calculations were performed with the gsDesign library of the R
program, 2.3.1.

Regarding the clinical and demographic information, frequencies were expressed
in percentage and chi-square test and/or Fisher exact test were used to compare both
cohorts of patients. Event time distributions for disease-free survival (DFS), progression-
free survival (PFS), overall survival (OS), and cancer-associated death were estimated
with Kaplan–Meier method and compared using the Log-rank statistic test or the Cox
proportional-hazards regression model. Variables shown by univariate analysis to be sig-
nificantly associated with DFS, PFS, or OS were entered into a Cox proportional hazards
regression model for multivariate analysis. Those cytokines/and immune subsets in periph-
eral blood that showed statistical significance in Log-rank analysis were dichotomized and
clustered in scores filtered by HR (>0.5) to avoid co-linearity effect during the multivariate
analyses (Supplementary Table S2).

Statistical analysis was performed with non-parametric statistical tests; Kruskal–Wallis
for independent samples with non-parametric distribution with Dunn’s multiple compari-
son test; Wilcoxon matched-pairs signed-rank test was used as a two-paired samples; and
Mann–Whitney U-test for two non-paired samples. For experiments following normal
distribution, ANOVA and Two-way Student’s t-test were performed.

Statistical tests were performed with IBM SPSS Statistics for Windows, Version 21
(Armonk, NY: IBM Corp). Other graphical representations were done using GraphPad
Prism version 8.0.2 (GraphPad Software, San Diego, CA, USA, www.graphpad.com (ac-
cessed on 23 May 2022)), with mean values and standard deviation. The mean of each
variable including cytokines and immune cell populations was used as cut-off value for
survival analyses, “low” and “high” were assigned to levels below and above this cut-off
value, respectively.

3. Results
3.1. Clinical and Demographic Data

Sixty-four patients diagnosed of PDAC disease were finally enrolled in this study,
forty-seven of them considered as BL disease and seventeen with resectable disease, with a
median follow-up of 12.48 months (4.67–49.25 months). Clinical and demographic data of
PDAC patients are summarized in Table 1.

In the BL group, those patients who underwent surgery had significantly longer PFS
(13.40 vs. 4.42 months, p = 0.0001). Similarly, those with pre-surgery serum CA19-9 lev-
els below 100 U/mL showed significantly longer PFS (12.94 vs. 7.12 months, p = 0.001).
Regarding the type of chemotherapy received, no statistical differences were observed be-
tween FOLFIRINOX and Nab-paclitaxel- gemcitabine regimens (Supplementary Figure S1).
In the resectable cohort, those patients with pT1-T2 exhibited longer DFS in comparison
with pT3-T4 patients (14.58 vs. 8.44 months, p = 0.025). A non-significant trend for longer
DFS was also observed in those cases with an absence of positive lymph nodes (21.71 vs.
8.44 months, p = 0.067).

www.graphpad.com
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Table 1. Clinical and demographic characteristics of BL and resectable patients.

Variable BL Patients
(n = 47) (%)

Resectable Patients
(n = 17) (%) Chi-Square Test

Median Age 66 (41–81) 65 (50–80) 0.84 T

Gender 0.213 C

Female 25 (53.2%) 12 (70.6%)
Male 22 (46.8%) 5 (29.4%)

Neoadjuvant therapy
Nab-Paclitaxel-Gemcitabine 31 (66%)

FOLFIRINOX 16 (34%)
Neoadjuvant ChemoRT

Yes 18 (38.3%)
No 29 (61.7%)

Neoadjuvant SBRT 7 (14.9%)
Response

Partial response 17 (36.2%)
Stable disease 21 (44.7%)
Progression 9 (19.1%)

Surgery 29 (61.7%) All
Pathologic response

0 1 (2.1%)
1 5 (10.6%)
2 10 (21.3%)
3 5 (10.6%)

Perineural invasion 0.203 F

Yes 16 (34%) 15 (88.2%)
No 6 (12.8%) 1 (5.9%)

Vascular invasion 0.584 C

Yes 11 (23.4%) 10 (58.8%)
No 11 (23.4%) 7 (41.2%)
R 0.152 F

R0 16 (34%) 15 (88.2%)
R1 8 (17%) 2 (11.8%)

