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Simple Summary: Metastatic pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy
that has limited treatment options. Standard of care treatment involves systemic chemotherapy,
although all tumors invariably develop resistance to these cytotoxic therapies. With the advent of
genomic sequencing and identification of therapeutically actionable alterations, there are subsets of
patients with PDAC who may benefit from targeted therapies matched to their molecular profile.
As more molecularly matched therapies are developed, precision medicine has great potential in
patients with PDAC.

Abstract: The aggressive biology of pancreatic ductal adenocarcinoma (PDAC), along with its
limited sensitivity to many systemic therapies, presents a major challenge in the management of
patients with metastatic PDAC. Over the past decade, the incorporation of combinatorial cytotoxic
chemotherapy regimens has improved patient outcomes. Despite these advances, resistance to
cytotoxic chemotherapy inevitably occurs, and there is a great need for effective therapies. A major
focus of research has been to identify molecularly defined subpopulations of patients with PDAC
who may benefit from targeted therapies that are matched to their molecular profile. Recent successes
include the demonstration of the efficacy of maintenance PARP inhibition in PDAC tumors harboring
deleterious BRCA1, BRCA2, and PALB2 alterations. In addition, while therapeutic targeting of KRAS
was long thought to be infeasible, emerging data on the efficacy of KRAS G12C inhibitors have
increased optimism about next-generation KRAS-directed therapies in PDAC. Meanwhile, KRAS
wild-type PDAC encompasses a unique molecular subpopulation of PDAC that is enriched for
targetable genetic alterations, such as oncogenic BRAF alterations, mismatch repair deficiency, and
FGFR2, ALK, NTRK, ROS1, NRG1, and RET rearrangements. As more molecularly targeted therapies
are developed, precision medicine has the potential to revolutionize the treatment of patients with
metastatic PDAC.

Keywords: pancreatic adenocarcinoma; precision medicine; targeted therapy; DNA repair inhibitors

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related
death in the United States, and is projected to become the second leading cause by 2030 [1].
The 5-year survival rate of PDAC patients is only 11%, and the poor outcomes are mainly
due to its aggressive biology and advanced stage of presentation at initial diagnosis [2]. The
cornerstone of treatment for this lethal disease is cytotoxic chemotherapy, and the current
standard of care is largely based on clinical trials of first-line therapy initially reported
in 2011 and 2013 [3–8]. In this review, we describe the current treatment paradigms for
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metastatic PDAC and how precision medicine is beginning to improve patient outcomes
by leveraging the increased identification of molecularly-defined populations of PDAC.

2. First-Line Chemotherapy

Outcomes for patients with PDAC have improved over the last three decades with
the development of effective cytotoxic chemotherapy regimens [6,7,9]. Initially, the median
overall survival (OS) of patients with advanced PDAC treated with gemcitabine alone was
5.7 months, setting an ominous benchmark for future generations to improve upon [10].
Compared to gemcitabine monotherapy, multi-drug cytotoxic chemotherapy regimens
have significantly improved outcomes by prolonging the OS of patients with metastatic
PDAC to about 1 year. In the landmark PRODIGE trial, patients with metastatic PDAC
treated with first-line FOLFIRINOX (folinic acid, 5-fluorouracil [5-FU], irinotecan, and
oxaliplatin) had a median OS of 11.1 months, compared to 6.8 months for gemcitabine
alone [3]. In the MPACT trial, gemcitabine/nab-paclitaxel prolonged survival to 8.5 months,
compared to 6.7 months with gemcitabine alone, in previously untreated patients with
advanced PDAC [4].

While the results of head-to-head investigation of FOLFIRINOX and gemcitabine/nab-
paclitaxel have not been reported, many believe that FOLFIRINOX may be more potent,
as cross-trial comparisons suggest it may have a higher objective response rate (31.6%
versus 23%). To date, the highest reported median OS for an unselected advanced PDAC
population was in the control arm of SWOG 1313, a randomized phase II trial assessing
FOLFIRINOX with and without pegylated recombinant human hyaluronidase (PEGPH20).
The median OS was 14.4 months in the FOLFIRINOX arm, while it was 7.7 months in the
arm combining FOLFIRINOX and PEGPH20 arm [11].

