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Simple Summary: This study examined the potential of a machine learning model with integrated
clinical and CT-based radiomics features in predicting the pathologic complete response (pCR) to
neoadjuvant systemic therapy (NST) in patients with breast cancer. Our results demonstrated that
integration of clinical data and radiomics features could significantly improve model performance
with accuracy up to 0.87, compared to clinical (0.69) and radiomics (0.78) models. Moreover, the
model performance could be further improved by using more high-order textural features with high
reproducibility. We concluded that the integration of clinical and CT-based radiomics features was
helpful in the pretreatment prediction of pCR to NST in breast cancer.

Abstract: The purpose of the present study was to examine the potential of a machine learning model
with integrated clinical and CT-based radiomics features in predicting pathologic complete response
(pCR) to neoadjuvant systemic therapy (NST) in breast cancer. Contrast-enhanced CT was performed
in 329 patients with breast tumors (n = 331) before NST. Pyradiomics was used for feature extraction,
and 107 features of seven classes were extracted. Feature selection was performed on the basis of the
intraclass correlation coefficient (ICC), and six ICC thresholds (0.7–0.95) were examined to identify
the feature set resulting in optimal model performance. Clinical factors, such as age, clinical stage,
cancer cell type, and cell surface receptors, were used for prediction. We tried six machine learning
algorithms, and clinical, radiomics, and clinical–radiomics models were trained for each algorithm.
Radiomics and clinical–radiomics models with gray level co-occurrence matrix (GLCM) features
only were also built for comparison. The linear support vector machine (SVM) regression model
trained with radiomics features of ICC ≥0.85 in combination with clinical factors performed the best
(AUC = 0.87). The performance of the clinical and radiomics linear SVM models showed statistically
significant difference after correction for multiple comparisons (AUC = 0.69 vs. 0.78; p < 0.001). The
AUC of the radiomics model trained with GLCM features was significantly lower than that of the
radiomics model trained with all seven classes of radiomics features (AUC = 0.85 vs. 0.87; p = 0.011).
Integration of clinical and CT-based radiomics features was helpful in the pretreatment prediction of
pCR to NST in breast cancer.
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1. Introduction

Neoadjuvant systemic therapy (NST) is widely accepted as the standard treatment for
both locally advanced and early-stage breast cancer [1]. The main goal of NST is to downsize
the tumor and ideally achieve pathologic complete response (pCR). pCR is a surrogate
endpoint, indicating an event-free and overall survival [2]. A meta-analysis reported that
the overall pCR rate was approximately 19%, and there were considerable variations in
treatment responses among different tumor subtypes [3]. Breast cancer is known to have
a spectrum of biologically distinct subsets leading to diverse tumor behaviors. Recent
research has focused on personalized therapy by escalating and de-escalating treatment in
non-responders and excellent responders, respectively [4,5]; however, a reliable method to
stratify patients for treatment adjustment is still lacking.

Several potential imaging biomarkers for predicting pCR before NST have been as-
sessed. Although a few mammographic or ultrasound features have been associated with
pCR [6,7], pCR prediction using conventional images is limited. Antunovic et al. [8] and Li
et al. [9] reported that pretreatment positron emission tomography/computed tomography
(PET/CT) radiomics features were potential predictors of pCR, and the area under the
receiver operating characteristic curve (AUC) ranged from 0.70 to 0.73. Several studies have
also investigated the value of breast MRI for the a priori prediction of treatment response
to NST, where a combination of radiomics and deep learning methods was used to build
prediction models. However, the results varied significantly, with AUC ranging from 0.52
to 0.98 [10–16]. Because of the variations in pulse sequence selection, image acquisition,
reconstruction parameters, and feature extraction, the performance of MR-based prediction
models is limited due to a lack of reproducibility and generalizability.

