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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. To
improve treatment, personalized medicine uses next-generation DNA sequencing to monitor disease
and guide treatment decisions. Tumor samples for sequencing are usually obtained by invasive
fine-needle biopsy. Recently, the focus has been increasingly shifting to blood-based liquid biopsies,
including circulating free (cf)DNA or DNA isolated from extracellular vesicles (evDNA). To evaluate
the detection performance of DNA alterations, we directly compared tumor-, cf- and evDNA from
patients with advanced PDAC upon panel sequencing. Copy number variations (CNVs), single
nucleotide variants (SNVs) and insertions and deletions (indels) were compared for their concordance
with tumorDNA. Compared to cfDNA, evDNA contained significantly larger DNA fragments, which
improved the concordance of SNVs and indels with tumorDNA. In line with previous observations,
CNV detection was mostly uninformative for cf- and evDNA. However, the combination of both
liquid biopsy analytes was clearly superior for SNV detection, pointing to potentially improved
actionable variant prediction.

Abstract: Pancreatic ductal adenocarcinomas (PDACs) are tumors with poor prognosis and limited
treatment options. Personalized medicine aims at characterizing actionable DNA variants by next-
generation sequencing, thereby improving treatment strategies and outcomes. Fine-needle tumor
biopsies are currently the gold standard to acquire samples for DNA profiling. However, liquid
biopsies have considerable advantages as they are minimally invasive and frequently obtainable and
thus may help to monitor tumor evolution over time. However, which liquid analyte works best
for this purpose is currently unclear. Our study aims to directly compare tumor-, circulating free
(cf-) and extracellular vesicle-derived (ev)DNA by panel sequencing of matching patient material.
We evaluated copy number variations (CNVs), single nucleotide variants (SNVs) and insertions
and deletions (indels). Our data show that evDNA contains significantly larger DNA fragments
up to 5.5 kb, in line with previous observations. Stringent bioinformatic processing revealed a
significant advantage of evDNA with respect to cfDNA concerning detection performance for SNVs
and a numerical increase for indels. A combination of ev- and cfDNA was clearly superior for
SNV detection, as compared to either single analyte, thus potentially improving actionable variant
prediction upon further optimization. Finally, calling of CNVs from liquid biopsies still remained
challenging and uninformative.
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1. Introduction

Pancreatic cancer is characterized by a dismal prognosis due to late-stage diagnosis
and early metastasis, with an overall 5-year survival rate of less than 9% [1,2]. The most
prevalent tumor subtype is ductal adenocarcinoma (PDAC) [3]. Owing to their aggressive
nature with high inter- and intracellular heterogeneity and an abundant desmoplastic
microenvironment, PDACs are rather resistant towards not only conventional treatment
efforts, including chemo- and radiotherapy, but also targeted agents and immunothera-
pies. Thus, new treatment options are urgently needed [4–6]. Personalized medicine is
increasingly implemented in clinical oncology, aiming at advancing tumor diagnosis and
treatment [7]. Personalized medicine approaches often utilize next-generation sequencing
(NGS) of tumor tissue to determine actionable variants in tumors and to tailor therapeutic
strategies [8]. In PDAC, mainly fine-needle biopsies of the primary tumor or metastases
are performed, which are stressful for patients particularly when performed several times
and can represent only a snapshot of the tumor at the biopsy site due to intratumoral
heterogeneity [9]. Therefore, the focus shifts from tumor to liquid biopsies, utilizing an-
alytes mainly isolated from peripheral blood, including circulating cell-free (cf) DNA,
circulating tumor cells (CTCs) and extracellular vesicles (EVs), such as exosomes (small
extracellular vesicles (sEVs)) that also contain tumor DNA fragments [10]. In contrast to
tumor biopsies, liquid biopsies can be obtained easily, minimally invasively and therefore
repeatedly and thus enable longitudinal analyses during treatment [11]. Copy number
variations (CNVs), insertions and deletions (indels) and single nucleotide variants (SNVs)
were already successfully detected both in cfDNA as well as in DNA isolated from EVs
(evDNA) [8,11,12]. Low fractions of EVs and cfDNA from the tumor can often hamper
concordant variant calling and make screening for clinically relevant variants a challenging
effort, as shown for tumor-derived cfDNA by Elazezy et al. [13]. In particular, CNVs, which
represent major genetic alterations commonly observed across various solid tumor entities,
are difficult to predict in cf- as well as evDNA, due to a mixture of analytes from different
cells of origin [14]. cfDNA was suggested to exhibit higher sensitivity for CNV detection
than evDNA in some studies [15]. NGS sequencing approaches utilizing cfDNA, but in
particular EVs, are yet not part of the clinical routine. Most of the research studies so far
examined only specific, known variants using highly sensitive digital droplet PCR (ddPCR).
Here, analysis of evDNA was reported to be superior to cfDNA; e.g., detection rates for
mutated KRAS alleles were higher in evDNA than in cfDNA in early-stage pancreatic can-
cer patients [16]. Moreover, evDNA fragments perform better with respect to amplification
for NGS applications [17]. This may be explained by larger DNA fragment sizes in EVs of
up to 10 kilobases (kb), whereas cfDNA mainly consists of short 167 bp fragments [18,19].
cfDNA from the tumor can be even more fragmented with a length <100 bp, thus impairing
reliability of sequencing data [20]. evDNA also has other potential advantages including
high stability of nucleic acids due to protection within the lipid bilayer of the nanovesicles,
as well as the ability for multiplexing different analytes, such as proteins and DNA or
different RNA classes [21,22]. However, there are caveats that so far prevent the widespread
use of evDNA analysis, such as the more complex isolation and characterization procedures
for EVs as well as lower DNA yields in comparison to cfDNA. By analyzing a cohort of
patients with advanced PDAC, we directly compared cfDNA and evDNA isolated from
plasma samples by panel sequencing with DNA extracted from tumor tissue from the same
patients obtained by fine-needle biopsy.
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2. Materials and Methods
2.1. EV Preparation/Sample Processing