The American Society of Clinical Oncology (ASCO) Clinical Practice Guidelines have
endorsed the use of either FOLFIRINOX or gemcitabine/nab-paclitaxel as first-line ther-
apy in patients with a favorable comorbidity profile and ECOG performance status of
0 or 1 [12–14]. The toxicity profiles of these two regimens differ significantly; therefore,
patient-centered decision making is necessary [15]. While it may be more potent, FOLFIRI-
NOX is a more challenging regimen, with a higher rate of grade 3–4 toxicities and hospi-
talizations. The more favorable toxicity profile of gemcitabine/nab-paclitaxel leads some
patients with substantial comorbidities or desire to prioritize quality of life to elect to be
treated with gemcitabine/nab-paclitaxel [16].

In an effort to maximize the tolerability and efficacy of first-line therapy, the recently
reported SEQUENCE trial used a novel strategy of alternating gemcitabine/nab-paclitaxel
with 5-FU, folinic acid and oxaliplatin (FOLFOX) [17]. In this randomized phase III study, alter-
nating gemcitabine/nab-paclitaxel and FOLFOX was compared to standard gemcitabine/nab-
paclitaxel in patients with previously untreated metastatic PDAC. The trial met its primary
endpoint of improving OS. Patients receiving alternating gemcitabine/nab-paclitaxel and
FOLFOX had a median OS of 13.2 months versus 9.7 months in patients receiving standard
gemcitabine/nab-paclitaxel. The ORR for the alternating combination was 39.7% versus
20.3% for gemcitabine/nab-paclitaxel. Notably, there were significantly more hematologic
toxicities in patients receiving alternating gemcitabine/nab-paclitaxel and FOLFOX, along
with a higher incidence of treatment-emergent neuropathy. The results from this trial suggest
that alternating regimens may slow the development of acquired chemotherapy resistance;
however, this approach needs further study before it can be adopted into the current treatment
paradigm for metastatic PDAC.

3. Second-Line Chemotherapy

Several randomized phase III trials have investigated second-line cytotoxic chemother-
apy regimens after progression on first-line gemcitabine-based chemotherapy. The use of
5-FU and oxaliplatin has shown mixed results. The CONKO-003 evaluated second-line
oxaliplatin, 5-FU, and folinic acid (OFF regimen) versus 5-FU/Leucovorin in advanced
PDAC [18]. Compared to patients receiving second-line 5-FU/Leucovorin, patients re-
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ceiving OFF experienced improved OS (median OS 5.9 months versus 3.3 months) and
PFS (median PFS 2.9 months versus 2.0 months). However, in the PANCREOX trial in-
vestigating a different dosing regimen of second-line folinic acid, 5-FU, and oxaliplatin
(mFOLFOX6) versus 5-FU/Leucovorin, the primary endpoint of PFS was not met (median
PFS 3.1 months versus 2.9 months, respectively), and median OS was actually reduced
in patients treated with mFOLFOX6 compared to patients treated with 5-FU/Leucovorin
(6.1 months versus 9.9 months) [19]. Recent clinical trials using second-line mFOLFOX6 as
a comparator arm have demonstrated consistent outcomes, with median PFS of 2–3 months
and median OS of 6–7 months [20,21].

Trials evaluating second-line irinotecan-containing regimens have demonstrated sim-
ilar levels of modest efficacy. The NAPOLI-1 trial evaluated nanoliposomal irinotecan
(Nal-IRI) combined with 5-FU/Leucovorin, compared to 5-FU/Leucovorin alone. Nal-
IRI/5-FU was superior to 5-FU/Leucovorin, improving median OS (6.1 months versus
4.2 months), median PFS (3.1 months versus 1.5 months), and the ORR (16% versus 1%) [22].
A randomized phase II trial, SWOG S1513, assessed whether the addition of the poly
(adenosine diphosphate-ribose) polymerase (PARP) inhibitor veliparib would enhance the
effectiveness of second-line FOLFIRI in metastatic PDAC. While SWOG S1513 was stopped
early for futility, because veliparib did not increase the effectiveness of FOLFIRI, results
from this trial suggest that FOLFIRI has similar activity to Nal-IRI/5-FU. Patients treated
on the FOLFIRI arm of SWOG S1513 had a median PFS of 2.9 months and a median OS of
6.5 months [23].

Contrary to the large number of published phase III trials assessing therapies after
progression while on gemcitabine-based therapy, there are relatively few studies on the
use of therapies after progression on 5-FU based therapies [15,24,25]. However, emerging
data suggest that the efficacy of second-line gemcitabine/nab-paclitaxel is very similar
to the efficacy of second-line 5-FU based regimens. Although it was a negative trial, a
randomized phase II trial investigating the use of second-line gemcitabine/nab-paclitaxel
with and without a MUC5AC antibody provided efficacy benchmarks of second-line
gemcitabine/nab-paclitaxel [25]. In this trial, the median OS for patients receiving second-
line gemcitabine/nab-paclitaxel alone was 6.6 months; the median PFS was 2.7 months;
and the ORR was 3% [25]. The phase III Trybeca-1 trial, which evaluated second-line
chemotherapy (investigator choice) with or without eryaspase, had similar efficacy results.
In the Trybeca-1 trial, patients who received second-line gemcitabine/nab-paclitaxel had a
median OS of 6.9 months and median PFS of 3.5 months [24].