In current practice, breast MRI and PET/CT are not routinely performed in breast
cancer patients. However, contrast-enhanced chest CT is included in the preliminary exam-
inations for the detection of possible breast cancer metastasis prior to NST [1]. Although
tissue contrast of CT is lower than that of MRI, radiomics, a series of image segmenta-
tion, feature extraction, and machine learning analysis, is considered to hold potential for
detecting important image information that radiologists are unable to visualize [17,18].
Moghadas-Dastjerdi et al. [19,20] first extracted GLCM-based features of pretreatment
contrast-enhanced CT in 72 patients, followed by machine learning to predict tumor re-
sponse to NST, obtaining AUC values of 0.89 and 0.88 for two Adaboost decision tree
models with different feature sets. Their results confirmed the significant potential of
CT-based radiomics in predicting breast tumor response to treatment, but the effect of
adding more textural features, such as gray-level dependence matrix (GLDM)-, gray-level
run length matrix (GLRLM)-, gray-level size zone matrix (GLSZM)-, or neighboring gray
tone difference matrix (NGTDM)-based features, into the prediction model remains unclear.
Recently, Huang et. al. [21] further extracted size, shape, texture, and wavelet features from
pretreatment contrast-enhanced CT in 215 patients to predict treatment response, and they
found that the radiomics model could outperform the clinical model (AUC, 0.818 vs. 0.756).

However, due to the lack of standardized definitions of radiomics features and consis-
tent implementation processes, reproducibility and validation of radiomics remain difficult,
thereby hindering its clinical use [22]. Furthermore, it remains unknown whether the inte-
gration of clinical and radiomic features could outperform clinical and radiomics models in
predicting the pCR of breast cancer. We hypothesized that the integration of clinical and
additional textural features with high reproducibility would improve the performance of
model prediction for breast cancer in response to treatment. Therefore, we examined the
potential of CT-based radiomics integrated with clinical features in predicting breast cancer
response to NST using a standardized quantitative radiomics tool [23] with five categories
of textural features in addition to first-order and shape-based features.



Cancers 2022, 14, 6261 3 of 13

2. Materials and Methods

This single-centered, retrospective study was approved by our Institutional Review
Board, and the requirement for written informed consent was waived [KMUHIRB-E(I)-
20200406].

2.1. Study Subjects

From January 2010 to December 2020, 451 consecutive breast cancer patients who
received NST were enrolled. All patients received treatment regimens according to prac-
tice guidelines [1], and the flowchart of subject inclusion is shown in Figure 1. Only
patients with contrast-enhanced chest CT performed near the start of NST (within 2 months
prior to NST or within 1 day after NST) were included. Patients were excluded if they
had (a) metallic markers in the tumor or siliconomas/implants in the breast, (b) CT per-
formed after open surgical biopsy, (c) tumors that could not be delineated by radiologists,
(d) incomplete tumor on the image due to a too small field of view (FOV), or (e) no available
pathological reports. Ultimately, 331 breast tumors in 329 patients were included in the
final study cohort.
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Figure 1. Flowchart of data collection and partition. Data partition was performed using a semi-
random selection. The whole dataset was firstly separated into the pCR (+) and pCR (−) groups,
followed by random selection of 15% data from the two groups. pCR: pathologic complete response;
CECT: contrast-enhanced computed tomography; CT: computed tomography; FOV: field of view.

2.2. Histopathology Evaluation and Clinical Feature Collection

pCR was defined as no residual invasive or in situ cancer cells in the specimen after
NST. Six clinical features were collected for model building: age, clinical staging, cancer cell
type (ductal, lobular, etc.), estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2). These data were obtained from electronic
medical records, including pathology reports. Breast cancer can be classified into four
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subtypes according to hormone receptor (HR) and HER2 expressions: HR-positive/HER2-
negative, HR-positive/HER2-positive, pure HER2-positive, and triple-negative.