Liquid biopsy plasma samples and fine-needle biopsies were obtained from 10 patients
with advanced PDAC treated in the outpatient clinic of the Department of Internal Medicine
I, Ulm University, Ulm, Germany. All patients had given prior written informed consent
before samples were taken according to the institutional ethical approval number 67/19.
In addition, blood from healthy probands was obtained with informed consent. Until
processing within 1 h, monovettes (Sarstedt) containing peripheral blood and EDTA were
stored at 4 ◦C. To separate blood plasma from whole blood, samples were centrifuged
(820× g, 10 min, 4 ◦C) and plasma was transferred into precooled tubes. Then, plasma
was again centrifuged (20,000× g, 10 min, 4 ◦C), transferred into precooled cryovials and
immediately stored at −80 ◦C, until further processing. Subsequently, plasma samples
were thawed on ice, and EVs were isolated from plasma using the Total Exosome Isolation
Kit (from plasma) (Thermo Fisher Scientific, Waltham, MA, USA). Subsequently, plasma
was centrifuged for 20 min at 2000× g at room temperature (RT) and the supernatant was
transferred to a new tube. Then plasma was centrifuged for 20 min at 10,000× g at RT.
After the transfer of supernatant to a new tube, 0.5 volumes of PBS (1×) were added, and
plasma was mixed thoroughly by vortexing. Then, 0.2 volumes of the total sample volume
of Exosome Precipitation reagent (from plasma) were added and the sample was mixed
thoroughly by vortexing, followed by incubation for 10 min at RT. After centrifugation for
5 min at 10,000× g at RT, the supernatant was discarded and samples were centrifuged for
30 s at 10,000× g at RT. The resolving supernatant was discarded again, and the EV pellet
was frozen at −80 ◦C until further processing.

evDNA and cfDNA were prepared using the QIAamp Circulating Nucleic Acid Kit
(Qiagen, Hilden, Germany) as described in the manufacturer’s instructions. EV pellets
for evDNA and 4 mL of plasma for cfDNA were resuspended in 4 mL of PBS and 400 µL
of proteinase K, respectively. At the end, samples were eluted in 30 µL of Buffer AVE,
and DNA concentration was measured using Qubit dsDNA HS Assay Kit (Thermo Fisher
Scientific) according to the manufacturer’s instructions. DNA isolated from fine-needle
tumor biopsies from all patients was obtained from the Department of Pathology of the
University Clinic Ulm.