4. Biomarker-Driven Therapy

Given the impressive results of precision medicine using molecularly targeted therapy
in other malignancies, there have been significant efforts to target oncogenic alterations
in PDAC [26]. However, a major obstacle has been that the most frequently observed
molecular alterations in PDAC have historically been undruggable. More than 90% of
PDACs harbor an oncogenic Kirsten rat sarcoma virus (KRAS) mutation [27]. Other com-
mon oncogenic alterations in PDAC include tumor suppressor genes, such as CDKN2A,
TP53, and SMAD4 [27,28]. While this mutational profile presents a clinical challenge, opti-
mism for targeted therapy in PDAC is rising with the identification of molecularly defined
subpopulations of PDAC that appear to be sensitive to targeted therapies. For instance,
while KRAS is notoriously difficult to target, PDACs lacking KRAS mutations (KRAS wild
type [WT] PDAC) frequently harbor targetable alterations, such as NTRK, FGFR2, ALK,
RET, NRG1, and ROS1 fusions, as well as oncogenic BRAF alterations (Figure 1).
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Figure 1. Oncogenic driver alterations in KRAS-mutated and KRAS wild-type PDAC. The propor-
tion of KRAS mutations in PDAC include KRAS G12D (41%), G12V (31%), G12R (14%), Q61H (4%), 
G12C (1%), and KRAS wild-type (WT) (9%) [29,30]. Actionable alterations in KRAS WT patients in 
PDAC and pancreatic acinar cell carcinoma include: BRAF alterations (13.7%), MMRd/MSI-H (4.7%), 
FGFR2 fusions (3.5%), ALK fusions (1.6%), RET fusions (1%), NTRK fusions (0.7%), and ROS1 fusions 
(0.3%). Frequencies of genomic alterations in KRAS WT were derived from Philip et al. and Singhi et al. 
[29,30]. 

In addition, there is significant enrichment of mismatch repair deficiency in KRAS 
WT PDAC [29]. Beyond KRAS WT PDAC, approximately 10% of PDACs have a deficiency 
in the homologous recombination (HR) DNA repair pathway, with inactivating germline 
or somatic mutations in BRCA1, BRCA2, and PALB2 [27]. The “Know Your Tumor” plat-
form identified targetable alterations in 26% of PDAC tumors [31]. In a retrospective anal-
ysis, those who received molecularly matched targeted therapy had improved OS (me-
dian OS 2.6 years versus 1.5 years) compared to those who received unmatched therapies. 
Many of these targeted therapies hold FDA approval for tumors other than PDAC (Table 
1). These data support the hypothesis that precision medicine has a role in the treatment 
of PDAC and should continue to be validated prospectively. 

Table 1. Recommended FDA-approved targeted therapy options for PDAC. 

Recommended FDA-Approved Targeted Therapies in PDAC 
Molecular Target Drug Name 

gBRCA1/2 mutations Olaparib 
Tumor agnostic FDA-approved targeted therapies 

Molecular Target Drug Name 
MSI-H/MMRd Pembrolizumab 
BRAF V600E Dabrafenib/Trametinib 

NTRK fusions Larotrectinib, Entrectinib 
RET fusions Selpercatinib 

Therapies that are FDA-approved in other tumors 
Molecular Target Drug Name 

KRAS G12C Sotorasib, Adagrasib 
FGFR2 fusions Pemigatinib 

ALK fusions Crizotinib, Alectinib 
ROS1 fusions Entrectinib, Crizotinib 

Figure 1. Oncogenic driver alterations in KRAS-mutated and KRAS wild-type PDAC. The proportion
of KRAS mutations in PDAC include KRAS G12D (41%), G12V (31%), G12R (14%), Q61H (4%), G12C
(1%), and KRAS wild-type (WT) (9%) [29,30]. Actionable alterations in KRAS WT patients in PDAC
and pancreatic acinar cell carcinoma include: BRAF alterations (13.7%), MMRd/MSI-H (4.7%), FGFR2
fusions (3.5%), ALK fusions (1.6%), RET fusions (1%), NTRK fusions (0.7%), and ROS1 fusions (0.3%).
Frequencies of genomic alterations in KRAS WT were derived from Philip et al. and Singhi et al. [29,30].