2.3. Image Acquisition

CT images were acquired from the Picture Archiving and Communication System
of our institution and were saved in Digital Image and Communication in Medicine
format. Because our institution is an academic medical center with many patients referred
from several affiliated hospitals, imaging data were obtained from different scanners
(Siemens SOMATOM Definition, SOMATOM Definition AS, SOMATOM Definition Flash,
and Sensation 64; GE Medical System Optima CT 660, Discovery CT 750 HD, BrightSpeed
S, and LightSpeed 16; Philips Brilliance 64; Toshiba Aquilion, Aquilion ONE, and Aquilion
PRIME). The contrast-enhanced CT images were obtained after intravenous iodine contrast
injection and reconstructed using a 5 mm slice thickness without gap.

2.4. Image Segmentation and Feature Extraction

Breast tumor segmentation was performed on the basis of axial images using the Grow-
Cut semi-automatic segmentation method of 3D-Slicer software (Slicer 4.11.20210226) [24]
(Figure 2). Images were first processed by a third-year resident (T.Y.T.) in the radiology
department and further confirmed by two radiologists with consensus agreement (H.Y.T.
and C.H.W, with 17 and 4 years of experience, respectively). Radiomic features were
automatically extracted using Pyradiomics, an open-source python package, v.3.0.1 [23].
A total of 107 features of seven feature classes were extracted for each tumor, including
14 shape features, 18 first-order features, and 75 textural features (24 GLCM, 14 GLDM,
16 GLRLM, 16 GLSZM, and five NGTDM).
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Figure 2. An example of image segmentation. Contrast-enhanced axial (A) and coronal (C) images
show an enhanced tumor in the right breast. Tumor segmentation was performed using the GrowCut
semi-automatic segmentation method of 3D-Slicer software (B,D). The 3D contour of the tumor is
shown in (E).
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2.5. Inter-Rater Reliability and Feature Reproducibility

Before formal image segmentation, radiologists separately performed tumor masking
for 20 randomly selected study subjects. Inter-rater reliability was calculated using the
Dice coefficient [25]. Dice scores lower than 0.7 were resolved with consensus by a third
radiologist (J.S.H., with 25 years of experience). Use of a semi-automatic segmentation
tool rendered the concordance of lesion segmentation good, with average Dice scores of
0.86 ± 0.08. The reproducibility of radiomic features was examined by calculating the intra-
class correlation coefficient (ICC) of two volumes of interest masked by the two radiologists
for the same lesion.

2.6. Feature Selection and Model Building

We subdivided the study population into training (n = 281, 84.9%) and testing cohorts
(n = 50, 15.1%). The testing set was randomly selected using a semi-random selection,
which firstly distinguished the dataset into pCR(+) and pCR(−) groups and randomly
selected 15% data from the two groups, rendering the distribution of the important clinical
factors similar to the training dataset [26]. The synthetic minority over sampling technique
(SMOTE) was applied to the training dataset to balance pCR data [27,28]. Six machine
learning algorithms were examined: linear support vector machine (SVM), Gaussian SVM,
polynomial SVM, ensemble learning (Bootstrap aggregation), random forest, and least
absolute shrinkage and selection operator (LASSO) regression. For each algorithm, three
models, i.e., clinical, radiomics, and clinical–radiomics integration, were trained. All six
clinical information sets (age, clinical staging, cancer cell type, ER, PR, and HER2) were
used for model building. Radiomic features were selected on the basis of their ICC. We tried
six ICC thresholds (0.7, 0.75, 0.8, 0.85, 0.9, and 0.95) to identify the best model performance.
To verify our hypothesis, we also built radiomics models using only GLCM features for
comparison. Ten-fold cross validation was performed for model hyperparameters using
the training set only, and the model performance was examined by the independent testing
set. Moreover, an out-of-bag permutation test was carried out to examine the feature
importance in the best model. Machine learning was performed using the machine learning
toolbox running on the MATLAB platform (MathWorks, Natick, MA, USA).

