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Simple Summary: Esophageal cancer is the seventh leading cause of cancer-related mortality world-
wide, with a 5-year survival rate of around 20%. Recently, deep learning (DL) models have shown
great performance in image-based esophageal cancer diagnosis and prognosis prediction. In this
study, a comprehensive literature search was conducted on studies published between 1 January 2012
and 1 August 2022 from the most popular databases, namely, PubMed, Embase, Scopus, and Web of
Science. This study, thus, systematically summarizes the application of a DL model for esophageal
cancer diagnosis and discusses the potential limitations and future directions of DL techniques in
esophageal cancer therapy.

Abstract: Esophageal cancer, one of the most common cancers with a poor prognosis, is the sixth
leading cause of cancer-related mortality worldwide. Early and accurate diagnosis of esophageal
cancer, thus, plays a vital role in choosing the appropriate treatment plan for patients and increasing
their survival rate. However, an accurate diagnosis of esophageal cancer requires substantial expertise
and experience. Nowadays, the deep learning (DL) model for the diagnosis of esophageal cancer has
shown promising performance. Therefore, we conducted an updated meta-analysis to determine the
diagnostic accuracy of the DL model for the diagnosis of esophageal cancer. A search of PubMed,
EMBASE, Scopus, and Web of Science, between 1 January 2012 and 1 August 2022, was conducted
to identify potential studies evaluating the diagnostic performance of the DL model for esophageal
cancer using endoscopic images. The study was performed in accordance with PRISMA guidelines.
Two reviewers independently assessed potential studies for inclusion and extracted data from
retrieved studies. Methodological quality was assessed by using the QUADAS-2 guidelines. The
pooled accuracy, sensitivity, specificity, positive and negative predictive value, and the area under
the receiver operating curve (AUROC) were calculated using a random effect model. A total of
28 potential studies involving a total of 703,006 images were included. The pooled accuracy, sensitivity,
specificity, and positive and negative predictive value of DL for the diagnosis of esophageal cancer
were 92.90%, 93.80%, 91.73%, 93.62%, and 91.97%, respectively. The pooled AUROC of DL for the
diagnosis of esophageal cancer was 0.96. Furthermore, there was no publication bias among the
studies. The findings of our study show that the DL model has great potential to accurately and
quickly diagnose esophageal cancer. However, most studies developed their model using endoscopic
data from the Asian population. Therefore, we recommend further validation through studies of
other populations as well.
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1. Introduction

Rationale: Esophageal cancer is one of the most commonly diagnosed adenocarci-
nomas globally, with an estimated 0.5 million new cases annually [1]. The prognosis of
esophageal cancer is poor and is the sixth leading cause of cancer-related mortality world-
wide, with over 0.5 million deaths annually [2]. The 5-year overall survival rate of early
EC is only 20% [3]; however, the survival rate depends on several factors, including the
stages of esophageal cancer. The 5-year survival rate of localized (confined to the primary
site) esophageal cancer is 46.4%, whereas the relative survival of distant esophageal cancer
(spread to lymph nodes) is 5% [4]. The two primary histologic subtypes of esophageal
cancer are esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma
(EAC), which contribute approximately 90 percent of total esophageal cancer [5]. Although
the prevalence of ESCC is always high, recent years have witnessed an increasing trend of
EAC in the United States of America (USA) and other Western countries [6,7]. Previous
studies reported that patients with EAC have a better overall median survival than ESCC,
particularly in early stage disease [8,9]. The risk factors of ESCC include smoking, alcohol,
dietary, and male gender, whereas gastro-esophageal reflux disease (GERD) and obesity
are two major risk factors for EAC [10,11]. Barrett’s esophagus (BE) is also an established
premalignant lesion [12,13], which increases the risk of EAC up to 40-fold [14].