In addition, there is significant enrichment of mismatch repair deficiency in KRAS WT
PDAC [29]. Beyond KRAS WT PDAC, approximately 10% of PDACs have a deficiency in
the homologous recombination (HR) DNA repair pathway, with inactivating germline or
somatic mutations in BRCA1, BRCA2, and PALB2 [27]. The “Know Your Tumor” platform
identified targetable alterations in 26% of PDAC tumors [31]. In a retrospective analysis,
those who received molecularly matched targeted therapy had improved OS (median OS
2.6 years versus 1.5 years) compared to those who received unmatched therapies. Many of
these targeted therapies hold FDA approval for tumors other than PDAC (Table 1). These
data support the hypothesis that precision medicine has a role in the treatment of PDAC
and should continue to be validated prospectively.

Table 1. Recommended FDA-approved targeted therapy options for PDAC.

Recommended FDA-Approved Targeted Therapies in PDAC

Molecular Target Drug Name
gBRCA1/2 mutations Olaparib

Tumor agnostic FDA-approved targeted therapies

Molecular Target Drug Name
MSI-H/MMRd Pembrolizumab

BRAF V600E Dabrafenib/Trametinib
NTRK fusions Larotrectinib, Entrectinib
RET fusions Selpercatinib

Therapies that are FDA-approved in other tumors

Molecular Target Drug Name
KRAS G12C Sotorasib, Adagrasib

FGFR2 fusions Pemigatinib
ALK fusions Crizotinib, Alectinib

ROS1 fusions Entrectinib, Crizotinib
sBRCA1/2, gPALB2/sPALB2 1 Niraparib, Olaparib, Rucaparib

1 s: somatic; g: germline.
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4.1. Homologous Recombination Deficiency

Double-strand DNA breaks are repaired by the homologous recombination (HR)
repair pathway, and deficiency of this DNA repair pathway confers sensitivity to plat-
inum chemotherapy and PARP inhibitors in multiple cancers [32,33]. Since approximately
17 genes are involved in the HR pathway, it is helpful to distinguish between core HR
genes (BRCA1, BRCA2, PALB2) and the other non-core HR genes. Deleterious alterations in
core HR genes are well-established markers of sensitivity to PARP inhibitors and platinum
chemotherapy. Alternatively, while deleterious alterations in some non-core HR genes, like
RAD51C, have been reported to impart PARP inhibitor sensitivity in ovarian cancer, the im-
pact of other non-core HR genes is less clear [34]. Deleterious alterations in core HR genes
occur in 10–12% of PDAC patients, while deleterious alterations in non-core HR genes are
found in approximately 7% of PDACs [27,35]. Multiple studies have demonstrated that
PDAC patients with mutations in a core HR gene have enhanced sensitivity to platinum
chemotherapy, leading to improved PFS, compared to HR-proficient PDACs, when they
are treated with first-line platinum-based chemotherapy [31,36–38].

A phase II trial evaluating gemcitabine/cisplatin with or without the PARP inhibitor
veliparib in PDAC patients with germline BRCA1, BRCA2, or PALB2 mutations highlights
the enhanced platinum-sensitivity in HR-deficient PDAC [39]. While veliparib did not
improve the effectiveness of first-line gemcitabine/cisplatin, the trial clearly demonstrated
the impressive efficacy of gemcitabine/cisplatin in HR-deficient PDAC. Patients treated
in this trial with gemcitabine/cisplatin achieved a median OS of 16.4 months, median
PFS of 9.7 months, and an ORR of 65.2%. Interestingly, in a separate trial studying an
unselected population of patients with PDAC, gemcitabine/cisplatin did not statistically
improve OS or ORR compared to gemcitabine alone [40]. There are no trials comparing
gemcitabine/cisplatin to FOLFIRINOX in HR-deficient PDAC, although either is reasonable
in PDAC tumors with deleterious mutations in BRCA1, BRCA2, or PALB2.