2.7. Statistics

The Pearson χ2 test and independent sample t-test were used to examine differences
between the training and testing sets. The relationship between breast cancer subtype and
pCR was assessed using the Pearson χ2 test. Sensitivity, specificity, and AUC were the
model performance metrics. The DeLong test [29] was used to assess significance of the
AUC difference among the three machine learning models (clinical, radiomics, and clinical–
radiomics). Analyses were implemented using SPSS (version 22.0, IBM). A p-value < 0.05
was considered to indicate a significant difference. Bonferroni correction was used for
multiple comparisons.

3. Results
3.1. Characteristics of the Study Population

The demographic, clinical, and image characteristics of the study population are shown
in Table 1. The overall pCR rate was 17.2%. Furthermore, 68.0% (225/331) of tumors were
hormone receptor-positive with or without HER2 overexpression. HER2-positive tumors
constituted 40.2% (133/331) and triple-negative tumors constituted 15.7%. The average of
the interval between CT scanning and the start of neoadjuvant therapy was 6.0 ± 8.6 days.
A large proportion (85.1%) of the images were obtained from single institutions, but the CT
scanner models were relatively diverse. There was no statistically significant difference in
the important variables between training and testing datasets.
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Table 1. Numbers of data and comparisons of variables in training and testing datasets (N, %).

Training Testing Total p-Value

Clinical Variables N = 280, 84.6% N = 51, 15.4% N = 331, 100%
pCR ‡ 0.804

Negative 232 (82.6) 42 (84.0) 274 (82.8)
Positive 49 (17.4) 8 (16.0) 57 (17.2)

Age 51.5 ± 9.8 52.5 ± 8.9 51.6 ± 9.7 0.5
Clinical stage 0.741

1 15 (5.3) 1 (2.0) 16 (4.8)
2 107 (38.1) 21 (42.0) 128 (38.7)
3 79 (28.1) 13 (26.0) 92 (27.8)
4 80 (28.5) 15 (30.0) 95 (28.7)

Breast cancer
subtype § 0.951

HR(+), HER2(−) 123 (43.8) 23 (46.0) 146 (44.1)
HR(+), HER2(+) 68 (24.2) 11 (22.0) 79 (23.9)
HR(−), HER2(+) 45 (16.0) 9 (18.0) 54 (16.3)
Triple-negative 45 (16.0) 7 (14.0) 52 (15.7)

Histology 0.067
Invasive

carcinoma of no
special type

263 (93.6) 42 (84.0) 305 (92.1)

Invasive lobular
carcinoma 7 (2.5) 3 (6.0) 10 (3.0)

Others 11 (3.9) 5 (10.0) 16 (4.8)
Imaging variables N = 279, 84.8% N = 50, 15.2% N = 329, 100%

Manufacturer 0.971
GE Healthcare 114 (40.9) 20 (40.0) 134 (40.7)
PHILIPS 48 (17.2) 10 (20.0) 58 (17.6)
SIEMENS 87 (31.2) 15 (30.0) 102 (31.0)
TOSHIBA 30 (10.8) 5 (10.0) 35 (10.6)

Institution 0.533
KMUH † 236 (84.6) 44 (88.0) 280 (85.1)
Other hospitals 43 (15.4) 6 (12.0) 49 (14.9)

† KMUH: Kaohsiung Medical University Hospital; ‡ pCR: pathological complete response; § HR: hormone
receptor; HER2: human epidermal growth factor receptor 2.

Table 2 presents the relationship between cancer subtype and pCR. The HR-positive/
HER2-negative group had the lowest pCR rate (6.2%), and the pure HER2-positive group
had the highest one (33.3%).

Table 2. Relationship between cancer subtype and pathologic complete response (N, %).

Cancer Subtype Non-pCR
(n = 274, 82.8)

pCR
(N = 57, 17.2)

Total
(N = 331, 100) p-Value

HR(+), HER2(−) 137 (93.8) 9 (6.2) 146 (100) <0.001
HR(+), HER2(+) 60 (75.9) 19 (24.1) 79 (100)
HR(−), HER2(+) 36 (66.7) 18 (33.3) 54 (100)
Triple-negative 41 (78.8) 11 (21.2) 52 (100)

pCR: pathologic complete response; HR: hormone receptor; HER2: human epidermal growth factor receptor 2.