2.2. DNA Quality and Sequencing

After isolation, tumor-, ev- and cfDNA samples were sent for commercial sequenc-
ing with the somatic TUM01-panel covering 766 tumor-relevant genes (CeGaT GmbH,
Tübingen, Germany). This panel contains only coding regions for the majority of targets
(Table S1). For some genes, intronic regions were included to allow for the detection of
translocations as listed in Table S1. Furthermore, intronic regions were partially enriched
to cover known pathogenic variants from ClinVar and HGMD. Prior to sequencing, DNA
quality was measured using a bioanalyzer, followed by library preparation with 50 ng of
DNA. Sequencing was performed on a NovaSeq 6000 system (Illumina, 2 × 100 bp). The
initial bioinformatic analysis was performed by CeGaT (Figure 1).
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Figure 1. Experimental workflow of sample and data processing. EVs were isolated from PDAC 
patient plasma by precipitation. ev- and cfDNA were prepared and DNA quality as well as fragment 
length were determined using a bioanalyzer device. Sequencing was performed using a commercial 
panel covering 766 tumor-relevant genes. 

2.2.1. Variant Calling 
CNVs were detected by overlapping reads with specific target regions and compared 

to the expected number in a proprietary reference sample cohort (CeGaT) [24]. To deter-
mine the number of CNVs on chromosomes X and Y, sex of the patients was estimated 
according to the coverage, to analyze the expected copy number. Then, variants were an-
notated based on various public databases (Ensembl v100, RefSeq Curated (20200723), 
CCDS r22, dbSNP154, GnomAD 2.1.1 (exonic) and 3.1 (genomic), Gencode 34). Regions 
were reported as homozygous deletions upon a decrease in coverage to less than 5%, as 
heterozygous deletions with a coverage of less than 55% and as duplications if the cover-
age was more than 145% of the expected value. Since coding regions are usually analyzed 
by the TUM01 panel, CNV detection is limited to exons, and precise start or end coordi-
nates were not provided. If all exons of a gene are affected, the whole gene was labeled as 
changed, even though technically no information about introns was available. In the case 
of larger chromosomal deletions, all affected genes were reported individually. Following 
this annotation (Files S1–S30), the numbers of CNV variants for tumor-, ev- and cfDNA 
per patient were determined, and CNVs were analyzed in relation to the term “call”, 
which depicts for duplication, homo- or heterozygous deletion. 

Variant detection and prediction of vcf-files for SNVs and indels (Files S30–S87) was 
performed using the Ensembl Variant Effect Predictor (VEP) followed by several filtering 
steps as outlined in Figure 2. 

SNV raw variant calls (VEP) were either filtered by allele frequency (AF ≤ 1%) or not 
filtered and duplicate calls were always removed by a small self-coded software tool 
(available on request) to quantify and compare the number of SNVs for the indicated con-
ditions. In this process, duplicates were removed according to the terms: “location”, “al-
lele”, “symbol”, “protein position”, “amino acid” and, if present, “PolyPhen-2 (PP-2) 
score”, whereby from duplicates with PP-2 scores the ones with the lesser damaging PP-
2 score were excluded. Subsequent processing steps determined biotypes and conse-
quences, followed by filtering for moderate and high impact (in combination with AF ≤ 
1%), which includes variants that might change protein function (moderate) as well as 
variants that are assumed to have a disruptive impact on the protein (high). Additional 
filtering also included damaging scores, such as PolyPhen-2 (PP-2) [25], an algorithm that 
predicts a possible impact of amino acid substitutions on protein structure and function, 
or Condel, which aggregates an output score for SIFT, PP-2, MAPP, LogR Pfam E-value 

Figure 1. Experimental workflow of sample and data processing. EVs were isolated from PDAC
patient plasma by precipitation. ev- and cfDNA were prepared and DNA quality as well as fragment
length were determined using a bioanalyzer device. Sequencing was performed using a commercial
panel covering 766 tumor-relevant genes.