PARP inhibitors have shown significant efficacy in multiple HR-deficient tumors, with
a toxicity profile more favorable than cytotoxic chemotherapy [41,42]. An important lesson
from other malignancies, which has also proven true in PDAC, is that PARP inhibitors
are only efficacious in platinum-sensitive tumors. This insight led to the design of the
POLO trial, where maintenance olaparib versus placebo was studied in patients with PDAC
with deleterious germline BRCA1 or BRCA2 mutations who had no evidence of disease
progression following at least 16 weeks of platinum-based chemotherapy. The trial met
its primary endpoint of improving PFS (7.4 months versus 3.8 months, olaparib versus
placebo), but did not demonstrate a statistically significant improvement in OS [43,44]. On
the basis of the POLO trial, the FDA approved maintenance olaparib in PDAC patients
with germline BRCA mutations. However, a major question in the field is whether other
PDAC patients can benefit from maintenance PARP inhibition. A phase II trial evaluating
maintenance rucaparib in PDAC with deleterious germline or somatic BRCA1, BRCA2,
and PALB2 mutations who did not progress on first-line platinum-based chemotherapy
also demonstrated encouraging results, with a median PFS of 13.1 months [45]. These
results suggest that maintenance PARP inhibition is a reasonable therapeutic strategy in this
patient population [45,46]. Interestingly, a recent study demonstrated impressive efficacy
of a maintenance strategy using the CTLA4 inhibitor ipilimumab combined with the PARP
inhibitor niraparib in patients who had not progressed on platinum-based chemotherapy
and tumors without an underlying BRCA1/2 or PALB2 mutation [47]. This may prove to be
an effective maintenance strategy, but further investigation is needed.

4.2. KRAS Mutated PDAC

While the KRAS gene is mutated in approximately 14% of all human cancers, PDAC
is the prototypical KRAS mutated malignancy, as over 90% of PDACs harbor a KRAS
mutation [48]. KRAS is a GTPase that activates downstream effector proteins of the
mitogen-activated protein kinase (MAPK) pathway [49]. Genomic studies investigating the
frequency of different KRAS mutated alleles in PDAC have demonstrated the following
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distribution of KRAS mutations: G12D (41%), G12V (31%), G12R (14%), Q61H (4%), and
G12C (<1%) [27,30]. Translational studies exploring patient outcomes and co-mutational
patterns have begun to reveal differences amongst tumors harboring different KRAS mu-
tation alleles (Figure 1) [50,51]. Patients with PDAC harboring a KRAS G12D mutation
have decreased OS compared to PDAC patients with mutations in other KRAS alleles.
Interestingly, PDAC with KRAS G12R mutations are more likely to harbor deleterious HR
gene alterations and PI3-kinase pathway mutations [52,53].

In an encouraging step forward, KRAS G12C has been successfully targeted in PDAC
patients with the direct irreversible KRAS G12C inhibitors sotorasib and adagrasib [54,55].
The CodeBreaK100 study was an open-label phase I/II clinical trial investigating the role
of sotorasib in previously treated solid tumors harboring KRAS G12C mutations, including
38 patients with metastatic PDAC [54]. In the PDAC cohort, the ORR was 21%; the disease
control rate (DCR) was 84%; the median PFS was 4.0 months; and the median OS was
6.9 months [54]. The drug was well-tolerated, with only 5.3% of patients experiencing
grade 3 diarrhea or fatigue. The KRYSTAL-1 study was a multicohort phase I/II clinical
trial investigating the role of adagrasib, another covalent irreversible KRAS G12C inhibitor,
in advanced gastrointestinal cancers [55]. In a preliminary analysis of 10 evaluable PDAC
patients enrolled on KRYSTAL-1, remarkably, 5 PDAC patients achieved a partial response,
with a median duration of response of 7 months, and the other five patients had stable
disease, yielding a median PFS of 6.6 months [55]. Overall, adagrasib was well to-erated.
Gastrointestinal toxicity was the most common adverse event, while fatigue and QTc
prolongation were the most common grade 3–4 toxicities.

There are currently no FDA-approved KRAS inhibitors available for patients with
PDAC outside a clinical trial. However, the success of KRAS G12C inhibitors has inspired
optimism that KRAS-directed therapy in PDAC is feasible, and investigational agents,
such as KRAS G12D inhibitors, SOS inhibitors, and pan-RAS inhibitors, are being actively
developed. Encouraging preclinical data have been presented on the KRAS G12D inhibitor
MRTX1133 and the pan-RAS inhibitor RMC-6236 [56,57]. MRTX1133 is a non-covalent
small molecule inhibitor that binds to GDP-loaded KRAS G12D and leads to impressive
anti-tumor activity in KRAS G12D-mutated murine models [57]. RMC-6236 inhibits all RAS
isoforms (i.e., K-, H-, and NRAS) by acting as a molecular glue to promote the binding RAS
proteins to the cyclophilin A chaperone protein. Stable formation of the RAS/cyclophilin
A complex inhibits the ability of RAS to activate downstream MAPK effectors. The RMC-
6236 pan-RAS inhibitor demonstrated striking anti-tumor activity, with several complete
responses, in murine KRAS-mutated xenografts [56].

