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Simple Summary: When tumors become resistant to chemotherapeutics, alternative treatment
strategies must be explored. Gene targeting provides a personalized and molecular approach to
tackling chemoresistance in ovarian cancer. However, to advance the current landscape of gene
targeting in ovarian cancer, the therapeutic potential of more gene targets should be explored. Here,
we review several novel and well-studied genes that can be investigated as potential gene targets in
ovarian cancer to increase chemotherapeutic response.

Abstract: In the United States, over 100,000 women are diagnosed with a gynecologic malignancy
every year, with ovarian cancer being the most lethal. One of the hallmark characteristics of ovarian
cancer is the development of resistance to chemotherapeutics. While the exact mechanisms of
chemoresistance are poorly understood, it is known that changes at the cellular and molecular level
make chemoresistance challenging to treat. Improved therapeutic options are needed to target these
changes at the molecular level. Using a precision medicine approach, such as gene therapy, genes
can be specifically exploited to resensitize tumors to therapeutics. This review highlights traditional
and novel gene targets that can be used to develop new and improved targeted therapies, from drug
efflux proteins to ovarian cancer stem cells. The review also addresses the clinical relevance and
landscape of the discussed gene targets.
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1. Introduction

Ovarian cancer is the most lethal gynecological malignancy [1,2]. In 2022 alone, it is
estimated there will be 19,880 new cases and 12,810 deaths due to ovarian cancer in the
United States [3]. The survival rate of patients with ovarian cancer is related to the disease
stage at diagnosis. Women diagnosed with localized disease (stage 1) have an average
5-year survival rate of 92.6% [4], whereas women diagnosed in the later metastatic stages
(Stage 3 and 4) have an average 5-year survival rate of only 30.2% [4]. Approximately
70% of all ovarian cancer diagnoses occur in advanced stages, reducing the patients’
overall survival rate [5]. The presentation of nonspecific symptoms combined with limited
detection and screening methods contributes to the high percentage of women diagnosed
in advanced stages [2].

The standard treatment method for ovarian cancer is debulking surgery followed by
chemotherapy and/or radiation therapy. Another common treatment method is neoad-
juvant chemotherapy followed by debulking surgery [1]. Platinum- and taxane-based
drugs are typically used to treat ovarian cancer; however, the selection of chemothera-
peutic agents depends on the stage of ovarian cancer [1]. High-dosage chemotherapy
often leads to complications as well as chemotherapeutic resistance; over 70% of patients
relapse after treatment and eventually become resistant to chemotherapeutics [6]. Generally,
chemotherapeutic resistance is a phenomenon that occurs when a disease becomes tolerant
to a therapeutic over time, thus reducing the efficacy of the drug. Resistance in cancers
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can be characterized as either intrinsic or acquired resistance. Intrinsic resistance indicates
that there are pre-existing factors within tumor cells that make initial chemotherapeutic
treatments less effective. Mechanisms of intrinsic resistance involve drug degradation by
drug-metabolizing enzymes, mutations in the drug target, and modifications in membrane
transport of the drug. Poor vascularization, extracellular matrix (ECM) interactions, and
cellular metabolic processes are also contributing factors to intrinsic resistance [7,8]. Ac-
quired resistance, however, is developed after treatment with therapeutics, implying an
increase in mutations and alterations within the tumor cells in response to chemotherapy
which limits drug efficacy. Acquired resistance can be attributed to increased drug efflux
due to the overexpression of drug efflux proteins, activation of survival signaling path-
ways, and inactivation of DNA damage repair mechanisms to evade cell death [9,10]. Both
intrinsic and acquired resistance are multifactorial and often involve various independent
and dependent pathways, making treatment complex [9]. Nevertheless, tackling resistance
is a critical clinical need to improve outcomes for patients with ovarian cancer.

Although the exact molecular mechanisms behind resistance in ovarian cancer are
poorly understood, it is recognized that patients with ovarian cancer develop acquired
resistance from platinum- and taxane-based therapeutics. Analyzing the differences in
protein expression in chemosensitive and chemoresistant ovarian cancer can give rise to new
therapeutic targets. Protein expression levels vary in cellular processes such as apoptosis,
DNA repair, and the cell cycle in resistant ovarian cancer. For example, upregulated
proteins can have inhibitory actions on apoptosis, while downregulated proteins that
usually trigger apoptosis may no longer function at their full capacity. In this review, we
examine an array of proteins that have been linked to chemoresistance in ovarian cancer,
particularly proteins associated with drug efflux, inhibition of apoptosis, DNA damage and
repair, and cancer stem cells. While common genes have been targeted through singular or
combinatorial therapy, targeting a wider range of genes using RNA interference (RNAi)
tools may be effective in providing a more personalized medicine approach. Here, we
discuss pathways and mechanisms of chemoresistance in ovarian cancer and associated
gene targets that can be explored for targeting and therapeutic approaches.

2. Drug Efflux Proteins

Drug efflux proteins are central in the development of therapeutic resistance in ovarian
cancer. Chemotherapeutics must be delivered into the cell’s cytoplasm for maximum thera-
peutic benefit; however, efflux proteins can remove various drugs from the cell (Figure 1).
The most notable drug efflux and membrane transporter proteins linked to resistance are
among the adenosine triphosphate-binding cassette (ABC) superfamily. ABC transporters
use adenosine triphosphate (ATP) to move substrates across the cellular membrane [11,12].
Proteins of this family all follow a similar basic structure—they are composed of two
cytoplasmic nucleotide-binding domains and two transmembrane domains responsible for
binding to and hydrolyzing ATP and recognizing transport molecules, respectively [13,14].
Within this large family of proteins, seven subfamilies have been categorized from A to G
based on sequence homology [15]. Specifically, ABCB1 (P-glycoprotein/PgP, multidrug re-
sistance protein 1/MDR1), ABCC1 (multidrug resistance-associated protein 1/MRP1), and
ABCG2 (Breast Cancer Resistance Protein/BCRP) have been linked to chemoresistance [15].

While there are over 40 proteins associated with the ABC transporter family, ABCB1 is
one of the most commonly studied [7,10,16]. ABCB1 is a 170 kDa unidirectional membrane-
bound glycoprotein known to reduce the concentration of platinum- and taxane-based
chemotherapeutics in ovarian cancer cells [17,18]. Studies have shown that ABCB1 ex-
pression is a prognostic factor in ovarian cancer [19]. The protein is also overexpressed
in chemoresistant ovarian cancer cells, specifically in cells treated with paclitaxel and
cisplatin [20,21]. Overcoming resistance mediated by ABCB1 has been studied over the
past three decades with an emphasis on delivering small inhibitor molecules and small
interfering RNAs to reduce its expression [17]. Previous studies have shown that knock-
down of the ABCB1 gene can re-sensitize and increase the intracellular accumulation of
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chemotherapeutics in drug-resistant ovarian cancer cells, making it a suitable target for
treatment [22,23].
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use ATP to pump chemotherapeutics (dark purple) out of the cell.

ABCC1 is a 190 kDa glycophosphoprotein that is not only active in drug transport
but also in the transportation of conjugated organic anions such as glutathione and glu-
curonate [24–26]. The protein was discovered in a multidrug-resistant lung cancer cell line
that did not overexpress ABCB1 [27]. ABCC1 is thought to induce an inflammatory response
as well as protect cells from oxidative stress, xenobiotics, and endogenous toxic metabolites.
However, high expression of ABCC1 also plays a role in disease progression and drug
resistance in ovarian cancer [25,28,29]. In a study conducted by Ohishi et al., it was revealed
that ABCC1 mRNA was elevated in untreated and cisplatin/carboplatin-treated ovarian
carcinoma tumor samples from patients with progressive ovarian cancer [30]. Due to the
elevated expression of ABCC1 in both untreated and treated samples, these results suggest
that ABCC1 could be involved in intrinsic and acquired resistance. Similarly, increased
expression of ABCC1 transcripts was found in ovarian cancer tissue before chemotherapy
treatment compared to normal (healthy) ovarian tissue [31]. Downregulation of the ABCC1
gene in vitro has resulted in increased sensitivity to various chemotherapeutics and de-
creased cell proliferation in cancers such as glioblastoma multiforme, and lung, colorectal
and esophageal cancer [32–35]. One research group has described using an ABCC1 small
molecule inhibitor in combination with a glutathione-depleting drug to explore cellular
viability and chemosensitization in SKOV3 ovarian cancer cells where combination treat-
ment displayed a loss of viability [36]. To our knowledge, ABCC1 has not been targeted
using RNAi-based therapies specifically for the treatment of drug resistance.