Lymph nodes involved 0.505 F

Yes 15 (31%) 13 (76.5%)
No 8 (17%) 4 (23.5%)
pT 0.005 **F

0 1 (2.1%) 0 (0%)
1 9 (19.1%) 2 (11.8%)
2 10 (21.3%) 5 (29.4%)
3 3 (6.4%) 9 (52.9%)
4 0 (0%) 1 (5.9%)

pN 0.677 F

0 9 (19.1%) 4 (23.5%)
1 9 (19.1%) 1 (64.7%)
2 5 (10.6%) 2 (11.8%)

Adjuvant treatment 0.052 F

Yes 14 (29.8%) 16 (94.1%)
No 8 (17%) 1 (5.9%)

Adj chemoRT 1 F

Yes 1 (2.1%) 1 (5.9%)
No 18 (38.3%) 16 (94.1%)

Abbreviations: ChemoRT: concomitant chemotherapy and radiotherapy; SBRT: stereotactic body radiation therapy;
R: residual tumor; R0: no cancer cells seen microscopically at the primary tumour site; R1: cancer cells present
microscopically at the primary tumour site; pT: pathological tumor size AJCC 8th edition, being ypT for BL
and pT for resectable patients; pN: pathological lymph node staging AJCC 8th edition. Statistical analyses were
two-tailed unpaired Student t test, chi-squared test and bilateral Fisher exact test when there were less than five
individuals in a group, they are indicated as superscripts T, C, or F respectively on p values. ** indicate very
significant (p < 0.01) statistical differences.
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3.2. Serum Cytokine Levels Are Correlated with Clinical Outcome in the BL Cohort

Baseline cytokine levels in the BL cohort revealed statistically significant differences in
terms of survival analyses for eotaxin-3, FGF-9, IP10, NT-3, IL10, MDC, and MIF indepen-
dently (data not shown). Subsequently, two scores based on these cytokines were developed
using IL-10, MDC, MIF, and eotaxin-3 for PFS analysis (Figure 1A) and eotaxin-3, NT-3,
FGF-9, and IP-10 for OS analysis (Figure 1B).
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Additionally, systemic cytokine profiles were also compared between a selection of 
subjects considered as responders (R, n = 11) or non-responders (NR, n = 9), according to 
the radiological assessment. The radiological assessment was performed after neoadju-
vant treatment, after 2–3 months of this neoadjuvant treatment. The comparison proved 
that IL-10 and interleukin 1-beta (IL-1β) were significantly under-expressed in R com-
pared to NR (p = 0.017 and p = 0.034, respectively) (this analysis was only considering the 
basal timepoint) (Figure 2). The kinetics of IL-10 and IL-1β at baseline and radiological 

Figure 1. PFS and OS KM curves based on different cytokine score in BL patients (n = 44). (A) Kaplan–
Meier plot represents PFS dichotomized depending on the points given by four cytokine levels, one
point was given when cytokine levels were associated with worse PFS, 0 points (blue) between one
and four (red). (B) The same as (A) for OS and dichotomized depending on the points given by four
cytokine levels. In the text, PFS or OS and 95% CI values are shown. Log-rank test was used to test
for statistical significance. * and ** in the figures indicate significant (p < 0.05) and very significant
(p < 0.01) statistical differences.

Additionally, systemic cytokine profiles were also compared between a selection of
subjects considered as responders (R, n = 11) or non-responders (NR, n = 9), according to
the radiological assessment. The radiological assessment was performed after neoadjuvant
treatment, after 2–3 months of this neoadjuvant treatment. The comparison proved that
IL-10 and interleukin 1-beta (IL-1β) were significantly under-expressed in R compared to
NR (p = 0.017 and p = 0.034, respectively) (this analysis was only considering the basal
timepoint) (Figure 2). The kinetics of IL-10 and IL-1β at baseline and radiological test
were represented, and differences were observed between R and NR (p = 0.003 in both
comparison) (Figure 2).

In addition, low levels of IL-1β were significantly correlated with higher pT stages
(p = 0.041) and IV dissemination (p = 0.020), without significant impact in PFS and OS).
Low levels of IL-10 were significantly correlated with clinical N0 (p = 0.029).