An early and accurate diagnosis of esophageal cancer is essential in determining
the appropriate management of esophageal cancer patients and improving their overall
survival rate [15]. Esophageal cancer is often detected in the advanced stage, which requires
highly invasive treatments such as surgical resection and chemoradiotherapy [16,17]. The
early detection of esophageal cancer through widely used screening programs has shown
its effectiveness in reducing esophageal cancer-related mortality and improving the overall
survival rate. The introduction of image-enhanced endoscopies, such as narrow-band
imaging (NBI) and white-light imaging (WLI), has improved the early detection rate of
esophageal cancer [18–20]. However, esophageal cancer detection is always challenging and
depends on substantial expertise and experience [21]. Recently, DL models, especially the
convolutional neural network (CNN) model, have performed remarkably well in various
medical fields, including esophageal cancer diagnosis and prognosis [22].

Goal: Notwithstanding the growing interest in and opportunities for the application
of the DL model for the diagnosis of esophageal cancer using endoscopic images, pre-
vious studies have not comprehensively reviewed the extant literature reporting on the
application of the DL model to diagnose esophageal cancer. If the DL algorithm might
be considered in the future for use in a real-world clinical setting, the performance of
this algorithm should first undergo the same degree of assessment as current practices
to evaluate their acceptability. Therefore, in the present study, we aimed to conduct a
systematic review and meta-analysis from studies that applied the DL to determine the
diagnostic performance for esophageal cancer.

2. Methods
2.1. Research Design

This systematic review was conducted according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis of Diagnostic Test Accuracy Studies (PRISMA-
DTA) [23]. The study has not been registered.
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2.2. Search Methods for Identification of Studies
Electronic Database Search

A search of PubMed, EMBASE, Scopus, and Web of Science, between 1 January 2012
and 1 August 2022, was conducted to identify potential studies evaluating the diagnostic
performance of the DL model for the diagnosis of esophageal cancer using endoscopic
images, with the assistance of experts in systematic reviews and meta-analysis. We used
appropriate MeSH (Medical Subject Headings) terms as given below: “Deep learning” OR
“computer-aided system” OR “convolutional neural network/s” AND “esophageal cancer”
OR “esophageal neoplasm” OR “esophageal adenocarcinoma” OR “Barrett’s esophagus”.

2.3. Inclusion and Exclusion Criteria

Studies were included if they satisfied all the following criteria: (a) studies evalu-
ated the diagnostic test accuracy of DL for esophageal cancer using endoscopic images,
(b) studies provided sensitivity, specificity, and accuracy, or studies provided adequate
information to calculate these data, (c) a prospective or retrospective study design, (d) pro-
vided appropriate information regarding inclusion and exclusion criteria, and (e) studies
were published in English. However, studies were excluded if any of the following criteria
were met: (a) studies published in the form of review, letter, or case report, (b) studies used
the same database (we only included recent studies), and (c) studies did not provide any
information regarding the number of patients or images. Two authors (M.M.I and T.N.P.)
independently assessed the eligibility criteria of all the retrieved studies.

2.4. Data Extraction

The same two authors read all the selected studies carefully and extracted the following
information using a standardized form: (1) study characteristics (authors, country of origin,
year of publication, total number of endoscopic images, and study design), (2) demographic
characteristics (gender and number of patients), (3) model characteristics (algorithms, data
partition, and model description), (4) results (sensitivity, specificity, area under receiver
operating characteristic curve, positive predictive value, and negative predictive value).

2.5. Quality Assessment

The same two authors also evaluated the methodological quality of the selected studies
using established questionnaires and criteria established in the Quality Assessment of
Diagnostic Accuracy Studies-2 (QUADAS-2) [24]. This tool is widely accepted for assessing
the risk of bias and the applicability of diagnostic studies. QUADAS-2 comprises four
main domains: (a) patient selection, (b) index test, (c) reference standard, and (d) flow
and timing.

2.6. Statistical Analysis

The diagnostic performance of DL for detecting esophageal cancer was the primary
outcome of our meta-analysis. We calculated the pooled sensitivity and specificity with
95% confidence intervals (CIs) using the bivariate random effects model [25–27]. However,
the random effects model by DerSimonian and Laird was used to calculate the independent
proportions and their differences [28]. A summary receiver operating characteristic (SROC)
curve with a 95% confidence region was plotted to visualize the study findings. We also
determined the heterogeneity of the study‘s findings using the inconsistency index (I2)
as follows: 0% to 25%, might not be low; 25% to 50%, considered as low; 50% to 75%,
medium heterogeneity; and 75% to 100%, considerable heterogeneity [29,30]. We also
calculated the positive likelihood ratio, negative likelihood ratio, and diagnostic odd ratio
(Supplementary Materials S1) [21]. p values < 0.05 were considered statistically significant.
R (R Core Team and the R Foundation for Statistical Computing, version: 4.2.1) and MedCalc
(MedCalc Software Ltd, Ostend, Belgium) were used to perform all statistical analyses.
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3. Results
3.1. Study Selection