In addition to targeted therapy approaches, immunotherapeutic strategies utilizing
KRAS-directed vaccines and T-cell directed therapies are also being developed [28,58].
The potential of this approach was highlighted in a case report of a patient with KRAS
G12D-mutated PDAC, who had a lung-only metastasis and experienced a partial response
(72% tumor regression) following infusion of autologous T cells that were engineered to ex-
press HLA-C*08:02–restricted T-cell receptors (TCRs) targeting oncogenic KRAS G12D [59].
This demonstration of TCR-directed therapy in PDAC highlights the potential for broader
application of immunotherapeutic approaches in this cancer, which has historically been
resistant to immunotherapy [60].

4.3. KRAS Wild-Type (WT) PDAC

Given the historic difficulties in targeting KRAS, increasing attention has been given
to KRAS WT PDAC [29,61]. In addition to being enriched for mismatch repair-deficient
tumors, multiple reports have demonstrated that KRAS WT PDAC can harbor oncogenic
BRAF alterations and gene fusions of ALK, RET, ROS1, NRG1, FGFR2, and NTRK [29,61–63].
KRAS WT PDAC is more common in younger patients and appears to have longer OS
compared to patients with KRAS-mutated PDAC [29,61]. Interestingly, genomic studies
have also observed that KRAS WT PDAC has a higher frequency of cancers that are ATM-
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mutated and TP53 WT [61,64,65]. However, given the rare incidence of KRAS WT PDAC,
data regarding therapeutic targeting in patients is sparse.

The NOTABLE study provided proof-of-concept that KRAS WT PDAC is susceptible
to molecularly targeted therapy [66]. The NOTABLE study was a randomized, double-
blinded, phase III clinical trial conducted in China that investigated the role of gemcitabine
combined with nimotuzumab, a humanized anti-epidermal growth factor receptor (EGFR)
antibody, compared to gemcitabine monotherapy as first-line treatment for KRAS WT
advanced PDAC [66]. Median OS was significantly improved at 10.9 months with gemc-
itabine/nimotuzumab compared to 8.5 months with gemcitabine alone. Median PFS was
4.2 months with gemcitabine/nimotuzumab compared to 3.6 months with gemcitabine
alone. Clinically, although there was a slight improvement in OS in the NOTABLE study,
it is difficult to put the results of this trial into context. since it did not include a modern
chemotherapy regimen, such as FOLFIRINOX or gemcitabine/nab-paclitaxel.

4.4. BRAF Alterations

Activating mutations in BRAF activate downstream signaling in the MAPK pathway
and targeting BRAF V600E class 1 mutations with BRAF-targeted therapy has proven
effective in multiple malignancies [27,67,68]. In a report analyzing PDAC and pancreatic
acinar cell carcinomas, oncogenic BRAF alterations accounted for 13% of the KRAS WT
tumors [29]. Differing from the experience in melanoma, BRAF V600E mutations only
accounted for 20–30% of the BRAF alterations seen in PDAC and pancreatic acinar cell
carcinomas [27,29,65]. Other BRAF alterations included BRAF exon 11 insertion-deletion
mutations (INDELs) and BRAF fusions. Clinical experience targeting BRAF alterations
in pancreatic cancer is limited [27]. In a retrospective case series of PDAC and acinar
cell carcinoma, two patients with BRAF V600E mutations achieved a partial response on
combined BRAF/MEK inhibition [69]. In the same cohort of patients, there were responses
to MEK inhibitor monotherapy in the BRAF fusion and BRAF INDEL subgroups, but
survival outcomes were not reported due to the uncontrolled nature of the case series [27].

4.5. FGFR2 Fusions

Fibroblast growth factor receptor-2 (FGFR2) fusions account for 3.5% of the genomic
alterations KRAS WT PDAC and pancreatic acinar cell carcinoma [29,70]. FGFR2 receptors
typically become activated when its ligand, fibroblast growth factor, promotes FGFR2 dimer-
ization. Fusion partners in FGFR2 translocations have intracellular dimerization domains
that promote constitutive FGFR2 activation, resulting in downstream activation of the MAPK
pathway [71,72]. While therapeutic targeting of FGFR2 translocations has been efficacious
in intrahepatic cholangiocarcinoma, clinical experience in targeting of these alterations in
PDAC is very limited. In the FIGHT-101 trial, a patient with KRAS WT PDAC harboring
an FGFR2-USP33 fusion achieved a partial response to pemigatinib that was maintained for
10.7 months before disease progression [73]. A recent case series described four KRAS WT
PDAC patients with FGFR2 fusions who benefited from an undisclosed FGFR2 inhibitor on
an unpublished clinical trial [74]. Three of the patients with KRAS WT PDAC benefited from
the use of an FGFR inhibitor for at least 6 months [74]. The most common side effects with
FGFR inhibitors are hyperphosphatemia, cutaneous toxicities, and ocular toxicities, although
these toxicities are manageable with dose and schedule modifications.