Sequencing reads were demultiplexed with Illumina bcl2fastq (2.20) and adapters
were trimmed using Skewer (version 0.2.2), but no quality trimming of the reads was
performed. To prevent removal of reads that map to pseudoautosomal regions (PARs)
on the Y chromosome in the hg19-cegat reference genome, the respective chromosomal
positions (chrY:10001-2649520, chrY:59034050-59363566) were masked. The ABRA tool was
used to facilitate global accurate alignment of reads to target regions and more precise indel
calling [23]. In addition, a proprietary software tool (CeGaT) was used to discard reads
aligning to more than one locus, showing duplicated reads and the same mapping score,
which in all probability originated from the same PCR amplicon.

2.2.1. Variant Calling

CNVs were detected by overlapping reads with specific target regions and compared
to the expected number in a proprietary reference sample cohort (CeGaT) [24]. To determine
the number of CNVs on chromosomes X and Y, sex of the patients was estimated according
to the coverage, to analyze the expected copy number. Then, variants were annotated
based on various public databases (Ensembl v100, RefSeq Curated (20200723), CCDS r22,
dbSNP154, GnomAD 2.1.1 (exonic) and 3.1 (genomic), Gencode 34). Regions were reported
as homozygous deletions upon a decrease in coverage to less than 5%, as heterozygous
deletions with a coverage of less than 55% and as duplications if the coverage was more
than 145% of the expected value. Since coding regions are usually analyzed by the TUM01
panel, CNV detection is limited to exons, and precise start or end coordinates were not
provided. If all exons of a gene are affected, the whole gene was labeled as changed,
even though technically no information about introns was available. In the case of larger
chromosomal deletions, all affected genes were reported individually. Following this
annotation (Files S1–S30), the numbers of CNV variants for tumor-, ev- and cfDNA per
patient were determined, and CNVs were analyzed in relation to the term “call”, which
depicts for duplication, homo- or heterozygous deletion.

Variant detection and prediction of vcf-files for SNVs and indels (Files S30–S87) was
performed using the Ensembl Variant Effect Predictor (VEP) followed by several filtering
steps as outlined in Figure 2.
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Figure 2. Collected data were processed by variant calling/variant effect prediction (Ensembl) of
vcf-files for detected indels and SNVs, and resulting data were analyzed for biotypes, consequences,
impact, damaging/severity scores PP-2 and Condel and actionable variants (suggested by COSMIC
database). Called CNVs were analyzed for duplications or deletions.

SNV raw variant calls (VEP) were either filtered by allele frequency (AF ≤ 1%) or
not filtered and duplicate calls were always removed by a small self-coded software tool
(available on request) to quantify and compare the number of SNVs for the indicated
conditions. In this process, duplicates were removed according to the terms: “location”,
“allele”, “symbol”, “protein position”, “amino acid” and, if present, “PolyPhen-2 (PP-2)
score”, whereby from duplicates with PP-2 scores the ones with the lesser damaging PP-2
score were excluded. Subsequent processing steps determined biotypes and consequences,
followed by filtering for moderate and high impact (in combination with AF ≤ 1%), which
includes variants that might change protein function (moderate) as well as variants that
are assumed to have a disruptive impact on the protein (high). Additional filtering also
included damaging scores, such as PolyPhen-2 (PP-2) [25], an algorithm that predicts a
possible impact of amino acid substitutions on protein structure and function, or Condel,
which aggregates an output score for SIFT, PP-2, MAPP, LogR Pfam E-value and Muta-
tionAssessor for deleteriousness [26], on top of impact filtering. Actionable variants were
selected according to the COSMIC complete actionability database (Download V93), which
lists actionable genes and specific variants with putative therapeutic options. Afterward,
types of consequences, biotypes and PP-2 scores of remaining variants were automatically
determined. Moreover, results were stratified for actionable variants tier 1–4 and tier 1 + 2.
In addition, variants with damaging PP-2 scores were more closely investigated; treatment
options suggested by COSMIC were listed; and variants were analyzed using different
publicly available databases, such as ClinVar, Varsome or OncoKB. Upon VEP prediction
for indels, duplicates were removed by filtering according to the terms “location”, “allele”
and “feature”. Subsequently, indels were filtered for moderate and high impact or only
high impact, and remaining variants were analyzed in relation to types of consequences
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or biotypes. Actionable variants tier 1–4 as well as tier 1 + 2 in the COSMIC actionability
database were identified upon moderate/high prefiltering, respectively.