A total of 2491 studies were retrieved during the initial search, after which 1375
duplicate studies were excluded. From 1116 nonduplicate studies, 1088 were excluded
after reviewing the titles and abstracts. However, 39 studies underwent full-text evalu-
ation. Afterward, eleven studies were excluded due to review, not using the DL model,
and insufficient data. The remaining 28 studies were selected for inclusion in the meta-
analysis [22,31–57] (Supplementary Mayerials Figure S1).

3.2. Study Characteristics

All of the studies used in this systematic review and meta-analysis are presented
in Table 1. The selected studies were published between 2019 [57] and 2022 [31] with
a total of 703,006 endoscopic images, and each study followed the standard protocol to
detect esophagus cancer. The included images were captured by white-light imaging
(WLI), narrow-band image (NBI), or blue light image (BLI). Expert endoscopists checked
the appropriateness of images and marked images as cancerous and normal. Most of the
studies were retrospective study designs, except for three studies. However, all studies used
the CNN model to train and validate their findings. Twenty-three studies were conducted
on Asian populations, while only five studies were conducted on Western populations.
Esophageal squamous cell cancer (ESCC) was the primary target for eighteen studies,
while six studies reported Barret’s esophagus (BE) and four studies showed esophageal
adenocarcinoma (EAC), including ESCC as the outcome. Nine studies developed a DL
model using WLI, while six studies included NBI, and eleven studies utilized both WLI and
NBI. Moreover, one study trained a DL model for the diagnosis of esophageal cancer using
BLI, while another study trained their DLF model using volumetric laser endomicroscopy
(VLE) [53] and endocytoscopic system image (ECS) [52].

3.3. Deep Learning Model for Esophageal Cancer Diagnosis

A total of 28 studies were included in our study. The pooled sensitivity for the
diagnosis of esophageal cancer was 93.80% (95% CI: 93.64–93.96%; Figure 1). The pooled
specificity for the diagnosis of esophageal cancer was 91.73% (95% CI: 91.52%–91.94%;
Figure 2). There was significant heterogeneity among the studies (I2 = 86.6%, χ2 = 268.56,
p < 0.001, and I2 = 97.6%, χ2 = 1176.58, p < 0.001).

However, the pooled positive likelihood ratio, negative likelihood ratio, and diag-
nostic odds ratio for the diagnosis of esophageal cancer were 6.41 (95% CI: 4.74–8.67),
0.09 (95% CI: 0.08–0.11), and 81.89 (95% CI: 61.90–108.34), respectively. There was sig-
nificant heterogeneity among the studies (I2 = 99.0%, τ2 = 59.05, Cochrane-Q = 2865.73,
p < 0.001; I2 = 91.4%, τ2 = 0.08, Cochrane-Q = 327.37, p < 0.001; I2 = 94.7%, τ2 = 0.34,
Cochrane-Q = 528.97, p < 0.001). The AUROC of the DL was 0.96 (95%CI: 0.94–0.98;
Figure 3).

3.4. Subgroup Analysis

We also conducted subgroup analyses based on the region, study design, endoscopy
types, histological types, and methodological quality (Table 2). Nine studies evaluated the
diagnostic performance of the DL model for the diagnosis of esophageal cancer using WLI.
The pooled sensitivity and specificity of the DL model for esophageal cancer were 92.60%
(95% CI: 91.39%–93.69%) and 86.95% (95% CI: 85.58%–88.25%). Six studies used NBI to
train and validate the DL model for esophageal cancer diagnosis. The pooled sensitivity
and specificity of the DL model for esophageal cancer were 93.73% (93.56%–93.89%) and
92.66% (95% CI: 92.45%–92.86%).
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Figure 1. Pooled sensitivity of the DL model for the diagnosis of esophageal cancer.