4.6. ALK Fusions

Anaplastic lymphoma kinase fusion (ALK) gene-rearrangement proteins promote tu-
mor growth and cell survival by activating intracellular signaling cascades, including the
MAPK pathway [75,76]. Therapeutic targeting of ALK fusions with small molecule in-
hibitors has been successful in other malignancies, such as lung cancer and anaplastic large
cell lymphoma [77–80]. ALK fusions are seen in approximately 2.5% of KRAS WT PDAC,
and recent reports have shown promising efficacy of ALK inhibitors in ALK-rearranged
PDAC [77,81,82]. A case series of KRAS WT metastatic PDAC harboring ALK rearrangements
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described four patients who benefitted from ALK-directed therapy, with two of these patients
being on therapy for over 1 year [83]. In a separate case series, five patients with KRAS WT
PDAC harboring ALK rearrangements received ALK-directed therapy [84]. In this case series,
a response to therapy was seen in one PDAC patient treated with crizotinib and one PDAC
patient treated with alectinib [84]. Treatment with ALK inhibitors is generally well-tolerated,
although gastrointestinal and pulmonary toxicities have been reported [78,82,85].

4.7. NTRK Fusions

The tropomysin receptor kinase (TRK) family of receptors are stimulated by binding
to their ligand, neurotrophins, causing receptor dimerization and activation of downstream
signaling pathways [86]. NTRK fusions of the genes that code for TRK receptors (NTRK1-3)
encode proteins that lead to dimerization and constitutive receptor activity [86]. NTRK
fusions occur in 1–3% of KRAS WT PDAC. In a pooled analysis of three tumor agnostic clin-
ical trials for patients with NTRK fusions, there were two patients with NTRK-rearranged
PDAC, and one of these patients had a partial response to the NTRK inhibitor larotrec-
tinib [87]. In another case report, a KRAS WT PDAC patient with a CTRC-NTRK1 fusion
responded to larotrectinib for 6 months prior to developing acquired resistance [88]. In a
separate meta-analysis of three clinical trials investigating the NTRK inhibitor entrectinib,
three patients with PDAC harboring NTRK rearrangements were treated; two of these
achieved a partial response [89]. NTRK inhibitors are well-tolerated, and most adverse
events are grade 1–2, including fatigue, nausea, neurologic events (cerebellar ataxia, cog-
nitive disorder, and dizziness), weight gain, and anemia [62,87–89]. Both entrectinib and
larotrectinib have tumor agnostic FDA approval for NTRK rearranged tumors.

4.8. NRG1 Fusions

Neuregulin 1 (NRG1) is a soluble ligand that ordinarily is released from cells and acts as
a paracrine messenger [90,91]. NRG1 binds to HER3, promoting HER2/HER3 dimerization
and PI3K/AKT/mTOR signaling [90,91]. NRG1 fusions are oncogenic drivers in PDAC
and account for 1.3% of KRAS WT cases [63,92]. Mechanistically, NRG1 fusion proteins
tether the NRG1 to the plasma membrane, resulting in hyperactivation of HER3 [90,91].
Zenocutuzumab, an investigational bispecific antibody targeting HER2 and HER3, has
shown promising efficacy in patients with KRAS WT PDAC with NRG1 fusions [93]. In a
phase II clinical trial investigating zenocutuzumab monotherapy, there was a 42% ORR in
the 19 patients with KRAS WT PDAC patients harboring a NRG1 rearrangement [93]. In all
patients, median time to response was 1.8 months and duration of response was 9.1 months.
The toxicity profile of zenocutuzumab was generally favorable, although there was one
grade 5 hypersensitivity reaction. The most common grade ≥ 3 adverse events were fatigue
(4%), dyspnea (4%), anemia (3%), and liver test abnormality (3%). Afatinib, a pan-ERBB
inhibitor, is also being explored in NRG1 fusion-associated PDAC [63,92]. There have been
published reports of two patients with PDAC with NRG1 rearrangements responding to
afatinib, and clinical trials of this agent are ongoing [63,92].