Furthermore, for CNVs, SNVs (unfiltered + filtered AF ≤ 1%) and indels, the concor-
dance between ev- and tumorDNA and that between cf- and tumorDNA were determined
by calculating percent agreement. Data quality was analyzed using the Bland–Altman
method [27]. Besides, tumor-, ev- and cfDNA were also examined for clinically relevant
BRCA1 and BRCA2 variants.

2.2.2. Bioinformatic Optimization of Filtering Stringency Using AVAtar

Alteration plots for variants detected in tumorDNA and evDNA or cfDNA were
generated using the AVAtar software [28]. Visualization was done with “maximal overlap”
to compare the variant detection performance of ev-, cf- and a combination of ev- and
cfDNA to calculate mean percent coincidence with the tumor upon filtering for SNV
variants with a moderate/high impact, moderate/high impact with damaging PP-2 or
moderate/high impact with probably damaging PP-2 as a most stringent filtering option.

2.2.3. Medical Art Illustrations

Illustrations were created using BioRender.com (accessed on 4 January 2022).

2.2.4. Statistical Analysis

Statistical analysis was performed using Prism software, version 9.3, for Windows
(GraphPad, San Diego, CA) and the MedCalc Statistical Software version 20.015 (MedCalc
Software Ltd., Ostend, Belgium; https://www.medcalc.org; accessed on 2 November 2021).
Graphs depict mean ± SEM for all conditions. Statistical significance: ns, not significant;
* p = 0.05–0.01; ** p = 0.01–0.001; *** p < 0.001; **** p < 0.0001.

3. Results
3.1. Patient Cohort, Study Design and EV Characterization

To evaluate variant detection performance, we investigated a cohort of 10 PDAC
patients (Table 1) with matching tumor and liquid biopsy samples for agreement of cf- and
evDNA with tumorDNA samples upon panel sequencing. Informed consent was obtained
according to institutional ethics approval (67/19). The patient cohort originally comprised
6 male and 4 female patients with advanced metastatic PDAC that were diagnosed at
a median age of 56 years. Tumor biopsies were acquired by fine-needle biopsy mainly
from the liver metastases, one from the pancreas and one from the pleura. For one patient
(patient 2) the DNA isolated from the tumor sample was not sufficient for high-quality
sequencing and the respective patient was therefore excluded from comparative analyses.
Additional data including therapy of PDAC patients are described in Table S2.

A valid EV isolation and classification of nanovesicles was verified by subjecting EVs
from additional PDAC patients and healthy control subjects (Tables S3 and S4) to a full
MISEV guideline analysis (Figure 3) [29] since limited sample volumes prevented MISEV
studies for the 10 patients submitted to sequencing of cf- and evDNA. To this end, the
mode size of the EVs was determined by nanoparticle tracking analysis (NTA) at 80.20 nm
for healthy probands and 85.16 nm for PDAC patients (Figure 3A,B), placing them both
firmly in the size range of small extracellular vesicles (sEVs, exosomes).

In line with previous studies that demonstrated increased exosome secretion from
tumor cells [30,31], PDAC patients (Table S3) showed a particle concentration significantly
increased by 2.4-fold compared to healthy probands (Table S4). The presence of sEVs was
further validated by the detection of exosome markers in Western blots (WBs), for three
subjects each (Figure 3C). In line with particle tracking data, PDAC patients demonstrated
increased levels of exosome surface markers CD63 and CD81 as well as increased levels for
the luminal marker TSG101. The WB raw data are provided as Supplemental Figure S37.
The presence of sEVs was further validated by transmission electron microscopy (TEM) of
uranyl-shaded vesicle preparations with typical cup-shaped features (Figure 3D).

BioRender.com
https://www.medcalc.org
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Table 1. Patient data. Patient cohort comprising 10 patients with advanced-stage PDAC.