ABCG2 is considered a half-transporter with a molecular weight of 72 kDa. Although it
is half the size of ABCB1 and ABCC1, it has been shown to act similarly and is composed of
at least one nucleotide-binding domain and two transmembrane domains [37,38]. While it
was initially isolated from a breast cancer cell line, increased expression of ABCG2 has been
identified in many cancers, including myeloma, glioblastoma, esophageal, tongue, and
ovarian cancer [39,40]. ABCG2 upregulation is correlated with resistance to topoisomerase
inhibitors, anthracyclines, and mitoxantrone [41,42]. In ovarian cancer, overexpression of
ABCG2 has been revealed through elevated mRNA transcript levels in topotecan-resistant
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A2780 and IGROV1 cells [43,44]. Because most studies analyze chemoresistance in cell lines
resistant to one type of chemotherapeutic, Januchowski et al. sought to study acquired
drug resistance by multiple chemotherapeutics. Their studies observed cross-resistance
between doxorubicin-treated and topotecan-treated A2780 cell lines, indicating that ABCG2
overexpression is related to both doxorubicin and topotecan resistance [44]. The role of
ABCG2 was further analyzed by Mo et al., where it was determined that in ID8 murine
ovarian cancer cells, the inhibition of ABCC2 and ABCG2 via small molecule drugs MK-
571 and Novobiocin decreased the efflux of Rhodamine 123, a tracer dye that can bind
to ABC transporters [45]. Based on these results, it was revealed that in ascites-derived
human ovarian cancer cells, ABCC1 and ABCG2 promote drug efflux. Lastly, Ricci et al.
demonstrated that three different ABCG2 inhibitors each restored chemosensitivity in
topotecan-resistant IGROV1/T8 cells in vitro and in vivo with minimal cytotoxic effects [46].
There are limited studies targeting the ABCG2 gene for ovarian cancer, even though it is
being studied clinically in other cancers; however, there is a correlation between ABCG2
upregulation and resistance to anthracyclines, such as doxorubicin. Targeting ABCG2 could
be beneficial for patients who have experienced relapse and resistance to other drugs,
especially since anthracyclines are typically used as a second line of therapy for patients
resistant to other chemotherapeutics.

Though targeting efflux proteins biases cells to take in more of a drug, reducing the
expression of efflux proteins alone is insufficient. Increasing drug uptake does not always
result in maximum therapeutic benefit and outcomes, especially with multifactorial drug
resistance. For optimal results in overcoming drug resistance, it is best to target drug efflux
proteins in combination with another gene/pathway involved in resistance to increase the
efficacy of the drug.

3. Apoptosis

Most anticancer agents are meant to trigger cell death through various mechanisms,
such as apoptosis. However, resistance can develop when apoptosis is delayed or inhibited,
which reduces the efficacy of the drug. Because chemotherapy is known to induce apop-
tosis within the cell, deficiencies within the apoptotic pathway can lead to resistance [47].
The suppression of apoptosis is linked with the progression of ovarian cancer as well as
other cancers [1]. Apoptosis is initiated through both intrinsic and extrinsic pathways.
Intrinsic apoptosis is mitochondrial-dependent and mediated by stress signals at the mi-
tochondrial level. These stress signals can cause intracellular damage due toradiation,
hypoxia, oxidative stress, and/or treatment with chemotherapeutics, triggering the release
of cytochrome c, an apoptosis signaling protein, from mitochondria [48,49]. In contrast,
the extrinsic apoptotic pathway is mediated by extracellular signals and receptors that
belong to the tumor necrosis factor superfamily [48,49]. Though independent of one an-
other, both pathways utilize caspases to initiate, execute and regulate the apoptosis cascade
(Figure 2) [50]. In drug-resistant ovarian cancer, the expression of anti-apoptotic proteins
is exacerbated post-treatment; these anti-apoptotic proteins can hinder the initiation of
apoptosis by indirectly or directly blocking the caspase cascade.

Generally, apoptosis is mediated by a family of cysteine–aspartyl proteases (caspases).
Caspases are inactive enzymes comprised of subunits and become activated once their
peptide bonds are hydrolyzed, eventually separating the subunits from one another [51].
Interaction with one caspase triggers the activation of another, which is often referred
to as the caspase cascade. In chemoresistant ovarian cancer, modulation of the caspase
cascade can lead to inhibition of cell death, resulting in the progression of the disease. A
clinical study demonstrated that ovarian cancer patients who had tumors with low levels of
expression of caspase-8 had reduced survival rates, whereas patients with higher levels of
caspase-8 had longer survival rates [52]. Because caspase-8 is an initiator caspase, reduced
expression affects the overall caspase cascade, which promotes cellular survival instead
of cell death. In the following subsections, we discuss various proteins that affect the
caspase cascade.
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3.1. Intrinsic Apoptosis
3.1.1. Bcl-2 Family

B cell lymphoma gene 2 (Bcl-2), one of many families in the intrinsic pathway, com-
prises over 20 pro- and anti-apoptotic proteins that prevent the release of cytochrome C
from mitochondria [53]. Overexpression of Bcl-2 proteins can counteract the function of
pro-apoptotic proteins and promote cell survival [54]. In ovarian cancer, the anti-apoptotic
proteins Bcl-2 and Bcl-2-related gene long isoform (Bcl-xL) are often upregulated and corre-
lated with poor prognosis of the disease [55–58]. Analyzing ovarian cancer tissue samples
of patients treated with cisplatin-based chemotherapy, Mano et al. found that Bcl-2 ex-
pression was associated with a poor response, thus identifying the gene as an important
prognostic factor [58]. Bcl-2 negative samples responded to chemotherapy, thus exem-
plifying the activity of Bcl-2 in promoting ovarian cancer cell survival. In another study,
Yang et al. developed chemoresistant SKOV3 and OVCAR3 ovarian cancer spheroids to
determine the underlying mechanism behind platinum resistance within the spheroids [59].
The spheroids exhibited increased expression of Bcl-2 compared to ovarian cancer cells
cultured in monolayers [59]. Downregulation of Bcl-2 using small interfering RNA (siRNA)
enhanced cell death in the spheroids, demonstrating resensitization to cisplatin [59]. This
work confirms the importance of Bcl-2 in ovarian cancer and validates its role as a key gene
in mediating drug resistance via apoptotic suppression.

Similar evidence relating the structural and functional homolog of Bcl-2, Bcl-xL, to
drug resistance in ovarian cancer was found in a study by Brotin et al. [55]. The study
revealed that Bcl-xL protected cisplatin-resistant SKOV3 cells from apoptosis, and silencing
the Bcl-xL gene using siRNA with cisplatin treatment induced apoptosis [55]. Degradation
of DNA in ovarian carcinoma can be a sign of apoptotic cell death, usually caused by
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chemotherapeutics treatment. The overexpression of Bcl-xL can delay and prevent the
activation of apoptosis in ovarian cancer, allowing more time for DNA repair. Liu and
colleagues suggested that a delayed response in apoptosis may allow cells to develop
another mechanism of resistance in addition to increased DNA repair, but it is unknown
whether knockdown of Bcl-xL causes pleiotropic drug resistance [60]. If Bcl-xL does cause
pleiotropic drug resistance, further studies should be done to determine what genes are
upregulated or downregulated after Bcl-xL knockdown.

While proteins in the Bcl family have been targeted in ovarian cancer, plenty is still
unknown. Elucidating the downstream effects of targeting Bcl family proteins, aside from
triggering apoptosis, will help uncover more about the role the Bcl family plays in drug
resistance and cell survival mechanisms. In addition, RNAi-based therapeutics for targeting
the Bcl family in ovarian cancer are limited. Primarily small molecule drugs are being used
to target Bcl in current therapeutic strategies.