In the nab-paclitaxel- and gemcitabine-receiving sub cohort, high levels of eotaxin-3
and low levels of MDC were associated with longer PFS (HR = 0.31; 95% CI: 0.11–0.85;
p = 0.017 and HR = 0.28; 95% CI: 0.11–0.73; p = 0.006, respectively) (Figure 3A–C). In
the same line, high levels of eotaxin-3 and NT-3 levels, and low levels of CKβ8-1 were
associated with longer OS (HR = 0.39; 95% CI: 0.16–0.95; p = 0.034, HR = 0.28; 95% CI:
0.12–0.90; p = 0.040, and HR = 0.29; 95% CI: 0.10–0.86; p = 0.025, respectively) (Figure 3D–E).
Finally, low levels of angiogenin were significantly associated with longer cancer-associated
death time (HR = 0.44; 95% CI: 0.17–1.10; p = 0.038) (Figure 3F).
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(A,B) PFS, (C–E) OS, and (F) cancer-associated death in BL patients receiving nab-paclitaxel and gem-
citabine (n = 29) and (G–I) PFS, (J–L) cancer-associated death in BL patients receiving FOLFIRINOX
stratified by the median baseline levels of each cytokine (n = 14). In the text, PFS or OS and 95% CI
values are shown. Breslow or Log-rank test was used to test for statistical significance. * in the figures
indicate significant (p < 0.05).

In the FOLFIRINOX receiving sub cohort patients with low levels of oncostatin,
BDNF and IP10 reached significantly longer PFS (HR = 0.11; 95% CI: 0.11–1.08; p = 0.037,
HR = 0.13; 95% CI: 0.14–1.34; p = 0.046, and HR = 0.11; 95% CI: 0.11–1.08; p = 0.037,
respectively). Cancer-associated death time was significantly longer in subjects with low
levels of oncostatin, IP10 or NAP-2 (HR = 0.003; 95% CI: 0–925; p = 0.004, HR = 0.003; 95%
CI: 0–925; p = 0.004, and HR = 0.014; 95% CI: 0–45; p = 0.04, respectively) (Figure 3G–L).

3.3. Serum Cytokine Levels Are Correlated with Clinical Outcome in the Resectable Cohort
of Patients

Cancer-associated death was significantly longer in subjects with low levels of RANTES,
TIMP-1, and FGF-4 (p = 0.002, p = 0.014 and p = 0.028, respectively). In contrast, patients with
high levels of IL-10 achieved longer OS (27.86 months vs. 10.54 months, p = 0.028) (Figure 4).
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Figure 4. Cancer-associated survival analysis of baseline cytokine levels in resectable patients
(n = 14). Kaplan–Meier plots represent cancer-associated death in resectable patients stratified by
the median baseline levels of RANTES (A), TIMP-1 (B), FGF-4 (C) and IL-10 (D), lower than the
median (blue) or higher than the median value (red). In the text, OS and 95% CI values are shown.
Log-rank test was used to test for statistical significance. * in the figures indicate significant (p < 0.05),
statistical differences.

3.4. Circulating Immune Population Frequencies and Cytokine Levels Are Correlated

Baseline circulating levels of B cells were found to be correlated with some serum
cytokines, being positively correlated with I-309 and inversely correlated with FGF-6,
NAP-2 and TGF-beta2 (Supplementary Table S3).
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Similarly, circulating CD4/CD8 ratio was positively correlated with IGF-I, Flt-3 ligand,
IP-10, and RANTES and inversely correlated with IL-10, HGF, Eotaxin-2, IGFBP-1, and
IGFBP-3 (Supplementary Table S3).

3.5. Circulating B and T Cell Populations Are Associated with Clinical Outcome

High baseline circulating B cells frequency was related to a significantly longer OS
in the BL cohort of patients (p = 0.033) (Figure 5A). Importantly, B-cell population was
significantly decreased in comparison with baseline samples (p = 0.044) when progression
disease was confirmed (Figure 5B).
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plots for B cells OS analysis. (B) B-cell population frequencies during patients’ follow-up in the BL
cohort. (C–F) Kaplan–Meier plots for CD3, CD4, CD8, and CD4/CD8 PFS analysis. Data represented
as mean ± s.d. * p < 0.05, ** p < 0.01.

Regarding T lymphocytes, different subsets were compared in healthy and BL cohorts.
Statistically significant differences were observed in CD4+ T cells, CD8+ T cells, CD4 TPD
cells, and CD8 TID cells (Supplementary Figure S2). High levels of circulating CD3+ T
cells and CD4+ T cells were associated with a longer PFS (Figure 5C,D), while having
low levels of CD8+ T cells was associated with longer PFS (Figure 5E). Consistently, a
higher CD4/CD8 ratio was associated with longer PFS (14.06 months vs. 8.50 months,
p = 0.004) (Figure 5F). Density plot graphs of B cell and CD4+/CD8+ T cells frequencies
comparing patients with favorable and unfavorable outcome showed differences at first
sight (Supplementary Figure S3).