Patient Gender Age Biopsy Taken from Tumor Grade TNM Stage Metastasis

1 Male 61 Liver / cT2 cN+ cM1 Liver

2 Male 43 Liver / cT4 cN+ pM1 Local, liver, lung, peritoneum

3 Female 60 Liver G2 cT3 cN+ cM1 Local, liver, lung

4 Female 32 Lung / / Liver, lung

5 Male 61 Liver / cT3 cN+ cM1 Local, liver (multiple)

6 Male 62 Liver G4 cT4 cN0 pM1 Local, liver (multiple)

7 Male 60 Pancreas G2 pT3 cN1 cM1 Local, liver, lung, bones

8 Female 58 Liver / cT3-4 cN+ cM1 Liver, lung, peritoneum

9 Male 68 Liver G3 cT3-4 cN+ cM2 Liver, lung

10 Female 54 Liver / cT3 cN+ cM1 Liver, spleen, stomach
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(n = 7) and healthy subjects (n = 7). (A) Determination of EV particle concentration and mode size.
(B) Exemplary NTA curves. (C) WB analysis of sEV markers for subjects (CD63, CD81, TSG101) and
related densitometry of bands. The integrated density of WB bands was measured using ImageJ. To
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calculate the relative integrated density for each band, values were normalized on the mean of all
three healthy subjects. (D) Exemplary TEM image of an EV isolated from PDAC patient plasma.
Statistical tests: (A) Two-tailed unpaired Student t-test; * p < 0.05; ns: no significant difference.

3.2. evDNA Contains Significantly More Longer DNA Fragments Compared to cfDNA

Previous reports suggested that analysis of evDNA may be superior to cfDNA, due
to increased fragment lengths of up to 10 kb, whereby cfDNA from tumor patients was
reported to have a mean length of 120–220 bp [32]. The fragment size of the isolated DNA
samples was evaluated using a bioanalyzer device (Figure 4A).
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Indeed, there was a significant enrichment of longer DNA fragments in the range of
250 to 5500 bp for evDNA compared to cfDNA, as measured by the mean area under the
curve of the bioanalyzer profile (Figure 4B). In addition, we determined the percentage of
long fragments (250–5500 bp) in the total AUC (total DNA content). There was a mean
value of 55.23% for evDNA compared to 32.17% for cfDNA (Figure 4C). Short fragments
with a size of 100–250 bp did not display a significant difference in the mean AUC between
ev- and cfDNA. In the total AUC, the percentage of short fragments was 67.83% in cfDNA
and 44.77% in evDNA samples. Thus, evDNA was less fragmented and contained a
significantly higher percentage of longer DNA fragments, which could improve sequencing
performance.

3.3. Panel Sequencing and Data Processing

For commercial sequencing, the TUM01 panel was used. This panel comprises a
list of validated variants with potential therapeutic relevance including selected translo-
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cations (see Supplemental Table S1). Quality data on sequenced samples are shown in
Tables 2 and 3 and Figure 5 for tumor-, ev- and cfDNA, respectively.

Table 2. Quality parameters of sequencing data for tumorDNA.

Patient
(tumorDNA)

Number of Mapped
Reads (in Million)

Proportion of Sequenced
Reads (in %) Median Insert Size Average Coverage

1 80.700 63.3 168 835.6

2 Not enough DNA to pass quality control for sequencing

3 97.104 60.2 169 1001.1

4 111.257 66.9 168 1263.4

5 92.790 59.9 166 901.4

6 91.009 64.3 175 986.0

7 56.938 55.7 131 327.7

8 93.552 61.0 158 927.2

9 111.344 68.0 169 1206.1

10 105.295 68.3 167 1153.6

Mean 93.332 63.1 163 955.8

Table 3. Quality parameters of sequencing data for ev- and cfDNA.

Patient Number of Mapped
Reads (in Million)