3.1.2. IAP Family

While the Bcl-2 superfamily plays a significant role in the intrinsic apoptosis pathway,
the inhibitor of apoptosis protein (IAP) family also contributes to apoptosis inhibition.
IAPs are anti-apoptotic proteins and ubiquitin ligases that bind to caspases, resulting in
inhibition or degradation [61]. IAPs are only functional when they are not bound to second
mitochondria-derived activator of caspase (Smac), a protein that inhibits their mechanism
of action [62]. Smac is a mitochondrial intermembrane space protein that can induce
apoptosis [50,63]. Smac has been shown to activate caspase-9, and similar to cytochrome C,
it is released from mitochondria into the cytosol, causing a downstream signaling cascade
to initiate apoptosis [62,64]. In drug-resistant ovarian cancer, IAPs are expressed at higher
levels than Smac, inhibiting the apoptosis-inducing activity of Smac and ultimately leading
to chemoresistance [49,50]. Targeting this family of proteins could also play an essential
role in inflammation, cell survival, and regulating major cell signaling pathways in ovarian
cancer [65].

The IAP family is comprised of eight proteins, which include the X-linked inhibitor
of apoptosis protein (XIAP), Survivin, and Apollon [66]. XIAP can prevent and regulate
apoptotic cell death by directly binding to and inhibiting caspase-3, -7, and -9, the last
caspases in the signaling cascade that leads to apoptosis [67]. As a result, the expression
of XIAP has been linked to chemoresistance in established ovarian cancer cell lines and
primary cultures [68–71]. In fact, work done by Sapi et al. demonstrated that resistance to
docetaxel in SKOV3 and primary ovarian cancer cells was mediated by increased expression
of XIAP [68]. Modulating XIAP expression using RNAi enabled caspase 3 activation and
the apoptosis of ovarian cancer cells treated with docetaxel [68]. Similar results obtained
by Ma et al. demonstrated that downregulation of the XIAP gene in ovarian cancer
resulted in chemosensitization, which reduced A2780/cp70 cell proliferation in vitro and
tumorigenicity in vivo in BALB/c nude mice through the induction of apoptosis [72].
Unlike other IAPs, XIAP has a direct affinity to caspases, making it a noteworthy target.
Using gene therapies to target XIAP would completely degrade the protein rather than
using a small molecule antagonist that may or may not have selective binding [73]. Because
of the multiple domains in the structure of XIAP, small-molecule drugs may only bind to a
singular domain, reducing the efficacy of the protein. Currently, researchers are designing
molecules that have specific binding to XIAP’s multiple domains [73]. Using gene therapies
such as antisense oligonucleotides, siRNA, and shRNA would reduce the overall expression
of the protein by diminishing mRNA levels.

Survivin, another protein in the IAP family, is expressed in lung, endometrial, breast,
colorectal, and ovarian cancers [74–76]. Survivin is a 16.5 kDa protein comprised of
142 amino acids, making it the smallest member of the IAP family [75]. As a multi-
functional protein, Survivin has been associated with cytoprotection and regulation of
cell division [77–79]. The depletion of Survivin causes defects in cell proliferation and
apoptosis [77]. Survivin has been found to regulate spindle checkpoints, localize mitotic
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spindle microtubules, and is known to have centrosomal functions and kinetochore lo-
calization [80–84]. For a chemotherapeutic such as paclitaxel, a microtubule-stabilizing
agent, Survivin could directly impact its functionality. Increased Survivin expression in-
hibited taxol-induced apoptosis in ovarian cancer tumor tissue, demonstrating an inverse
relationship between Survivin and taxol sensitivity [85]. To increase paclitaxel sensitivity,
Kar et al. explored the treatment of ovarian cancer cells derived from ascitic fluid of pri-
mary untreated tumor samples with anti-Survivin siRNA and revealed that post Survivin
knockdown, cell survival decreased by over 20% [86]. However, the exact mechanism by
which Survivin inhibits apoptosis is still being explored. Several studies have investigated
Survivin’s role in suppressing caspase activity, but many of these studies have shown
contradictory results [84,87–90]. It has been reported that Survivin directly binds to and
suppresses caspases-3, -7, and -9; however, other studies have described direct interaction
between Survivin and Smac to inhibit apoptosis [87,91]. Regardless, Survivin is believed
to be a regulator of mitochondrial-dependent apoptosis [92]. Additionally, there is a clear
correlation between the expression of Survivin and poor prognosis in cancer, and in ovarian
cancer, Survivin expression can serve as a useful prognostic and predictive marker. Specifi-
cally, in malignant ovarian carcinomas, expression levels of Survivin have been detected in
51.1–92% of patient samples and less than 25% of benign samples [93–96]. Because Survivin
can be detected in most malignant samples and has an association with paclitaxel resis-
tance, there is strong therapeutic potential for targeting Survivin to increase apoptosis in
ovarian cells.

Apollon, also known as baculoviral IAP repeat-containing 6 (BIRC6) or BIR-containing
ubiquitin-conjugating enzyme (BRUCE), is a 530 kDa protein, the largest among the IAP
family [97]. Apollon was initially found to be upregulated in brain gliomas resistant to
DNA damaging agents and antisense oligonucleotides [97]. Although the physiological
role of Apollon in apoptosis remains vague, it was revealed that Apollon has ubiquitin-
conjugating activity and facilitates the degradation of Smac and caspase-9, thus preventing
Smac-induced apoptosis [98,99]. Qiu et al. reported complimentary evidence demonstrating
that Apollon binds to procaspase-9 and inhibits its cleavage, which ultimately interferes
with the downstream signaling of the caspase cascade [100]. Elevated Apollon expression
has been identified in many cancers, including prostate, lung, colorectal, brain, esophageal,
and ovarian cancers [97,101–105]. Apollon expression has also been linked to chemoresis-
tance and poor prognosis. In ovarian cancer, Apollon protein expression is significantly
higher in patient-derived ovarian carcinoma tissues in comparison to normal tissues [105].
Interestingly, patients in the study were not exposed to any anticancer treatment before re-
section of the tissue, suggesting the high expression of Apollon was intrinsic [105]. Evidence
in breast cancer shows that Apollon knockdown may induce apoptosis and sensitize cells
to chemotherapeutics, demonstrating its therapeutic potential [106,107]. The therapeutic
benefit of targeting Apollon in breast cancer warrants the exploration of Apollon as a target
in resistant ovarian cancer, as it is the least-studied IAP family member. Additionally, in
ovarian cancer, not much research has focused on Apollon as a therapeutic target. However,
based on the results of studies in other cancer models, it would be beneficial to explore the
mechanisms of resistance caused by Apollon in ovarian cancer, as well as the downstream
effects of its knockdown.

3.2. Extrinsic Pathway

The extrinsic apoptosis pathway, also known as the death receptor pathway, is medi-
ated by interactions with cell surface receptors belonging to the tumor necrosis factor (TNF)
family, which causes a downstream of events leading to apoptosis. This pathway serves as
a connection between extracellular surroundings, such as the tumor microenvironment,
and intracellular signaling networks [62]. These receptors include but are not limited to
tumor necrosis factor receptor 1 (TNFR1), Fas ligand (Fas-L; APO-1 and CD95), and TNF-
related apoptosis-inducing ligands TRAILR1 (Death receptor 4; DR4) and TRAILR2 (Death
receptor 5; DR5). Generally, once ligands bind to their corresponding receptor on the cell
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surface, oligomerization of the receptors, recruitment of the Fas-associated death domain
protein, activation of procaspase-8, and formation of the death-inducing silencing complex
occurs, which in turn stimulates signaling to initiate apoptotic activity [108,109]. However,
in ovarian cancer, these receptors can be downregulated and susceptible to resistance by
treatment with their corresponding ligand, consequently suppressing downstream signal-
ing in both instances [110]. These receptors can be exploited for ovarian tumor targeting;
however, the intracellular proteins, MAPK-activating death domain protein and cellular
FLICE-like inhibitory protein, which are involved in this pathway, are overexpressed in
ovarian cancer, and may serve as useful targets within the extrinsic apoptosis pathway.