Strikingly, most of the patients with higher levels of CD4+ TID were established as cT1
and cT2 (p = 0.030). In line with this patients with higher CD8+ THD were associated with
clinical N0 (p = 0.012). No statistical differences were appreciated in the survival analysis
according to different T-cell subsets.

3.6. Tumour Infiltrating CD4 and CD8 T Lymphocytes Correlate with Clinical Outcome in
BL Cohort

Higher levels of tumor infiltrating CD4+ T cells and CD8+ T cells were associated with
a significantly longer PFS (p = 0.022 and p = 0.043, respectively) (Figure 6A,B). Moreover,
higher infiltration of CD8+ T cells was significantly related to a longer OS and cancer-
associated survival (p = 0.019 and p = 0.023, respectively) (Figure 6C,D). T-cell infiltration
was most commonly observed in the area surrounding the tumor, with a higher proportion
of CD8+ T cells, compared to CD4+ T cells (Supplementary Figure S4). No other association
with other clinical-pathological parameters was seen. No association was observed between
the percentages of circulating immune populations and tumor infiltration in the eight
matched cases analyzed (p = 1 for CD4+ T and p = 0.143 for CD8+T).
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3.7. Multivariable Analysis

In the BL cohort, our newly generated score (based on IL-10, MDC, MIF, and eotaxin-3
cytokines) showed a significant role as independent prognostic factor for PFS (HR = 4.07;
95% CI: 1.48–11.5; p = 0.006). Comparably, CA19-9 levels at diagnosis (HR = 0.101; 95%
CI: 0.01–0.94; p = 0.044) and the second generated score (based on eotaxin-3, NT-3, FGF-9
and IP-10) (HR = 4.80; 95% CI 1.03–22.40; p = 0.046) played similar roles as independent
prognostic factors for OS.

4. Discussion

In 2020, PDAC accounted for around 2.6% of tumors diagnosed worldwide, being
considered the seventh leading cause of cancer deaths (4.7%). This is mostly explained
by an extremely comparable annual reported incidence and mortality rate (being in 2021
of 495,773 and 466,003 subjects, respectively) [3]. This dramatic situation highlights the
urgent need to find solid diagnostic, prognostic, and predictive biomarkers that will
help to improve these parameters. Nowadays, it is widely accepted that tumor niche-
specific cytokines and immune populations are able to enter the bloodstream, representing
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a potential source of tumor-associated biological material that can be dynamically and
easily analyzed.

The comparison of systemic cytokines between responders and non-responders dis-
closed two cytokines, IL-10 and IL-1β, that were significantly under-expressed in the first
cluster, with opposite kinetic behavior between responders and non-responders. Both
cytokines have pro- and anti-tumor properties, being IL-10 widely associated with worse
prognosis, not only in solid tumors but also hematological malignancies [29–31]. In line
with this, BL patients with lower IL-10 levels showed statistically significant longer PFS.
Yet, we obtained contradictory results in the resectable cohort, regarding cancer-associated
survival. Other biological functions of IL-10 include activation of T and NK cells, hence
showing dual immunosuppressive and immunostimulatory activity [32]. Accordingly, such
immunological ambivalence may be influenced by the surgical procedure of removing the
primary tumor. The research over a larger cohort of patients without neoadjuvant treatment
might support these findings. On the other hand, high expression of IL-1β was associated
with poor OS in PDAC patients [33]. Beyond prognosis, IL-1β can also influence anti-cancer
treatments. In fact, chemotherapy and radiation can induce the production of IL-1β by
either cancer cells or tumor infiltrating cells [34]. Based on our results, we suggest that
IL-10 and IL-1β could identify patients with an increased probability to respond and, there-
fore, to have a better prognosis, regardless the treatment received. This finding raises the
question about the hypothetical use of IL-10 and IL-1β inhibitors in cancer treatment, with
the purpose of enhancing the therapeutic effect of commonly used ordinary treatments.