3.2. Model Performance

Of the six machine learning algorithms, the random forest and linear SVM were
the best models, with AUC values of 0.70 (95% CI: 0.69, 0.70) and 0.69 (95% CI: 0.68,
0.70), respectively, in the testing set. Although sensitivities were low (0.50 and 0.53), their
specificities reached 0.81 (95% CI: 0.80, 0.82) and 0.77 (95% CI: 0.74, 0.8), respectively
(Table 3).
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Table 3. Performance of clinical, radiomics, and clinical–radiomics models.

Model Features
Training Dataset Testing Dataset

AUC Sensitivity Specificity AUC Sensitivity Specificity

LASSO

Clinical 0.79
(0.78, 0.79)

0.82
(0.80, 0.84)

0.65
(0.63, 0.66)

0.69
(0.68, 0.69)

0.53
(0.44, 0.62)

0.76
(0.73, 0.80)

Radiomics 0.82
(0.82, 0.83)

0.78
(0.75, 0.80)

0.76
(0.74, 0.78)

0.76
(0.75, 0.77)

0.57
(0.54, 0.60)

0.83
(0.80, 0.86)

Clinical-Radiomics 0.90
(0.90, 0.90)

0.93
(0.92, 0.95)

0.74
(0.72, 0.76)

0.86
(0.86, 0.87)

0.90
(0.90, 0.90)

0.84
(0.83, 0.85)

Linear
SVM

Clinical 0.76
(0.76, 0.77)

0.89
(0.86, 0.91)

0.60
(0.56, 0.63)

0.69
(0.69, 0.70)

0.53
(0.46, 0.60)

0.77
(0.74, 0.80)

Radiomics 0.83
(0.83, 0.83)

0.76
(0.72, 0.79)

0.79
(0.77, 0.82)

0.78
(0.77, 0.79)

0.59
(0.55, 0.63)

0.84
(0.80, 0.87)

Clinical-Radiomics 0.88
(0.88, 0.89)

0.90
(0.88, 0.92)

0.75
(0.73, 0.76)

0.87
(0.86, 0.88)

0.90
(0.90, 0.90)

0.82
(0.80, 0.84)

LASSO: least absolute shrinkage and selection operator; SVM: support vector machine; AUC: area under the ROC
curve. The numbers in the parentheses are 95% confidence intervals.

Feature selection based on ICC was first performed to train the radiomics model. Six
ICC thresholds were tested, and most machine learning models had better performance
when features with ICC ≥0.85 were used (Figure 3). There were 53 (49.5%) features with
ICC ≥0.85, consisting of 11 shape-based, 10 first-order, 12 GLCM, seven GLDM, eight
GLRLM, four GLSZM, and one NGTDM features (Figure 4). Furthermore, linear SVM and
LASSO performed better than the other classifiers, while linear SVM was the best model
(Table 3). The AUC of the linear SVM model was 0.78 (95% CI: 0.77, 0.79) in the testing set.
Its sensitivity and specificity were higher than those of the clinical model (0.59 vs. 0.53 and
0.83 vs. 0.77, respectively).

Cancers 2022, 14, x FOR PEER REVIEW 8 of 14 
 

 

ICC ≥0.85, consisting of 11 shape-based, 10 first-order, 12 GLCM, seven GLDM, eight 
GLRLM, four GLSZM, and one NGTDM features (Figure 4). Furthermore, linear SVM and 
LASSO performed better than the other classifiers, while linear SVM was the best model 
(Table 3). The AUC of the linear SVM model was 0.78 (95% CI: 0.77, 0.79) in the testing set. 
Its sensitivity and specificity were higher than those of the clinical model (0.59 vs. 0.53 and 
0.83 vs. 0.77, respectively). 