Figure 2. Pooled specificity of the DL model for the diagnosis of esophageal cancer.
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Table 1. The characteristics of the included studies.

Author Year Study
Type

Country/
Region Modality Model Total

Images
Total

Patient
Number of

Endoscopists
Real-
Time

Compare with
Endoscopist

External
Validation

Video
Validation Target Quality

Gong 2022 RE Korea WLI CNN 5162 NR NR No No Yes No EC H

Liu 2022 RE China WLI CNN 13,083 1239 14 No Yes Yes No ESCC H

Yuan 2022 RE China WLI, NBI CNN 53,933 2621 11 Yes Yes Yes Yes ESCC H

Everson 2021 RE Taiwan NBI CNN 67,742 NR 3 No Yes No No ESCC H

Tang 2021 RE China WLI CNN 4002 1078 10 Yes Yes Yes Yes ESCC H

Li 2021 RE China WLI, NBI CNN 4735 NR 20 No Yes No No ESCC H

Iwagami 2021 RE Japan WLI, NBI CNN 232 79 15 Yes Yes Yes No EAC L

Waki 2021 RE Japan NBI/BLI CNN 17,336 NR 21 Yes Yes No Yes ESCC H

Wang 2021 RE Taiwan WLI, NBI CNN 935 NR NR No No No No ESCC L

Yang 2021 RE China WLI, NBI CNN 13,297 6130 6 Yes Yes Yes Yes ESCC H

Shiroma 2021 RE Japan NBI, WLI CNN 8428 NR 18 Yes Yes No Yes ESCC H

Ohmori 2020 RE Japan NBI, WLI,
BLI CNN 135 102 15 No Yes No No ESCC H

Guo 2020 RE China NBI CNN 6671 NR NR Yes No Yes Yes ESCC H

Fukuda 2020 RE Japan NBI, BLI CNN 238 NR 13 Yes Yes Yes Yes ESSC L

Tokai 2020 RE Japan NBI, WLI CNN 279 NR 13 No Yes No No ESCC H

Liu 2020 RE China WLI CNN 127 NR NR No No No No ESCC/EACH

Hashimoto 2020 RE Japan NBI, WLI CNN 458 39 NR Yes No No No BE H

de Groof 2020 PR Netherlands WLI CNN 144 20 NR No No No No BE H

de Groof 2020 RE Netherlands WLI CNN 494,364 15,286 53 No Yes Yes No BE L

Ebigbo 2020 RE Europe WLI CNN 62 14 NR No No No No BE L

Herrera 2020 RE Asia NBI CNN 67,742$ 114 NR NR NR No No ESCC H

Kumagai 2019 RE Japan ECS CNN 1520 55 NR No No No No ESCC H

Fonolla 2019 PR Europe VLI CNN 141 NR NR No No No No BE L

Horie 2019 RE Japan NBI, WLI CNN 1118 97 NR Yes No No No ESCC/EACH

Cai 2019 RE China WLI CNN 187 52 16 No Yes No No ESCC H

Ebigbo 2019 RE Germany NBI, WLI CNN 148 NR NR No No No No BE/EAC H

Ebigbo # 2019 RE Germany WLI CNN 100 NR NR No No No No BE H

Zhao 2019 RE China NBI CNN 1383 NR 9 No Yes No No ESCC H

Everson 2019 RE Taiwan NBI CNN 7046 17 NR No No No No ESCC L

Note: RE—retrospective; PR—prospective; NBI—narrow-band imaging; WLI—white-light imaging;
ECS—endocytoscopic system image; BLI—blue-laser image; VLI/E—volumetric laser image/endomicroscopy;
NR—not reported; EC—esophageal cancer; EAC—esophageal adenocarcinoma; ESCC—esophageal squamous
cell cancer; BE—Barret’s esophagus; CNN—convolutional neural network; H—high; L—low; and #—same study.

Figure 3. The summary of the area under the receiver operating curve for diagnosis of esophageal cancer.
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Table 2. Subgroup analyses for the diagnosis of esophageal cancer.