MAPK-Activation Death Domain Protein and cFLIP

MAPK-activating death domain protein (MADD) and cellular FLICE-like inhibitory
protein (c-FLIP) disrupt downstream events that trigger apoptosis. MADD is an essential
protein for cellular survival and inhibits the activation of caspase-8 [111,112]. Additionally,
MADD is phosphorylated and binds to death receptors [112–114]. Many studies have
focused on the necessity of MADD in apoptosis because the loss of MADD expression has
been shown to increase cellular proliferation and metastasis in thyroid, cervical, breast, lung,
and ovarian cancer [111,115–118]. In malignant ovarian tissues, MADD is expressed at sig-
nificantly higher levels than in normal ovarian tissues [119]. To our knowledge, there have
not been any studies examining the role MADD plays as a mediator of chemoresistance in
ovarian cancer; however, knockdown of MADD in other cancers has been investigated. In
breast cancer specifically, MADD knockdown stimulated doxorubicin- or TRAIL-induced
apoptosis through the activation of caspase-8. [117]. Using siRNA, Saini et al. demonstrated
that silencing MADD inhibited the proliferation of thyroid cancer cells in vitro and in vivo.
The results also demonstrated the potential anti-migratory/invasive effects of silencing
MADD due to a decrease in mitochondrial length, which may influence overall mitochon-
drial function [115]. While MADD has not been extensively studied in drug-resistant
ovarian cancer, it is known to be a splice variant of the insulinoma-glucagonoma clone
20 (IG20) gene, which has been studied [113]. The IG20 gene encodes for four different
splice variants, including MADD. Studies examining the role of the IG20 gene in ovarian
cancer revealed that MADD is necessary for malignant cell survival compared to the other
three splice variants in PA-1 ovarian carcinoma cells [111]. A deeper understanding of
the role that IG20 gene splice variants play in ovarian cancer may reveal their potential
therapeutic applicability in treating and overcoming drug resistance.

The protein cFLIP (also known as CFLAR, FLIP, or CFLICE) was identified after the
discovery of viral FLIP [120]. Initial studies showed that the gene may have evolved
through replication, especially due to its structural homology to caspase-8 [120]. While
11 splice variants for cFLIP are expressed on the mRNA level, only three of the isoforms
have been expressed as proteins. These proteins include the short isoform, c-FLIPs, the long
isoform, c-FLIPL, and the short murine isoform, c-FLIPR, with molecular weights between
20 and 60 kDa [121–123]. The mechanism of action and inhibition of cell death by c-FLIP has
not been clarified; however, studies have revealed that c-FLIP interacts with Fas-associated
death domain protein and caspase-3, -8, and -10 [121,124–128]. c-FLIP is recruited to the
death-inducing silencing complex by its death effector domains, which inhibits caspase-8
activation [129,130]. Overexpression of c-FLIP has been found in several cancers, including
prostate, colorectal, bladder, gastric, breast, and ovarian [131–138]. In colorectal cancer,
the overexpression of cFLIPL in patients was correlated with a lower survival rate due to
the fact that cFLIP provides protection from apoptosis [133]. Previous studies have shown
that the downregulation of c-FLIP triggers TRAIL-induced apoptosis in cancers resistant to
TRAIL therapy; however, few studies have examined c-FLIP expression and knockdown
in platinum- and taxane-resistant cancers [139–142]. Treatment with anti-cFLIP mediators
in combination with anticancer agents such as doxorubicin, cisplatin, and taxol has been
shown to reduce the levels of c-FLIP and sensitize cells to chemotherapeutic-mediated
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apoptosis in human glioma, melanoma, prostate, leukemic, and breast cancer cell lines,
demonstrating the potential of c-FLIP as a therapeutic target in ovarian cancer [143–145].

4. DNA Damage and Repair

DNA repair pathways play a significant role in cancer drug resistance. First-line
chemotherapeutics used in the treatment of ovarian cancer, including platinum-containing
drugs, cisplatin and carboplatin, interact with DNA by inducing damage through the
formation of DNA adducts [146]. The presence of DNA damage invokes the DNA damage
response, a kinase-signaling pathway involved in recognition of damage to DNA struc-
tures [146,147]. As DNA repair mechanisms are essential to cell survival, mutations in the
DNA damage response have been illustrated to play a significant role in the progression
of many types of cancer, including ovarian cancer [147]. Dysfunction of four main DNA
repair pathways, including homologous recombination (HR), non-homologous end joining
(NHEJ), nucleotide excision repair (NER), and base excision repair (BER), contribute to
drug sensitivity, or lack thereof, in ovarian cancer due to the increased expression of genes
within these pathways (Figure 3; Table 1) [146]. The downregulation of genes involved in
DNA repair pathways has the potential to increase sensitivity to chemotherapeutics for the
treatment of ovarian cancer.
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Table 1. Summary of DNA Damage and Repair Proteins Overexpressed in Ovarian Cancer.

DNA Repair Pathway Overexpressed Protein(s) References

Homologous Recombination RAD51 and RAD51 paralogs; BRCA1; BRCA2; PARP1 [147–156]

Non-homologous End Joining RIF1; DNA-PK; PARP1 [157–166]

Nucleotide Excision Repair XP groups ERCC1; PARP1 [159,167–178]

Base Excision Repair XRCC1; pol β; PARP1 [149,159,179–185]

4.1. PARP1

The poly(ADP-ribose) polymerase (PARP) enzyme family is composed of 17 members
which use NAD+ to produce an ADP-ribose posttranslational modification of proteins [151].
PARP1 is the most well-studied member of the PARP family, and due to its widespread
involvement in DNA damage response, many studies implicate the gene in chemothera-
peutic resistance in ovarian cancer [154]. Additionally, PARP1 has activity in more than
one DNA repair pathway, where it is involved in the recruitment of repair factors, sensing
DNA damage, and coordinating repair [151,179]. In ovarian and breast cancers with a
breast cancer type-1 (BRCA1) and/or a breast cancer type-2 (BRCA2) mutation, PARP in-
hibitors are currently being used as a therapeutic treatment [149–151,154]. PARP inhibitors
are typically small-molecule cancer drugs that target PARP1’s catalytic activity, causing
entrapment at DNA damage sites and blocking BER [179]. In HR repair-deficient cancers,
which can result from BRCA1 and/or BRCA2 mutations, DNA damage cannot be repaired
by either HR or the BER pathway, resulting in cell death [149]. Hegan et al. demonstrated
that downregulation of PARP1 using small molecule inhibitors or siRNA resulted in the
decreased expression of both BRCA1 and RAD51, two essential components in the HR
pathway in various cancer types [148]. These studies demonstrate that inhibiting PARP1 is
a promising strategy to enhance the efficacy of platinum-based chemotherapeutics, as DNA
adducts are mainly repaired through the HR pathway. Additionally, PARP1 plays a role in
the non-homologous end-joining pathway, where coordination between the HR and NHEJ
pathways is essential for maintaining genomic stability [157]. Patel et al. examined the role
of PARP1 in NHEJ and whether the inhibition of PARP1 in HR-deficient ovarian cancer
cells would lead to dysfunction in the NHEJ DNA repair pathway because HR-deficient
cancers cells rely on the NHEJ pathway to repair DNA double-strand breaks [157]. It
was demonstrated that PEO1 human ovarian adenocarcinoma cells with disabled NHEJ
repair had decreased sensitivity to PARP inhibitors and siRNA [157]. These results indicate
the necessity of NHEJ repair when using PARP inhibitors in HR-deficient ovarian cancer.
The NHEJ pathway is more error-prone than HR; therefore, when PARP1 is inhibited, the
error-prone activity of the NHEJ pathway is increased and can lead to increased cytotoxic-
ity [157,186]. PARP1’s involvement in multiple DNA repair pathways make it an ideal gene
target for treatment of drug-resistant ovarian cancer. Further studies regarding additional
PARP family members may elucidate other potential gene targets to help reverse drug
resistance in ovarian cancer.

4.2. Homologous Recombination

Many tumor types, including ovarian cancer tumors, exhibit defects in HR repair,
leading to genomic instability [149]. In ovarian cancer, approximately 50% of tumors display
defective HR repair [149]. There is evidence that the loss of genomic stability may generate
further mutations, leading to cancer progression [149]. The tumor suppressor genes BRCA1
and BRCA2 play significant roles in successful HR [147,149,150]. When DNA damage
occurs, BRCA1 is recruited by PARP1 and mobilized to the DNA damage site, where the
protein becomes part of the BRCA1-associated genome surveillance complex [147,149–151].
BRCA2 is more directly involved in repair by regulating RAD51 recombinase, which binds
to the exposed DNA strand [150].