 
Figure 3. Linear SVM model performance of different radiomic feature sets selected on the basis of 
different ICC thresholds. ICC = intraclass correlation coefficient; AUC: area under the ROC curve. 

 
Figure 4. Radiomic features with intraclass correlation coefficient ≥0.85: 11 shape-based, 10 first-
order, 12 GLCM, seven GLDM, eight GLRLM, four GLSZM, and one NGTDM features. 

Figure 3. Linear SVM model performance of different radiomic feature sets selected on the basis of
different ICC thresholds. ICC = intraclass correlation coefficient; AUC: area under the ROC curve.



Cancers 2022, 14, 6261 8 of 13

Cancers 2022, 14, x FOR PEER REVIEW 8 of 14 
 

 

ICC ≥0.85, consisting of 11 shape-based, 10 first-order, 12 GLCM, seven GLDM, eight 
GLRLM, four GLSZM, and one NGTDM features (Figure 4). Furthermore, linear SVM and 
LASSO performed better than the other classifiers, while linear SVM was the best model 
(Table 3). The AUC of the linear SVM model was 0.78 (95% CI: 0.77, 0.79) in the testing set. 
Its sensitivity and specificity were higher than those of the clinical model (0.59 vs. 0.53 and 
0.83 vs. 0.77, respectively). 

 
Figure 3. Linear SVM model performance of different radiomic feature sets selected on the basis of 
different ICC thresholds. ICC = intraclass correlation coefficient; AUC: area under the ROC curve. 

 
Figure 4. Radiomic features with intraclass correlation coefficient ≥0.85: 11 shape-based, 10 first-
order, 12 GLCM, seven GLDM, eight GLRLM, four GLSZM, and one NGTDM features. 

Figure 4. Radiomic features with intraclass correlation coefficient ≥0.85: 11 shape-based, 10 first-
order, 12 GLCM, seven GLDM, eight GLRLM, four GLSZM, and one NGTDM features.

For training the clinical–radiomics integration model, the six clinical factors were all
used, and the six ICC thresholds were tested again with the six machine learning algorithms.
Results showed that the linear SVM model using radiomics features with ICC ≥ 0.85 was
again the best model in predicting pCR. The AUC increased from 0.69 (clinical model) and
0.78 (radiomics model) to 0.87 (95% CI: 0.86, 0.88). Additionally, the sensitivity increased
significantly to 0.90 (Table 3).

The DeLong test was used to assess differences in model performance (Table 4).
Bonferroni correction was used due to multiple comparisons, and a p-value < 0.017 was
considered significant. The results showed significant AUC differences among the clinical,
radiomics, and integration models in the testing set.

Table 4. The differences in model performance in testing set examined using DeLong test, represented
by p-value.

All Radiomic Features (ICC ≥ 0.85) GLCM-Based Features (ICC ≥ 0.85)

Model Clinical Radiomics Clinical–Radiomics Clinical Radiomics Clinical–Radiomics

Clinical 1 <0.001 <0.001 1 <0.001 <0.001
Radiomics 1 <0.001 1 <0.001
Clinical–

radiomics 1 1

GLCM: gray-level co-occurrence matrix. A p-value < 0.017 was considered significant after Bonferroni correction.

Radiomics and clinical–radiomics integration models were also trained using GLCM
features. The linear SVM model built with features of ICC ≥ 0.85 showed the best per-
formance. The AUC of the radiomics model [radiomics (GLCM)] was 0.77 (95% CI: 0.77,
0.79), slightly lower than that of the radiomics model built with all seven classes of features
[radiomics (All)] (AUC = 0.78) without statistical significance (Table 5).
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Table 5. The effect of adding more textural features to train models for pCR prediction in
breast cancer.