Subgroup Studies (n) Sensitivity
(95%CI)

Specificity
(95%CI)

Positive
Predictive

Value (95%CI)

Negative
Predictive

Value (95%CI)

Accuracy
(95%CI)

Disease
Prevalence

All 28 93.80
(93.64–93.96)

91.73
(91.52–91.94)

93.62
(93.47–93.77)

91.97
(91.77–92.15)

92.90
(92.77–93.03)

56.38
(56.14–56.63)

Region

Asia 23 93.82
(93.66–93.98)

91.75
(91.55–91.96)

93.66
(93.51–93.80)

91.97
(91.77–92.16)

92.92
(92.80–93.05)

56.48
(56.23–56.72)

West 5 88.20
(84.39–91.36)

88.99
(86.03–91.51)

84.18
(80.66–87.16)

91.91
(89.51–93.79)

88.68
(86.41–90.68)

39.91
(36.68–43.21)

Study design

Retrospective 25 93.82
(93.66–93.98)

91.75
(91.55–91.96)

93.65
(93.50–93.80)

91.97
(91.77–92.15)

92.92
(92.79–93.05)

56.46
(56.22–56.71)

Prospective 3 85.78
(80.23–90.27)

87.83
(84.10–90.95)

79.19
(74.26–83.38)

91.97
(89.08–94.14)

87.11
(84.12–89.73)

35.05
(31.17–39.08)

Endoscopy type

WLI 9 92.60
(91.39–93.69)

86.95
(85.58–88.25)

85.42
(84.11–86.64)

93.44
(92.44–94.32)

89.51
(88.59–90.38)

45.22 (43.78
46.67)

NBI 5 93.73
(93.56–93.89)

92.66
(92.45–92.86)

94.39
(94.24–94.54)

91.81
(91.61–92.01)

93.27
(93.14–93.39)

56.85
(56.60–57.11)

Mixed (WLI + NBI) 11 95.70
(95.09–96.26)

80.99
(79.72–82.21)

86.15
(85.35–86.91)

93.85
(93.03–94.58)

89.12
(88.45–89.77)

55.27
(54.21–56.32)

VLE/BLI/ECS 3 88.24
(81.05–93.42)

74.58
(67.50–80.81)

70.00
(64.26–75.18)

90.41
(85.12–93.95)

80.07
(75.06–84.47)

40.20
(34.57–46.03)

Histological type

ESCC 18 93.81
(93.65–93.97)

91.79
(91.58–92.00)

93.74
(93.59–93.89)

91.88
(91.69–92.07)

92.94
(92.81–93.06)

56.72
(56.47–56.96)

BE 6 90.87
(88.05–93.22)

91.41
(89.06–93.40)

88.80
(86.12–91.02)

93.04
(91.04–94.61)

91.18
(89.43–92.72)

42.85
(40.03–45.70)

EAC, including
ESCC 4 95.80

(90.47–98.62)
52.38

(43.99–60.67)
61.96

(57.79–65.96)
93.90

(86.56–97.36)
71.80

(65.99–77.13)
44.74

(38.66–50.93)

Methodological
quality

High 21 93.85
(93.69–94.01)

91.80
(91.59–92.01)

93.68
(93.53–93.83

92.02
(91.82–92.21)

92.96
(92.83–93.09)

56.44
(56.19–56.69)

Low 7 90.40
(88.70–91.93)

87.75
(85.75–89.57)

89.27
(87.71–90.65)

89.03
(87.30–90.55)

89.16
(87.88–90.35)

52.98
(51.0–54.94)

While comparing the diagnostic performance between high- and low-quality studies,
the diagnostic performance of the DL model for high-quality studies was higher than that
for low-quality studies. The pooled accuracy, sensitivity, and specificity of high-quality
studies were 92.96% (95% CI: 92.83%–93.09%), 93.85% (95% CI: 93.69%–94.01%), and 91.80%
(95% CI: 91.59%–92.01%), respectively. The pooled accuracy, sensitivity, and specificity of
low-quality studies were 89.16% (95% CI: 87.88%–90.35%), 90.40% (95% CI: 88.70%–91.93%),
and 87.75% (95% CI: 85.75%–89.57%), respectively.