Platinum chemotherapy agents induce DNA double-strand breaks and crosslinks that
are repaired through HR and NHEJ [150]. BRCA1- and BRCA2-deficient ovarian tumors are



Cancers 2022, 14, 6246 11 of 28

sensitive to platinum-based chemotherapeutics and small molecule drugs such as PARP
inhibitors [149,150]. Therefore, patients with mutated BRCA1 and BRCA2 usually have
better overall chemotherapy treatment outcomes [149,152]. Zhang et al. determined that
increased BRCA1 expression in epithelial ovarian cancer tumor tissues is associated with
resistance to platinum-based drugs, supporting the evidence that loss of BRCA1 function
may contribute to the reversal of resistance [154]. Restoration of BRCA1 function through
the loss of BRCA1 promoter methylation has been demonstrated to confer resistance to
PARP inhibitors in ovarian carcinoma [187]. Additionally, mutation of the RAD51 binding
domain of BRCA2 has caused HR deficiencies [188]. Labidi-Galy et al. revealed that muta-
tions of the RAD51 binding domain lead to longer progression-free survival and overall
survival in ovarian cancer patients who received platinum-based chemotherapy [188].
Therefore, targeting BRCA1 and BRCA2 may reverse acquired resistance in ovarian cancer.
However, analysis of acquired PARP inhibitor resistance and its contribution to ovarian
cancer progression should be further explored.

Since BRCA2 is a mediator of RAD51, RAD51’s role in drug resistance has also been
evaluated. When DNA damage occurs, RAD51 recombinase is transported to the damaged
site and loaded onto the damaged strand to help protect the DNA ends from degrada-
tion [153]. In triple-negative breast cancer stem cells, Liu et al. found the expression of
RAD51 to be positively correlated with PARP inhibitor insensitivity [155]. After long-term
treatment with PARP inhibitors, the triple-negative breast cancer cell lines SUM149 and
SUM159 had elevated RAD51 expression, further confirming that RAD51 mediates PARP
inhibitor resistance; however, knockdown of RAD51 using short hairpin RNA sensitized the
cells to the PARP inhibitor olaparib [155]. While exploring the function of microRNA ler-7e
in ovarian cancer, Xiao and colleagues observed that RAD51 contributes to chemothera-
peutic resistance using the chemoresistant epithelial ovarian cancer cell line C13K [156].
RAD51 protein expression was increased in C13K cells compared to the chemosensitive
OV2008 epithelial ovarian cancer cell line and was also associated with decreased survival
in patient-derived tissue samples [156].

RAD51 paralogs, homologous genes that code for proteins with similar functions,
are recruited to the site of the damage during DNA strand repair [189]. Deficiencies in
RAD51 paralogs can lead to impaired HR repair and greater sensitivity to platinum-based
therapeutics [189]. In the RAD51 paralog complex, RAD51B, RAD51C, and RAD51D have all
been associated with hereditary ovarian and breast cancer [189]. Rivera et al. demonstrated
RAD51D missense variants resulted in an increased predisposition to high-grade serous
ovarian carcinoma in ovarian cancer patients [189]. Additionally, in ovarian cancer patients,
the mutations increased sensitivity to PARP inhibitors [189]. While primary RAD51D
mutations initially sensitize ovarian cancer cells to PARP inhibitors, Kondrashova et al.
reported that secondary mutations of both RAD51D and RAD51C conferred acquired PARP
inhibitor resistance similar to the secondary mutations of BRCA1 or BRCA2 [190].

4.3. Nucleotide Excision Repair

Nucleotide excision repair (NER) is involved in the repair of platinum-induced DNA
adducts [167]. Xeroderma Pigmentosa (XP) Complementation Groups A-G are essential
genes in the NER pathway, as they are involved in damage recognition, transcription
initiation, and stabilization of the damaged DNA strand [167,174]. Although XP genes
are typically associated with the hereditary disease of the same name, XPA, XPB, and
XPF have been shown to have increased expression in platinum-resistant ovarian cancer
cells [167,174]. XPA interacts with multiple proteins during DNA repair, including the
excision repair cross-complementing group 1-XPF endonuclease, to stabilize the damaged
portion of DNA [171,172]. Rosenberg et al. determined that deficient XPA expression
increased sensitivity to ultraviolet- and platinum-based agents in human non-small lung
carcinoma cell lines [176]. While XPA is overexpressed in platinum-resistant ovarian
cancer tumors, it does not seem to have a role in DNA excision activity [159,173]. XPB
is directly involved in DNA transcription [159]. Dabholkar et al. detected a five-fold
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increase in XPB mRNA levels in platinum-resistant ovarian tumor tissues compared to
platinum-sensitive tissues [175]. A similar increase in expression was observed for both
excision repair cross-complementing group 1 (ERCC1) and XPA in platinum-resistant
ovarian cancer tissues [175]. The XP family plays a role in the resistance of ovarian cancer
to platinum-based chemotherapeutics; thus, targeting this family may be of therapeutic
benefit specifically for the reversal of platinum resistance.

ERCC1 is a part of the DNA repair endonuclease complex, ERCC1–XPF [174]. The
ERCC1–XPF complex is recruited to damaged sites of DNA through interaction with
XPA [177]. ERCC1–XPF and endonuclease XPG cut the damaged strand on the 5′ and
3′ ends, respectively, allowing for repair of the strand [177]. The ERCC1–XPF complex
and the individual proteins, XPF and ERCC1, have been highly studied as cisplatin re-
sistance markers due to the proteins’ involvement in the rate-limiting step of NER [174].
Increased ERCC1 is correlated with platinum resistance in many cancers, including ovar-
ian, nasopharyngeal, cervical, head and neck squamous carcinoma, lung adenocarcinoma,
non-small cell lung cancer, and gastric cancer [174,178]. In ovarian cancer, resistance to
platinum-based chemotherapy has been associated with high levels of ERCC1 mRNA [178].
Through increased exposure of MCAS human ovarian carcinoma cells to cisplatin, Li et al.
demonstrated increased mRNA and protein expression of ERCC1 [168]. High expression
of ERCC1 has also been linked to chemoresistance in ovarian cancer patients [154].

While the ERCC1 protein has its role in DNA repair, the ERCC1–XPF endonuclease
complex is also implicated in drug resistance. Arora et al. hypothesized that decreased
ERRC1–XPF in ovarian cancer cells could increase sensitivity to cisplatin [169]. siRNA-
mediated knockdown of ERCC1, XPF, and ERCC1–XPF reduced the rate of cisplatin adduct
repair in non-small cell lung cancer, ovarian cancer, and breast cancer cell lines. [169]. De-
creased levels of ERCC1–XPF correlated not only with improved progression-free survival
but also increased platinum and PARP inhibitor sensitivity in patient samples of ovarian
cancer tissue. [170]. Future studies should determine whether the ERCC1–XPF complex
can be silenced alone or in addition to ERCC1 and XPF for efficient resensitization to
platinum-based chemotherapy. Impairment of NER through the ERCC1–XPF heterodimer
has therapeutic potential for reducing the cellular capacity to repair platinum-induced
DNA damage, allowing for greater sensitivity to platinum-based therapeutics.

4.4. Non-Homologous End Joining

Similar to HR, the NHEJ repair pathway repairs double-strand DNA breaks [159].
DNA repair through the NHEJ pathway is induced faster compared to HR, but repair is
more error-prone [159]. NHEJ can be split into two sub-pathways, classical and alternative.
The classical pathway can function independently of a DNA template, whereas the alterna-
tive pathway is only active when HR or the classical pathway is inhibited [159]. Errors in
the function of both pathways are associated with drug resistance [159].