Cytokines may have a potential role as survival predictors to the treatment received,
as in was shown in our two cohorts of subjects treated with nab-paclitaxel and gemcitabine,
and FOLFIRINOX. In this regard, and even though IP-10/CXCL10 has an influence on the
trafficking of autoaggressive cells during development of several autoimmune diseases,
mainly type 1 diabetes [35], to our knowledge this was the first time that IP-10/CXCL10’s
predictive capacity regarding PFS and cancer-associated mortality was demonstrated
in FOLFIRINOX-treated subcohort. Likewise, eotaxin-3 levels, without a clear impact
in carcinogenesis beyond a singular previous reference regarding its predictive role in
patients with melanoma treated with anti-PD1 drugs [36], was demonstrated to act as
predictive factor for PFS and OS in nab-paclitaxel and gemcitabine treated subcohort. High
plasma levels of angiogenin (EGFR ligand) have been associated with erlotinib (EGFR
inhibitor) sensitivity [37], although clinically questionable benefit was seen when combined
with gemcitabine. In contrast and based on our results, low levels of angiogenin were
associated with increased cancer-associated survival in BL cohort treated with nab-paclitaxel
and gemcitabine.

Currently, systemic characterization of different immune populations is being carried
out in a plethora of different types of cancer [18–21], although inconsistencies are found
in PDAC [22,23,38,39], especially for B lymphocytes [22,40]. In resectable PDAC, having
circulating low B-cell levels was associated with longer OS, being a strong independent
prognostic factor [22]. Contradictorily, higher B-cell levels in pancreatic neuroendocrine
tumors were associated with longer PFS [40], in coincidence with our results in BL PDAC
OS. The present study may be the first study that has been able to evaluate circulating
B-cell levels in patients with BL PDAC, showing an evident difference concerning survival.
Moreover, our dynamic determinations demonstrated that subjects under progression
disease showed a decrease in B cells compared to baseline levels, which could be interpreted
as a classic behavior of tumor immunosuppression. Supporting this discovery, a prospective
study of 26 cancer patients, including cases with PDAC, showed a significant decrease
of B cells in peripheral blood in patients with poor response to chemotherapy [41]. This
immunosuppression phenomenon is characterized by a decrease in B cells, but not in
other immune cells such as NK or T lymphocytes. Hence the individualized assessment
of B cells could be, in itself, of great clinical value. Finally to complete our approach, it
could be interesting to assess B-cell infiltration of tumor tissues by IHC, as although this
subpopulation could represent around 25% of TILs in cancer; fewer studies have addressed
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this [26]. B-lymphocyte infiltration has been associated with a better prognosis in different
tumors, including PDAC, with an intelligible predictive value in pembrolizumab and
ipilimumab combination in melanoma [25]. Drugs such as ibrutinib have been tested in
different animal models of PDAC, showing a decrease in tumor size and improved overall
survival [42]. However, in the recent RESOLVE clinical trial where the combination of
ibrutinib and nab-paclitaxel/gemcitabine in stage IV PDAC was tested, the data of PFS and
OS were disappointing [43]. Despite these previous results, there is a field of development
of new- targeted therapies as well as an urgent need for further studies testing the role of B
cells and their subpopulations.

With respect to T lymphocytes, our baseline results indicate that patients with higher
circulating total lymphocyte levels, as well as CD4+ lymphocytes had a significant longer
PFS, opposite to what is seen for CD8+ lymphocytes. In line with this, subjects with a high
CD4+/CD8+ ratio, showed a significant increase in terms of PFS. Taking into consideration
that preceding similar results have been published in pNET [40] and colorectal cancer [19],
but not in BL PDAC, our results suggested for the first time that a higher tumor infiltration
of both CD4+ and CD8+ cell subtypes was associated with higher PFS, with a substantial
increase in OS and cancer-associated survival in case of high CD8+ lymphocytes. Likewise,
another recent study demonstrated that the response to neoadjuvant treatment in BL
patients was characterized by an enhanced infiltration of CD8+ lymphocytes compared to
patients resected from the beginning [24].

Finally, and only focusing on the BL cohort, we were able to develop a score based on
circulating IL-10, MDC, MIF, and eotaxin-3 levels that showed a meaningful statistically
significant prognostic role for PFS (HR = 4.07; 95% CI: 1.48–1.15; p = 0.006). Similarly,
another score based on circulating eotaxin-3, NT-3, FGF-9, and IP-10 levels was established
as an independent prognostic factor for OS (HR = 4.80; 95% CI 1.03–22.40; p = 0.046). In
parallel, pre-surgery CA19-9 levels were also established as an independent prognostic
factor for OS (HR = 0.101; 95% CI: 0.01–0.94; p = 0.044), in concordance with what previously
was established in several studies [44–46]. Nevertheless, and to the best of our knowledge,
there is no previous evidence that similar scores based on categorical cytokine variables
determined by arrays could have a prognostic influence, in terms of PFS and/or OS,
in PDAC.