Features ‡ Model AUC Sensitivity Specificity p-Value §

Radiomics (GLCM) Linear SVM 0.77 (0.77, 0.79) 0.54 (0.51, 0.57) 0.84 (0.80, 0.88)
0.45Radiomics (All) Linear SVM 0.78 (0.77, 0.79) 0.59 (0.55, 0.63) 0.83 (0.80, 0.87)

Clinical–radiomics
(GLCM) Linear SVM 0.85 (0.84, 0.85) 0.85 (0.79, 0.91) 0.78 (0.74, 0.82)

0.011
Clinical–radiomics (All) Linear SVM 0.87 (0.86, 0.88) 0.90 (0.90, 0.90) 0.82 (0.80, 0.84)

GLCM: gray-level co-occurrence matrix. ‡ All features or GLCM features with ICC ≥ 0.85. § Using DeLong test to
examine AUC difference between two models.

The performance of the integration model [clinical–radiomics (GLCM)] (AUC = 0.85;
95% CI: 0.84, 0.85) was significantly less accurate than the integration model trained with all
classes of features [clinical–radiomics (all)] (AUC = 0.87). Figure 5 presents the ROC curves
of the four models: clinical, radiomics (GLCM), radiomics (all), and clinical–radiomics (all).
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classes of features), and clinical–radiomics (all classes of features) linear SVM models in the training
and testing sets. In the testing set, the AUC values were 0.69, 0.77, 0.78, and 0.87 for clinical, radiomics
(GLCM), radiomics (all), and clinical–radiomics (all), respectively.

Moreover, the permutation importance test showed that the top 10 important features
in the linear SVM model consisted of three clinical features (ER, HER2, and PR) and seven
radiomics features (three shape, one first-order, one GLCM, one GLDM, and one GLRLM)
(Figure 6). It was noted that hormone receptors and tumor shapes were more important
features in predicting pCR than high-order textural features (GLCM, GLDM, and GLRLM).
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4. Discussion

The pCR indicates better long-term outcomes in breast cancer patients receiving NST.
Prediction of pCR before NST is valuable for adjusting therapy regimens and selecting
patients for clinical trials on de-escalating treatments. In this study, we used routine
contrast-enhanced CT and clinical data to build a prediction model with high accuracy
(AUC 0.87). Compared to previous studies using MRI (AUC from 0.52 to 0.98) or PET/CT
(AUC from 0.70 to 0.73) [8–16], pCR could be predicted from the available images without
any additional imaging studies, saving significant costs (time and money). Use of a
relatively large sample size and the standardized radiomics feature definition and extraction
process are additional strengths of this study, rendering this process more reproducible
and comparable.

Although contrast-enhanced chest CT is usually performed in breast cancer patients
before receiving neoadjuvant therapy, only few studies have used these images to predict
treatment response. Moghadas-Dastjerdi et al. [19,20] enrolled 72 patients and confirmed
that machine learning models trained with GLCM-based features could predict pCR be-
fore treatment. One recent study enrolled 215 patients and performed machine learning
modeling of clinical data and CT radiomics to predict pCR. Their results demonstrated that
the radiomics model outperformed the clinical model (AUC, 0.818 vs. 0.756) in predicting
pCR [22]. However, this study divided datasets into training and testing sets by setting a
timepoint, resulting in unmatched clinical features (tumor staging with p < 0.05), which
may have led to bias. In contrast, the present study enrolled more patients (n = 329) and
used a semi-random selection, dividing training and testing sets by matching their clinical
characteristics, including clinical demographics, pCR rate, hormone receptor, cell type,
hospital, and scanners. Moreover, the present study performed SMOTE oversampling
to balance pCR(+/−) in the training set, which, together with the matched clinical char-
acteristics between the training and testing sets, may have helped to minimize bias in
predicting pCR. Our results further showed that, although the radiomics model with all
the classes of features [radiomics (all)] performed slightly better than the model using
only GLCM-based features [radiomics (GLCM)] (AUC: 0.78 vs. 0.77, p = 0.45), the clinical–
radiomics integration model with more radiomics features produced significantly higher
performance than that with only GLCM-based features (AUC: 0.87 vs. 0.85, p = 0.011).
Moreover, the textural features were extracted using Pyradiomics due to its greater com-
pleteness of feature categories and standardized process, and several studies showed that
machine learning models trained with features extracted from Pyradiomics could predict
the neoadjuvant therapy response in metastatic gastric cancer, esophageal cancer, and ovar-
ian cancer [30–32]. Our findings indicate that additional texture features have the potential
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to improve the prediction accuracy for breast cancer response to treatment, especially in
the integration model.