Replication timing regulatory factor 1 (RIF1) and DNA-dependent protein kinase
(DNA-PK) are involved in the NHEJ pathway, and both have implications for ovarian
cancer drug resistance [158,159]. In the NHEJ pathway, RIF1 is recruited to DNA double-
strand breaks, where the protein blocks double-strand break resection, facilitating DNA
repair [158,160,161]. Liu et al. demonstrated that knockdown of RIF1 resulted in greater
cisplatin sensitivity in platinum-sensitive OVCAR3 cells and platinum-resistant A2780
cells [158]. Additionally, analysis of epithelial ovarian cancer tissue revealed that nearly
two out of three patients with chemoresistant epithelial ovarian cancer had high expres-
sion of RIF1, whereas only 34.2% of chemosensitive patients displayed overexpression of
RIF1 [158]. In the HeLa human cervical cancer cell line, RIF1 knockdown increased cis-
platin sensitivity [160]. Because platinum-based chemotherapeutics utilize double-stranded
breaks to cause cell death, overexpression of RIF1 in ovarian cancer would reverse any
damage done by chemotherapeutics; therefore, its potential to be a therapeutic target
is promising.
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DNA-PK is a serine/threonine protein kinase that repairs double-strand DNA breaks
caused by chemotherapeutic agents and oxidative stress [162,163]. Beyond its role in
DNA repair, DNA-PK is involved in cell cycle progression, DNA transcription regulation,
and telomere maintenance, indicating its vital role in cell survival [163]. DNA-PK is also
involved in regulating pro-tumorigenic pathways, which promote tumor development,
cell survival, and cell proliferation [165]. Increased expression of DNA-PK has also been
correlated with poor prognosis in ovarian cancer [162,164]. Due to the significant role of
DNA-PK in the DNA damage response, DNA-PK inhibitors, siRNAs, and/or chemical
inhibitors have been developed to reduce the ability of cells to perform DNA repair and
enhance the efficacy of DNA damaging chemotherapeutics [162,165]. Previous work has
specifically examined the use of DNA-PK inhibitors or RNAi in reducing chemoresistance
in ovarian or breast cancer. Wise et al. revealed that combining DNA-PK inhibitors
with a platinum-based agent reduces tumor growth in A2780 and SKOV3 ovarian cancer
cell lines [162]. A similar study using MDA-MB-231 breast cancer cells demonstrated
that downregulation of DNA-PK using shRNA resulted in greater cisplatin sensitivity,
confirming that DNA-PK plays a role in acquired resistance to cisplatin [166]. While these
results are promising, few studies use DNA-PK as a target in chemoresistant ovarian cancer.
More studies targeting DNA-PK could further establish its therapeutic benefit.

4.5. Base Excision Repair

The base excision repair (BER) pathway is responsible for DNA single-strand break
repair as well as removing base lesions caused by alkylating agents such as cisplatin [159].
X-ray repair cross-complementing gene 1 (XRCC1) is a 70 kDa molecular scaffold protein
that is a critical component of the BER pathway by coordinating DNA repair through
interactions with PARP1 [180]. Overexpression of XRCC1 in ovarian cancer has previously
been associated with platinum-based drug resistance [159,180]. In a study by Abdel-
Fatah et al., siRNA-mediated knockdown of XRCC1 in OVCAR-3 and OVCAR-4 human
ovarian cancer cells resulted in greater platinum sensitivity, demonstrating XRCC1’s active
involvement in platinum resistance in ovarian cancer [180]. In a clinical study, XRCC1-
positive epithelial ovarian cancer tumors were significantly more likely to be platinum-
resistant compared to XRCC1-negative tumors [180].

Due to recent studies depicting XRCC1 as a key component in repairing carboplatin-
and cisplatin-induced DNA damage, Zhang et al. evaluated the relationship between
XRRC1 expression and the ability to reverse cisplatin drug resistance [181]. SKOV3/DPP
human ovarian cancer cells were treated with heat shock protein 90 inhibitors [181]. Heat
shock protein 90 inhibitors have been shown to decrease the stability of many tumor-
associated proteins, including XRCC1 [181]. The results illustrated that decreasing the
expression of XRCC1 using inhibitors of heat shock protein 90 reversed cisplatin resistance
in SKOV3/DPP ovarian cancer cells [181]. Similarly, Sawant et al. demonstrated that the
downregulation of XRCC1 in MDA-MB-231 breast cancer cells allowed for more significant
cisplatin toxicity [185]. XRCC1 is an interesting target since few studies have analyzed
targeting the protein and its downstream effects. Instead, downregulation of XRCC1 seems
to be due to direct targeting of other proteins. Together, these results indicate the potential
of XRCC1 to be used as a target for drug-resistant ovarian cancer.

Another potential gene target is DNA polymerase β (pol β), the primary polymerase
involved in the BER pathway [184]. Pol β lacks proofreading capabilities and thus is error-
prone [183]. However, high expression and activity levels of pol β have been identified in
ovarian cancer tumors, and upregulation of pol β has been shown to contribute to tumor
progression and platinum resistance in many types of cancer, including breast, prostate, and
colon cancer [159,182,183]. Little work has been performed exploring pol β as a therapeutic
target, but the overexpression of the enzyme and its role in tumor progression indicates the
therapeutic potential of pol β as a target in ovarian cancer.

Because platinum-based chemotherapies cause DNA damage by directly binding to
DNA or RNA strands, focusing on overexpressed DNA damage and repair proteins as
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therapeutic targets could increase sensitivity to chemotherapy. Additionally, it is possible
that the dual targeting of genes in different repair pathways could enhance the efficiency of
platinum-based drugs, though few studies have investigated this dual approach. Targeting
genes involved in platinum-based chemoresistance in the repair pathways, as well as
non-repair pathways, may provide effective therapeutic combinations.

5. Cancer Stem Cells

While the role of chemoresistance has been apparent in drug efflux, apoptosis, and
DNA damage and repair, recent studies have investigated distinct subpopulations of cells
within ovarian tumors for their potential contribution to drug resistance. The heterogeneity
of ovarian tumors makes treatment more difficult because there exists a small subgroup of
cancer stem cells (CSCs) or tumor-initiating cells that have been shown to induce chemore-
sistance and cancer relapse [8]. CSCs are capable of self-renewal, differentiation, and
tumorgenicity, and are the driving force behind metastasis and recurrence [191]. Initially,
ovarian cancer cells were thought to be chemosensitive before being exposed to thera-
peutics; however, CSCs are inherently resistant. While conventional chemotherapy can
reduce the size of an ovarian tumor, CSCs are not specifically targeted, ultimately leading
to disease progression (Figure 4). Therefore, targeted therapy of ovarian CSCs could lead
to improved patient survival. The identification and characterization of CSCs are denoted
by specific intracellular or cell surface markers such as CD24, CD44, CD117, CD133, and
aldehyde dehydrogenase. Evidence supporting the identification of these markers has been
well described in other reviews [192–194]. The development of more effective therapies
may require treatments targeting proteins and pathways that promote cancer stem cell
growth and survival. The mechanism of chemoresistance caused by CSCs in ovarian cancer
is complicated and not fully understood; however, CSCs have slow proliferation rates, a
high expression of ATP transporters, and can inactivate cell death pathways [192]. Proteins
that have been linked to stemness, chemoresistance, and tumorigenesis but have not been
well studied or targeted in ovarian cancer are highlighted.
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5.1. SOX2, OCT4, NANOG

The transcription factor sex-determining region Y-box 2 (SOX2) plays a pivotal role
in the maintenance of embryonic stem cells. However, in the last decade, SOX2 has been
characterized beyond its role in embryonic stem cells, and evidence has shown that there
may be a therapeutic benefit in targeting SOX2 to reduce its probable tumor-initiating
capacity in various cancers. Research has indicated the involvement of SOX2 in spheroid
formation, drug resistance, growth, and metastasis in several cancers of the breast, stomach,
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colon, and brain [195,196]. Few studies have critically investigated the role SOX2 plays in
ovarian cancer and its relation to tumor-initiating cells. Elevated SOX2 gene expression has
been identified in ovarian cancer cell lines and patient tissue samples [197–199]. However,
there is conflicting data regarding the correlation between the expression of SOX2 and
patient prognosis. Increased expression of SOX2 has been associated with poor prognosis
and a higher grade of ovarian cancer [197,200]. Conversely, through the analysis of MDAH-
2774 and SKOV3 ovarian cell lines and The Cancer Genome Atlas (TCGA) data sets, Belotte
et al. determined that SOX2 amplification in ovarian cancer leads to improved survival
outcomes via a novel p53-dependent mechanism [198]. Thus, the prognostic value of
SOX2 in ovarian cancer must be further investigated. However, a clear connection has
been established between increased expression of SOX2 and chemoresistance, not only
in ovarian cancer but also in breast and prostate cancer [195]. In one study, elevated
expression of SOX2 in OVCAR3, CAOV3, and OVCAR5 cell lines demonstrated a lack
of sensitivity to carboplatin, cisplatin, and paclitaxel [201]. Following the knockdown of
SOX2 using shRNA, the cells exhibited increased sensitivity to chemotherapeutics [201].
Lentiviral re-expression of ectopic SOX2 reversed chemotherapy sensitivity, demonstrating
that SOX2 may be a molecular driver for chemoresistance in ovarian cancer. Reducing the
expression levels of SOX2 can be therapeutically beneficial for decreasing chemoresistance
by decreasing the population of cancer stem cells. Yiping Wen and colleagues investigated
this notion using SKOV3 and HO8910 ovarian cells to form spheroids with overexpression
of SOX2. Knockdown of SOX2 not only decreased the formation of spheroids, but also
reduced the expression of other stemness-related genes and resensitized ovarian cancer
spheroids to cisplatin treatment [202].