3.5. External Validation

Five studies externally validated their model and evaluated the performance for
the diagnosis of esophageal cancer. At external validation, the pooled accuracy of the
DL model was 90.31% (89.42%–91.14%), while the corresponding sensitivity, specificity,
positive predictive value, and negative predictive value for the diagnosis of esophageal
cancer were 95.26% (95% CI: 94.37%–96.04%), 84.02% (95% CI: 82.37%–85.58%), 88.33%
(95% CI: 87.27%–89.32%), and 93.31% (95% CI: 92.15%–94.31%).
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3.6. Performance Comparison between DL and Endoscopists

Ten studies also compared the diagnostic performance of the DL model with that of
endoscopists. The performance measures are presented in Figure 4. The sensitivity of the
DL model for the diagnosis of early esophageal cancer exceeded those of endoscopists
(92.87% vs. 80.43%). A further analysis of specificity showed that the DL model had a
similar performance when compared with that of the endoscopists (74.37% vs. 76.11%).

Figure 4. Diagnostic performance for esophageal cancer by the DL system vs. endoscopists.

3.7. Publication Bias

Deeks’ funnel plot of the asymmetry test showed no evidence of publication bias
(p = 0.15) (Figure 5).

Figure 5. Deeks’ funnel plot of the performance of the DL model for the diagnosis of esophageal cancer.
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4. Discussion

We conducted a meta-analysis to evaluate the performance of the DL model for the
diagnosis of esophageal cancer using data from 28 studies. The overall pooled estimation
showed that the DL performance for the diagnosis of esophageal cancer performed better
in terms of sensitivity, specificity, and AUROC. To determine the generalizability of the
DL model to external settings, the DL model also showed a better performance when
used with different datasets. The findings of our study suggest that the accurate diagnosis
performance of DL may help a physician to increase the early diagnosis of esophageal
cancer and decrease mortality. Because the identification of early esophageal cancer has
been a subject of concern and solely depends on expert endoscopists, the higher sensitivity
and specificity of DL could correctly and accurately detect esophageal cancer in patients,
provide supportive treatment, and improve patient outcomes.

Four previously published studies also assessed the impact of AI-assisted models for
detecting esophageal cancer using endoscopic images [58–61]. Zhang et al. [58] included six-
teen studies to provide scientific evidence for using AI-assisted models to detect esophageal
neoplasm. The pooled sensitivity and specificity and AUROC of AI-assisted models for
esophageal cancer detection were 0.94 (95% CI: 0.92–0.96), 0.85 (95% CI: 0.73–0.92), and 0.97
(95% CI: 0.95–0.98), respectively. They also reported that the performance of AI-based mod-
els was better than endoscopists in terms of the pooled sensitivity 0.94 [95% CI: 0.84–0.98]
vs 0.82 [95% CI: 0.77–0.86]. Lui et al. [59] conducted a systematic review and meta-analysis
to evaluate the diagnostic accuracy of AI models for gastric, esophageal neoplastic lesions,
and Helicobacter pylori status. A total of 23 studies were included in that study; however,
only 10 studies were used to evaluate early esophageal cancer detection. The pooled
sensitivity, specificity, and AUROC on the detection of squamous esophagus neoplasm
were 0.75 (95% CI: 0.48–0.92), 0.92 (95% CI: 0.66–0.99), and 0.88 (95% CI: 0.82–0.96), re-
spectively. Bang et al. [60] included 21 studies in the systematic review. Among them,
19 studies were included in the meta-analysis to evaluate the diagnostic test accuracy of
the deep learning or machine learning model of esophageal cancers. The pooled sensitivity,
specificity, and AUROC of DL algorithms for the diagnosis of esophageal cancer were
0.94 (95% CI: 0.89–0.96), 0.88 (95% CI: 0.76–0.94), and 0.97 (95% CI: 0.95–0.99), respectively.
Mohan et al. [61] performed a meta-analysis to examine the pooled performance rates for
CNN-based AI in diagnosing gastrointestinal neoplasia from endoscopic images. Nineteen
studies met all inclusion criteria for detecting gastrointestinal neoplasm; however, only five
studies were used to evaluate the impact of CNN in diagnosing esophageal cancer. The
pooled sensitivity, specificity, and accuracy of the CNN model for diagnosis of esophageal
cancer were 0.87 (95% CI: 0.69–0.95), 0.87 (95% CI: 0.74–0.94), and 0.87 (95% CI: 0.76–0.93),
respectively. This study included a higher number of studies to summarize the available
evidence for the accuracy of the DL algorithm in diagnosing esophageal cancer. More-
over, this study showed not only sensitivity and specificity but accuracy and positive and
negative predictive value, which are essential metrics for making clinical decisions. The
findings of our study showed that the DL model could play a crucial role in diagnosing
esophageal cancer in the near future when this algorithm might be employed in a busy
daily clinical practice.