Six clinical factors were used to predict pCR [33]. Among them, HR and HER2 were
used to classify breast cancer subtype, which was also confirmed to be related to pCR in
our study (Table 2). We trained machine learning models using only these clinical features
and found a moderate performance (AUC 0.69). Many other clinical and histopathological
factors have been related to pCR [33], and the predictive role of biomarkers, such as
the 21-gene assay [34], PIK3CA mutation [35], Ki-67 index [36], and tumor-infiltrating
lymphocytes [37], is being evaluated. However, because of tumor heterogeneity, biopsy
sampling errors occur in biomarkers based on specimens from core needle biopsy. Imaging
studies with pixel-based analysis of the whole tumor could compensate for this sampling
error. Consequently, the clinical–radiomics integration model performed significantly better
than the clinical model in the present study (AUC: 0.87 vs. 0.69). Moreover, the permutation
importance test showed that the top 10 features consisted of three clinical features (ER, PR,
and HER2) and seven radiomics features (three shape, one first-order, and three texture) in
the integration linear SVM model. The findings indicate that hormone receptors and tumor
size, shape, and texture were important prognostic features in predicting pCR. However,
the relationship between radiomics features and tumor microenvironment, such as tumor-
infiltrative lymphocyte or molecular characteristics, still needs further investigation.

Although a standardized feature extraction process was used, the reproducibility
of radiomics features is still influenced by many factors, including image acquisition, re-
construction, and segmentation. We used a semi-automatic method to perform image
segmentation, which might have increased the reliability of radiomics features [38]; how-
ever, the impact of image acquisition and reconstruction on feature reliability was greater
than that of inter-observer segmentation [39]. Consequently, ICC was used for feature
selection. In general, ICC values of 0.5–0.75 indicate moderate reliability, 0.75–0.9 indicate
good reliability, and >0.90 indicate excellent reliability [40]. To date, there is no consensus
in radiomics regarding which ICC threshold is suitable for feature selection. Hence, we
experimented with six thresholds (0.7–0.95) to identify the feature set resulting in the
best model performance. Eventually, 0.85 was determined by data-driven analysis. For
ICC ≥0.85, shape and first-order features were more robust than textural features, which is
consistent with prior studies [39].

Our study had some limitations. Firstly, this was a retrospective study, and a large
portion of patients were enrolled from one institution. The radiomics models remain to be
externally validated with images from multiple centers. Secondly, the insufficient sample
size did not allow us to perform a deep learning approach to predict pCR, which may have
possibly shown better performance than the machine learning approach; however, this was
beyond the scope of the present study. Thirdly, the manual tumor segmentation needed
for radiomics analysis was relatively time-consuming and labor-intensive, which was
potentially slightly reduced by the semi-automatic approach used in this study. Fourthly,
the imbalanced pCR(+/−) dataset may affect the performance of models in other datasets
with different pCR rates. Further investigation is needed to reduce bias by using datasets
with balanced pCR. Lastly, breast cancer is a group of heterogenous diseases with different
subtypes and treatment regimens. Training prediction models using a larger study cohort
or based on each cancer subtype could be beneficial to clinical practice.

5. Conclusions

The present study confirmed that a combination of machine learning models trained
with radiomics features derived from pre-NST contrast-enhanced CT and clinical infor-
mation could accurately predict pCR in breast cancer patients. The model performance
could be improved by adding more categories of textural features with a standard feature
extraction process. Therefore, we concluded that the integration of clinical and CT-based
radiomics features was helpful in the pretreatment prediction of pathologic complete
response to NST in breast cancer.
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