4.9. RET Fusions

The RET proto-oncogene encodes for a transmembrane receptor tyrosine kinase in-
volved in embryonic development of the nervous system and kidneys [94]. RET fusions
lead to aberrant activation of RET receptor tyrosine kinase and constitute 1.3% of KRAS
WT PDAC [29]. In the LIBRETTO-001 phase I/II basket trial, 12 patients with PDAC
harboring a RET rearrangement were enrolled and treated with the RET-specific inhibitor
selpercatinib [95]. The patients on the trial had a 55% ORR, with a range of response
duration from 2.5 months to 38.3 months. Approximately 38% of patients had at least one
grade 3 adverse event (AE), which included mostly liver test abnormalities. In the ARROW
phase I/II clinical trial investigating the RET inhibitor pralsetinib in solid-tumor patients
with RET rearrangements, nine patients with PDAC were enrolled [94]. All four patients
who were evaluable had an objective response (3 PRs and 1 CR with a treatment duration
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of 33.1 months) [94]. In the evaluable group of all solid tumor patients, the ORR was 57%,
with a median duration of response of 11.7 months. On the trial, 69% of patients experi-
enced grade ≥3 treatment-related adverse events. The most common grade ≥3 toxicities
were neutropenia, anemia, and liver test abnormalities requiring dose interruptions (59%)
or dose reductions (45%). Selpercatinib has been granted a tumor agnostic FDA-approval
for treatment of RET-fusion positive tumors.

4.10. ROS1 Alterations

The ROS1 gene encodes for a receptor tyrosine kinase that is closely related to ALK.
It is a transmembrane protein with an intracellular tyrosine kinase domain and large
extracellular domain [96]. ROS1 fusions are rare subsets of KRAS WT PDAC accounting
for less than 1% of all patients and published reports on the efficacy of targeting ROS1 in
PDAC are extremely rare [27,29]. There has been one case report of a patient with KRAS WT
PDAC who had stable disease on entrectinib for 7 months before progression of disease [62].
Due to its rare incidence, no other larger cohorts have been reported. No pancreatic cancer
specific FDA approved therapy is available for ROS1 altered PDAC.

4.11. MMR Deficient PDAC

Mismatch repair deficient (MMRd) PDAC accounts for up to 2.5% of all PDAC and
4.7% of KRAS WT PDAC [29,97]. Often, MMRd PDAC is frequently TP53 WT and often has
a medullary or mucinous/colloid histology [98]. In an early phase clinical trial studying
pembrolizumab, eight MMRd PDAC patients were enrolled; five of these achieved a partial
response to therapy (62% ORR) [99]. However, in the KEYNOTE-158 study, there was a
more modest 18.2% (n = 4/22 patients) ORR in MMRd PDAC who had previously had pro-
gression on first-line therapies [100]. There were no unexpected immune-related adverse
events in these trials, with 14.6% experiencing grade ≥ 3 adverse events, including liver
test abnormalities (GGT and ALT), pneumonitis, Guillain Barre Syndrome, neutropenia,
and autoimmune enterocolitis. Pembrolizumab has a tumor-agnostic FDA-approval for
MSI-H/MMRd tumors, which allows patients with MMRd PDAC access to this promising
therapy. While pembrolizumab is a recommended therapy for MMRd PDAC, there is
currently no role for immunotherapy in microsatellite stable/mismatch repair proficient
PDAC, as evidenced by multiple negative clinical trials investigating its use [60,101]. How-
ever, future investigations are trying to identify methods of overcoming immunotherapy
resistance in mismatch repair-proficient PDAC.

5. Conclusions

PDAC is a highly lethal malignancy, and patients are in desperate need of molecularly
targeted therapies that can improve the current treatment paradigms (Figure 2). Cytotoxic
chemotherapy remains the standard of care for most patients with PDAC. While combina-
tion chemotherapy regimens have improved outcomes in the first-line setting, the efficacy
of second-line chemotherapy is modest. The use of next-generation sequencing (NGS) can
identify patients who might benefit from targeted therapy. FDA-approved options are
available for PDAC tumors with BRCA1/2 mutations (germline), MMRd, NTRK fusions,
BRAF V600E mutations, and RET fusions. Investigational therapies, as well as off-label
use of therapies that have FDA approval for other malignancies, are available to KRAS
WT PDAC patients harboring other BRAF alterations and ALK, FGFR2, ROS1, and NRG1
translocations. However, there is a large portion of PDAC patients who do not have a
targetable alteration, and innovative targeted and immunotherapies that can improve
outcomes in these patients are greatly needed.
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