Proportion of Sequenced
Reads (in %) Median Insert Size Average Coverage

1 76.142 75.4 164 838.2

2 86.320 72.0 170 917.7

3 131.533 67.3 174 1404.9

4 81.173 77.1 178 869.6

5 71.287 75.4 174 771.6

6 67.681 65.9 179 630.8

7 82.874 73.6 165 904.7

8 80.640 63.0 170 803.6

9 73.149 63.6 174 723.9

10 87.771 71.7 172 933.6

Mean (evDNA) 83.857 70.5 172 879.9

1 75.039 73.9 162 833.7

2 80.430 71.7 167 889.0

3 76.728 75.3 163 902.6

4 75.712 66.1 164 798.8

5 73.376 72.2 168 851.8

6 72.949 64.5 166 672.2

7 82.374 68.1 163 922.6

8 73.116 67.6 165 758.0

9 76.150 69.2 166 809.3

10 137.801 68.0 162 1513.2

Mean (cfDNA) 82.368 69.7 165 895.1
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For tumorDNA, the average number of mapped reads was determined at 93,332,
whereas the proportion of sequenced reads was on average 63.1% and the mean average
coverage (number of reads aligning to known reference bases) was calculated at 955.8
(Figure 5A–C). The coverage per patient can be found in Figure S1A. Similar to the tumor,
the average number of mapped reads was around 83.857 for evDNA and 82.368 for cfDNA.
The proportion of sequenced reads was somewhat increased for ev- and cfDNA. However,
the mean average coverage was not significantly different from the values obtained for
tumorDNA. In line, an average Phred quality score (Q30) of 92.12% was determined
for tumorDNA, whereas ev- and cfDNA demonstrated an average Phred score of 91.7%,
indicating equal accuracy for base calling in tumor and liquid biopsy samples. After initial
bioinformatic preprocessing (CeGaT, Tübingen, Germany), reads were mapped to the hg19
reference genome to facilitate variant calling of SNVs and indels. CNVs were called as
described in Section 2. Further variant effect prediction for SNVs and indels was performed
using the Ensembl VEP interface (variant effect predictor), as outlined in Section 2, with
different filtering options delineated in Figure 2 as well as the following results sections.

3.4. Variant Calling Results for CNVs, SNVs and Indels

The variant calling for CNVs indicated on average 654 CNVs for tumor samples,
whereas for ev- and cfDNA on average only 161 and 203 CNVs were detected, respectively,
suggesting that ev- and cfDNA are not very effective in determining CNVs as compared to
tumor biopsy material [15,33] (Figure 6A).

Variant calling/variant effect prediction detected an average number of 9868 indels
for tumorDNA and 9653 for evDNA, which was statistically not significantly different from
the tumor, whereas a statistically significantly lower number of indels was detected for
cfDNA (9318) (Figure 6B). SNV prediction identified an average of 25,368 variants in the
tumor and 21,606 variants for evDNA, as well as significantly fewer variants for cfDNA
(20,912) (Figure 6C). Upon filtering of SNV variants for AF ≤ 1% to increase stringency,
the average number of variants in the tumor was reduced to 14,851, whereas filtering of
evDNA SNVs generated 11,045 variants and numbers for cfDNA were further significantly
reduced to an average of 10,511 (Figure 6D). An overview of the predicted CNVs, indels,
SNVs and filtered SNVs (AF ≤ 1%) across all patients detected in tumor-, ev- and cfDNA
can be found in Figure S1B–E and Tables S5 and S6. We also investigated SNVs and their
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chromosomal location in tumor-, ev- and cfDNA samples at the gene level. Respective
ideograms for patients 1 to 10, with main mutational hotspots on chromosomes 6 and
19, as well as Venn diagrams indicating overlapping chromosomal positions are listed in
Supplemental Figures S2–S11.
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In summary, these data suggest that variant prediction from evDNA for indels and
SNVs has significant advantages compared to cfDNA. However, CNV calling from ev- and
cfDNA in our hands was insufficient for an effective detection of deletions and duplications
in PDAC.

3.5. Concordance of Variant Calls between evDNA/cfDNA and tumorDNA

To evaluate agreement for all CNVs, SNVs and indel variants called by ev/cfDNAs
compared to tumorDNA samples, we further analyzed average percent concordance for all
patients. The raw data, indicating the number of matching variants with the corresponding
tumorDNA samples, were further subjected to Bland–Altman analysis.

3.5.1. CNVs

In line with the differences in the number of variant calls for CNVs, Bland–Altman
plots for matching CNV calls between ev- and tumorDNA as well as between cf- and
tumorDNA of the nine patients with complete datasets indicated that most of the data
points for both liquid biopsy analytes were outside of the limits of agreement (1.96 s),
demonstrating a significant systematic negative bias (Figure S12). The average percent
concordance between variants called for tumor- and evDNA as well as for tumor- and
cfDNA indicated poor agreement with the tumor of 4.836% for evDNA and 2.876% for
cfDNA, respectively. Thus, both liquid biopsy methods under the conditions employed in
our study are not suitable to effectively predict CNVs compared to tumor biopsy material.
The individual analysis of CNVs for all patients is shown in Figure S13.