Certainly, we should recognize that the present study has several limitations, such as
the limited sample size and asymmetric distribution between cohorts. In fact, this limitation
might be the underlying cause of not having sufficient statistical power to detect more
significant associations within the data sets. This could be solved using a larger cohort
where more accurate results could be obtained. It is worth noting that the sample size was
mostly affected for the study of circulating immune cell populations, mainly due to the fact
that these samples had to be processed fresh. In order to avoid potential biases, all these
samples were collected at the same hospital. In contrast and taking into consideration the
well-known biological redundancy between several analyzed cytokines, we developed a
couple of scores trying to avoid the collinearity phenomenon. All of the above could be
compensated by the increase of cohort’s follow-up period since the censored events could
be reduced. In this sense, we certainly hope to validate externally our results in a new
prospective and broader study. Finally, and although several molecular test approaches
are highly recommended in the metastatic PDAC setting from the outset [47] there is a
tremendous gap in these less advanced stages.

To summarize, we were able to find differentially expressed cytokines between differ-
ent cohorts that may distinguish PDAC patients with different clinical stages. Furthermore,
in the BL cohort two scores played an outstanding role as independent prognostic factors
for PFS and OS. This study demonstrated that eotaxin-3, MDC, NT-3, MIP-3, and angio-
genin may have a predictive role for nab-paclitaxel and gemcitabine treatment response,
while oncostatin, BDNF, IP10, and NAP-2 for FOLFIRINOX. Finally, we demonstrated that
circulating B and T lymphocytes monitoring, and their tumor infiltration, could be a useful
tool to identify patients with worse outcome.
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5. Conclusions

Late diagnosis, metastasis, and chemoresistance are the major challenges in the man-
agement of cancer patients. Here, we show that some lymphocyte populations and cy-
tokines serve as prognostic and predictive biomarker candidates in patients diagnosed of
resectable or borderline (BL) pancreatic adenocarcinoma (PDAC).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14235993/s1. Figure S1: Progression-free survival anal-
ysis in BL cohort dichotomized by (A) surgery, (B) CA19-9 levels before surgery with a cut-off of
100 U/mL and (C) type of chemotherapy received being A+G nab-paclitaxel and gemcitabine and
F, FOLFIRINOX regimens. Breslow or Log-rank test were used to test for statistical significance.
**, *** in the figures indicate very significant (p < 0.01) and highly significant (p < 0.001) statistical
differences respectively. Ns, no significant differences (p > 0.05). Figure S2: Volcano plot represents
the differential cytokines in baseline serum between (A) patients (n = 59) and healthy donors (n = 22)
and (B) BL (n = 44) and resectable patients (n = 15). Volcano plot represents the log2 fold-change of
differential cytokine expression between BL and resectable patients with associated –log p-values.
Green dots underexpressed proteins and red dots overexpressed proteins. Differential proteins were
identified as p < 0.05 and FC > 30%. Figure S3: Baseline profiling of CD3, CD4, and CD8 T-cell
populations, together with differentiation subset according to CD27/CD28 expression in healthy
donors (n = 22) and BL patients (n = 21). (A) CD3+ cells, (B) CD4+ cells, (C) CD8+ cells, (D) CD4 TPD
cells, I CD4 THD cells, (F) CD4 TID cells, (G) CD8 TPD cells, (H) CD8 THD cells, (I) CD8 TID cells,
and (J) CD4/CD8 ratio are shown in the figure. Data represented as mean ± s.d. *, in the figures
indicate significant (p < 0.05). Figure S4: Representative flow cytometry density plots showing the
percentage of B cells (A) and CD4 and CD8 cells (B) at baseline comparing patients with favorable
and unfavorable outcomes. Figure S5: Immunohistochemical staining of CD4+ T and CD8+ T cells
in tumor tissue of BL cohort (n = 19). (A–B) Images from patient cases with low infiltration, (C–D)
intermediate and E–F high infiltration of lymphocytes. The images on the left represent CD4 stains
and CD8 staining on the right. All images were captured with 10x objective. Table S1: Antibodies
used for flow cytometry and IHQ analyses. Table S2: KM clusters data for PFS and OS scores in BL
cohort. Table S3: Baseline correlation between systemic levels of B cells, CD4/CD8 ratio, and serum
cytokine expression at baseline time point (n = 27, 21 BL and 6 R). * p < 0.05, ** p < 0.01, *** p < 0.001,
and **** p < 0.0001.
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