The detection rate of esophageal cancer is relatively poor (more than 40% percent of
patients with esophageal cancer are detected at a late stage), and the 5-year survival rate is
approximately 20% [62]; therefore, the early diagnosis of esophageal cancer is important
for both clinicians and patients. The early diagnosis of esophageal cancer could assist
clinicians in decision-making, improve patients’ management, and reduce healthcare costs.
Endoscopy is one of the reliable methods for early esophageal cancer screening because
of its high diagnostic performance [63]. Diagnostic accuracy depends on several factors
such as the quality of images, instruments, and endoscopists. Traditional statistical models
could hardly perform analyzing endoscopic images for the diagnosis of esophageal cancer;
however, the DL model has been applied and has shown great performance in esophageal
cancer diagnosis. To the best of our knowledge, this is the first comprehensive systematic
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review and meta-analysis of the diagnostic performance of the DL-based AI model for the
diagnosis of esophageal cancer. The findings of this study demonstrate conclusively that
the diagnostic performance of the DL model for the diagnosis of esophageal cancer using
endoscopic images was clinically highly satisfactory in terms of sensitivity, specificity, and
AUROC. For esophageal cancer diagnosis, DL achieved a pooled AUROC of 0.96 with a
pooled sensitivity of 94% and a specificity of 92%. In terms of the generalizability of the DL
model, the DL model also achieved good performance in the external validation.

The early detection of esophageal cancer offers a higher chance of survival [64]. Upper
gastrointestinal endoscopy is still considered the standard method for the diagnosis of
esophageal cancer [65,66]. Previous evidence shows that endoscopic techniques have
made significant progress over the last decades [67–69]. WLI is widely used and the most
basic endoscopy diagnostic modality to diagnose esophageal cancer [70]. However, the
application of WLI for the diagnosis of esophageal cancer is limited because the DL model
could not perform well. Therefore, the application of NBI and VLI has been increased for
the early diagnosis of esophageal cancer. Consequently, researchers are now using both
modalities together to develop DL models for identifying early esophageal cancer. The
findings of our study show that the pooled sensitivity and specificity of the DL model,
which used NBI images, had significantly better performance than those using WLI images.

There are several strengths and limitations associated with this meta-analysis. First,
this is the first comprehensive study that summarized the performance of the DL model for
the diagnosis of esophageal cancer using endoscopic images. Second, this study provided
clinically important diagnosis metrics such as accuracy, positive predictive value, and
negative predictive value, which may help a physician to make the appropriate decision
for the patient with a high risk of esophageal cancer. Nevertheless, this study has some
limitations that need to be addressed. First, most of the included studies were retrospective
study designs. Although external validation and prospective evaluation showed great
performance, more studies are needed that could evaluate the performance of the DL model
using prospectively collected data or real-time evaluation. Second, two-thirds of the studies
developed their model and tested the performance using the same continent’s population
(namely, Asia); therefore, more data are warranted from other continents to validate the
performance of the current model. Finally, heterogeneity among the studies was high,
although it can be partially explained by regional effect, image quality, image modality,
and histological types.

5. Conclusions

This is the first comprehensive systematic review and meta-analysis to show that the
DL model was able to diagnose early esophageal cancer with high sensitivity and specificity.
The performance of the DL model for esophageal cancer diagnosis was higher for NBI than
for WLI. Most of the studies were from Asia and used a retrospective design; therefore,
more prospective evaluations with various populations are warranted in the future.
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