As a transcription factor, SOX2 does not work alone but in conjunction with other pro-
teins. Several studies have shown that octamer-binding transcription factor 4 (OCT4) and
NANOG work alongside SOX2 in a large protein complex amongst other proteins [203,204].
OCT4 and NANOG are significantly overexpressed in poorly differentiated tumors com-
pared to well-differentiated tumors [205]. Increased expression of OCT4 and NANOG
is a prognostic factor in several cancers, including breast, colorectal, and ovarian can-
cer [206–209]. Numerous studies have also demonstrated that OCT4 and NANOG are
associated with chemoresistance in ovarian cancer. One study revealed that ovarian CSCs
derived from primary tumors not only had a higher expression of NANOG and OCT4
but were also resistant to treatment with cisplatin and paclitaxel [210]. In another study,
paclitaxel-resistant SKOV3 cells had increased expression of NANOG in comparison to
paclitaxel-sensitive SKOV3 cells, indicating a relationship between NANOG expression
and resistance [211]. Additionally, knockdown of OCT4 and NANOG in vitro and in vivo
using shRNA demonstrated the role both genes played in tumorigenesis, metastasis, and
resistance in pancreatic cancer [212]. When silenced, pancreatic stem cells showed increased
sensitivity to gemcitabine, a DNA synthesis inhibitor. In addition, knockdown resulted
in reduced colony formation and slowed tumor growth when compared to scrambled
controls [212]. While studies show that inhibition of OCT4- and NANOG-associated pro-
teins can reduce their expression, more studies are needed to analyze the effect of direct
inhibition of OCT4 and NANOG separately in ovarian cancer.

5.2. JAK/STAT Pathway

Aside from regulating cellular processes, the Janus kinase-signal transducer and activa-
tor of transcription (JAK-STAT) signaling pathway has been associated with ovarian cancer
stemness, cell proliferation, and tumorigenicity [213,214]. A JAK1/2 inhibitor, ruxolitinib,
was previously FDA-approved for the treatment of myeloproliferative neoplasms such as
myelofibrosis and polycythaemia vera [215]. Currently, ruxolitnib is being repurposed and
evaluated as a potential therapeutic option for treating solid cancers such as pancreatic
and ovarian cancer. In preclinical studies, ruxolitinib has been shown to sensitize ovarian
cancer to paclitaxel [216,217]. Poznansky et al. evaluated the effects of ruxolitinib in in vitro
and in vivo ovarian cancer models, revealing that ruxolitinib could resensitize ovarian
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cancer to taxol at low doses and significantly increase the survival time of diseased mice
when treated with a combination of ruxolitinib and taxol [216]. This work was further
confirmed when Han et al. investigated whether ruxolitinib could increase the anti-tumor
capability of several chemotherapeutics, including paclitaxel, cisplatin, carboplatin, dox-
orubicin and topotecan [217]. Briefly, Han and colleagues treated human MDAH-2774
and OVCAR-8 ovarian cancer cells with either ruxolitinib, a chemotherapeutic (paclitaxel,
cisplatin, carboplatin, doxorubicin, topotecan) or a combination of both, and examined
cellular viability. It was demonstrated that a combination of ruxolitinib with chemother-
apeutic agents resulted in increased cellular death in comparison to singular treatment
of either ruxolitinib or chemotherapeutic alone [217]. Altogether, these studies show that
inhibiting the JAK/STAT pathway can increase the sensitivity of resistant ovarian cancer
for treatment with chemotherapeutics. While ruxolitinib is an exciting small molecule
inhibitor, there are limited studies using gene therapy approaches such as siRNA, which
may enhance silencing of JAK or STAT proteins in ovarian cancer and should be explored
in future studies.

Specifically targeting genes that promote stem-like characteristics and the survival
of CSCs can reduce the likelihood of ovarian tumor recurrence. Silencing cancer stem
cell-related genes may even reduce the needed dosage of chemotherapeutics in treating
ovarian cancer.

6. Clinical Relevance and Future Directions

There are over 150 clinical trials evaluating treatments for resistant or recurrent ovar-
ian cancer. Many clinical trials focus on singular therapy using either a small molecule
inhibitor or immunotherapy using a monoclonal antibody to overcome resistance in ovar-
ian cancer. Combination therapy trials utilize small molecule mimetics and inhibitors
or monoclonal antibodies followed by traditional chemotherapeutics, such as paclitaxel.
These small molecule drugs and monoclonal antibodies typically target specific genes or
pathways. However, clinical studies utilizing gene therapies for treating chemoresistance
in ovarian cancer are still limited. Gene therapy strategies include replacing mutated tumor
suppressor genes, inhibiting oncogenes, suicide gene therapy, genetic immunopotentia-
tion, oncolytic virotherapy, and antiangiogenic gene therapy [218]. Most gene therapy
approaches for cancer have yet to be tested in clinical trials despite promising preclinical
results. In addition, the few trials using small molecule drugs and monoclonal antibodies
to target genes primarily focus on targeting tyrosine kinase receptors such as VEGF for
anti-angiogenesis and signal transduction pathways such as AKT for cell survival and
growth, as seen in Table 2. Only one potential gene target in this review, Bcl-2, is currently
being evaluated in clinical trials for resistant ovarian cancer (NCT02591095). This trial
uses ABT-263 (navitoclax) as a single agent to inhibit Bcl-2 and Bcl-xL. Another strategy
under investigation in clinical trials uses combination therapy, a small molecule inhibitor
followed by paclitaxel (NCT02250781). The small molecule, ONC201, causes inactivation of
the AKT/ERK signaling pathway by antagonizing the G-coupled receptor DRD2, leading
to a reduction in cell proliferation and survival [219,220]. While therapies are being devel-
oped to combat resistance, for most of the genes that have been discussed, clinical trials
evaluating them as a therapeutic target to treat resistant ovarian cancer are lacking. This
suggests that there is a crucial need to assess the downstream effects of more gene targets
in ovarian cancer.

One promising therapy, ofranergene obadenovec (VB-111), is currently in Phase III
trials for treating resistant/recurrent ovarian cancer. VB-111 is a gene-based anti-cancer
therapeutic that uses a dual mechanism approach that targets blood vessels and induces
an anti-tumor-directed immune response. VB-111 is comprised of three components: a
non-replicating viral vector, a pre-proendothelin promoter, and a Fas-chimera transgene
capable of activating the TNFα and Fas pathway to cause apoptosis in endothelial cells. By
stimulating death of endothelial cells, angiogenesis is reduced, resulting in tumor starvation
and the release of cell debris containing tumor neo-antigens [221]. Antigen-presenting cells
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ingest neo-antigens which aids in triggering an anti-tumor immune response. While this
therapeutic approach does not explicitly target genes related to resistance, it specifically
targets blood vessels using genetic engineering. By targeting blood vessels, VB-111 targets
tumor vascularity without the development of resistance, attempting to overcome a signifi-
cant limitation of monoclonal antibodies, proteins, and small molecule inhibitors. Reducing
the likelihood of the development of resistance makes VB-111 a sustainable therapeutic
for repeated use; however, there remains a critical need to evaluate therapeutic strategies
targeting genes and pathways that are specific to resistance.

Table 2. Therapies in clinical trials for the treatment of drug-resistant/recurrent ovarian cancer in the US.

Therapeutic Target Drug Type Phase Clinical Trial Identifier

ABT-263 (Navitoclax) Bcl-XL, Bcl-2 Small molecule mimetic II NCT02591095

GDC-0068 (Ipatasertib) AKT1/2/3 Small molecule inhibitor II NCT04561817

Tivozanib VEGF Small molecule inhibitor II NCT01853644

XL999 VEGFR PDGFR
FGFR, FLT-3, Src Small molecule inhibitor II NCT00277290

MM-121 (seribantumab) HER3 Pathway Monoclonal antibody II NCT01447706

VB-111 (ofranergene obadenovec) TNFR1, FAS Gene therapy (chimeric gene) III NCT03398655

ONC201 Akt/ERK Small molecule inhibitor II NCT04055649

ZN-c3 Wee1 Small molecule inhibitor I NCT05198804

ACR-368 CHK1/2 Small molecule inhibitor I NCT05548296

Navicixizumab DLL4, VEGF Monoclonal antibody III NCT05043402

Bevacizumab VEGF Monoclonal antibody II NCT05325229

JPI-547 PARP1/2, TNKS Small molecule inhibitor II NCT05475184

Gene therapy has the potential to reduce the chance of patients developing resistance
by capitalizing on endogenous mechanisms while providing a personalized medicine ap-
proach. Gene therapies have several advantages, including safety, high efficacy, and the
ability to target proteins and pathways deemed “undruggable.” Co-delivery of RNAi-based
gene therapeutics (siRNAs, miRNAs, shRNAs) and chemotherapeutics has become increas-
ingly popular. Typically, a therapy selective to one gene target is utilized to resensitize
resistant cells to chemotherapeutics. In clinical trials, there are few studies targeting a
gene/pathway with subsequent treatment of a chemotherapeutic (NCT01653912) for the
treatment of resistant ovarian cancer. Afuresterib (NCT01653912) is a small orally available
drug that inhibits the activity of protein kinase B (protein kinase AKT), which can result
in the reduction of cell proliferation and the induction of apoptosis [222]. Afuresterib was
administered to patients with resistant ovarian cancer by repeated treatment every three
weeks in combination with paclitaxel and carboplatin. The combination had a response rate
of over 30%, which compares favorably to the standard of care, platinum-based monother-
apy. While this combination has served as a somewhat effective strategy, its therapeutic
potential may be limited because drug resistance is multifactorial. Combination delivery by
targeting multiple pathways may be more therapeutically potent. Multiple siRNAs can be
delivered simultaneously to cancer cells to knockdown several target genes. In a preclinical
study, the reduction of ABCB1 and BCL-2 proteins via codelivery of siABCB1 and siBCL2,
respectively, sensitized paclitaxel- and cisplatin-resistant SKOV3 and A2780 ovarian cancer
cells to therapeutics [223]. Knockdown demonstrated the necessity of targeting both genes
for enhanced cytotoxicity. When silencing MDR1 or BCL-2 separately in paclitaxel-resistant
SKOV3 cells, apoptosis or necrosis was observed in 62.7% and 45.6% of cells, respectively.
However, when treated with the combination of siMDR1 and siBCL2, 82.2% of cells were
apoptotic or necrotic [223], demonstrating that targeting two genes with varying functions
can enhance the sensitization of cells to therapeutics more effectively than targeting a single
gene. Targeting multiple therapeutic pathways at once is an advantage of RNAi-based
strategies and could provide a promising approach to tackling resistance.
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Gene editing can also serve as a therapeutic tool for reducing chemoresistance by
knocking in or knocking out associated genes. Gene editing as an approach to overcome
drug resistance has been thoroughly reviewed elsewhere [224]. Briefly, total removal of a
gene correlated to resistance would provide more of a long-term response in comparison
to RNAi-based therapies and has been shown to provide therapeutic benefits in ovarian
cancer. For example, using the gene editing tool CRISPR/Cas9 to “knock down” ABCB1
can enhance doxorubicin sensitivity in doxorubicin-resistant A2780/ADR human ovarian
cancer cells [225]. However, translating these results into animal models would provide
more information on the robustness of targeting ABCB1 via gene editing. Once target
effects from CRISPR/Cas9 are elucidated, gene editing can be widely used to knock out
multiple genes that are solely related to chemoresistance. However, with this approach,
CRISPR/Cas9 must be specifically targeted to chemoresistant cells and not healthy cells to
reduce any adverse effects of nonspecific delivery and editing in off-target sites.

In addition to directly editing ovarian cancer cells, immune cells that circulate in
the bloodstream can be genetically engineered to attack cancer cells. Chimeric antigen
receptor-modified T (CAR-T) cells can be utilized as a cell-based gene therapy where a
patient’s T cells (immune cells) are genetically engineered to express a chimeric antigen
receptor. The CAR-T cells are then able to attack cancer cells by binding to antigens
(or receptors) on cancer cells [226,227]. These receptors can be overexpressed receptors
on cancer cells. CAR-T therapy has been widely used in hematological malignancies
and is currently being explored as a treatment option for ovarian cancer [226,227]. For
the treatment of resistant ovarian cancer, there is a limited number of CAR-T therapies in
current clinical trials. While CAR-T therapy is a new and exciting treatment strategy, several
challenges exist, especially for solid tumors such as ovarian cancer. Namely, selecting a
tumor-associated antigen that is only expressed on ovarian cancer cells and is expressed
on the majority of ovarian cancer cells is difficult [228]. Additionally, CAR-T therapies can
have difficulty extravasating the tumor vasculature, which is why it is more commonly used
in hematological malignancies [229]. Therefore, using CAR-T therapy in combination with
other gene therapy strategies may limit some of the associated side effects and toxicities.
Though T cells are typically used for CAR-T therapy, other immune cells, such as dendritic
and natural killer cells, can also be utilized.

Ovarian cancer is a complex, multifactorial disease. Although targeting one gene or
pathway may sensitize cells to chemotherapeutics, treating this aggressive disease will take
a multipronged approach. It is imperative that increased efforts are put towardcombination
approaches. By targeting genes from two different pathways, synergistic effects may be
seen and can provide increased sensitivity to chemotherapeutics compared to targeting one
gene/pathway alone. Additionally, gene therapy is not selective to only the tumor. Because
advanced ovarian cancer metastasizes within the intraperitoneal niche, it is surrounded by
a plethora of cells within the tumor microenvironment. Gene therapy can be used to target
the cells that interact with the cancerous cells in the tumor niche, such as immune cells.
Additional studies should also focus on the combination of tumor targeting and immune
cell gene therapy for the treatment of chemoresistant ovarian cancer.

7. Conclusions

The development of drug resistance in ovarian cancer is closely related to worsened
clinical prognosis and drastically limits the efficacy of current anticancer treatments. Accu-
mulating evidence demonstrates that overexpressed proteins and alterations to signaling
pathways lead to chemoresistant ovarian cancer. Genes associated with drug resistance
affect different cellular processes, such as drug efflux, apoptosis, and DNA damage and re-
pair. Additionally, CSCs in ovarian tumor tissue contribute to chemoresistance by persisting
even after treatment with chemotherapeutics.

There is a need for emerging therapies that utilize genetic engineering for high-
precision therapy to treat resistant ovarian cancer. Proteins involved in drug efflux, intrinsic
and extrinsic apoptosis, and DNA damage and repair can be beneficial for singular or
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combinatorial therapy. Current treatments for ovarian cancer could be improved using tar-
geted gene therapies, especially since tumors are heterogeneous, thus maximizing patient
response and survival. Targeting genes using RNAi is a promising anticancer strategy seen
in preclinical studies because of its ability to reduce the expression of oncoproteins linked
to chemoresistance that may otherwise be deemed ‘undruggable.’ Drug-resistant ovarian
cancer is a complicated disease; however, current treatment strategies do not address the
multifactorial aspects of the disease. Considering the heterogeneity of ovarian tumors,
and targeting multiple pathways and proteins may help improve treatment efficacy and
outcomes for patients with ovarian cancer.
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