3.5.2. SNVs

For SNVs, on the other hand, the Bland–Altman plots indicated that the variances
between ev- or cf- and tumorDNA were much smaller. For the evDNA plot, one data point
was outside the limits of agreement; for the cfDNA analysis, all data points were within
the agreement limits. Nevertheless, the agreement span for the comparison of ev- and
tumorDNA was much tighter and the negative systematic bias was smaller as compared
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to cfDNA, indicating improved data quality (Figure 7A). In contrast to CNVs, SNVs were
readily predictable with good consistency with tumorDNA. Unfiltered SNVs showed an
average match of about 74.14% for ev- and tumorDNA, whereas the concordance for cfDNA
with the tumor was 69.43%.

Cancers 2022, 14, x  12 of 31 
 

 

indicated poor agreement with the tumor of 4.836% for evDNA and 2.876% for cfDNA, 
respectively. Thus, both liquid biopsy methods under the conditions employed in our 
study are not suitable to effectively predict CNVs compared to tumor biopsy material. 
The individual analysis of CNVs for all patients is shown in Figure S13. 

3.5.2. SNVs 
For SNVs, on the other hand, the Bland–Altman plots indicated that the variances 

between ev- or cf- and tumorDNA were much smaller. For the evDNA plot, one data point 
was outside the limits of agreement; for the cfDNA analysis, all data points were within 
the agreement limits. Nevertheless, the agreement span for the comparison of ev- and tu-
morDNA was much tighter and the negative systematic bias was smaller as compared to 
cfDNA, indicating improved data quality (Figure 7A). In contrast to CNVs, SNVs were 
readily predictable with good consistency with tumorDNA. Unfiltered SNVs showed an 
average match of about 74.14% for ev- and tumorDNA, whereas the concordance for 
cfDNA with the tumor was 69.43%. 

 
Figure 7. Stringent filtering of variants was applied to increase specificity for tumor-associated
variants. Bland–Altman plots and concordance (%) of variants between tumor- and evDNA as well
as between tumor- and cfDNA for (A) unfiltered SNVs, (B) filtered SNVs (AF ≤ 1%) with moderate
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3.6. Stringent Processing of SNV Calls for Tumor-Relevant Variants Substantially Reduces
Variant Numbers and Improves Data Quality and Concordance with tumorDNA Samples

To further improve data quality and reduce systematic negative bias in liquid biopsy
SNV calling, additional stringent filtering was applied for low allele frequencies (AF ≤ 1%)
and moderate/high impact scores (Figure 7B). Bland–Altman plots again indicated tighter
limits of agreement and reduced systematic bias for the comparison of evDNA with
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tumorDNA. One data point was still outside the limits of agreement. Upon filtering,
the average percent concordance with the tumor was further increased to 84.96% for
evDNA and 80.44% for cfDNA. By increasing stringent filtering utilizing the PP-2 probably
damaging classification, we were able to minimize the negative systematic bias and improve
data quality (Figure 7C). Percent concordance was now 78.32% for evDNA and 70.99% for
cfDNA. Even though data quality and in particular negative systematic bias were strongly
normalized by rigorous PP-2 (probably damaging) filtering, percent concordance could not
be improved in this context and reached a plateau using the moderate and high impact
score. Yet, additional PP-2 filtering revealed significant differences for the concordance
of evDNA with tumorDNA as compared to cf- and tumorDNA and further reduced the
number of variants that require evaluation during additional downstream processing, e.g.,
for actionable variants.

Next, we assessed whether filtering using an alternative damaging score would be
able to further enhance agreement with the tumor. To this end, we utilized the Condel score,
which aggregates five databases and was described to be superior to PP-2 [26]. Interestingly,
additional filtering of AF ≤ 1% and moderate- and high-impact SNVs with a deleterious
Condel score did not improve but rather decreased percent concordance with the tumor to
70.85 and 67.64% for ev- and cfDNA, respectively (Figure S14), indicating that if additional
stringency processing is required, filtering with the PP-2 score is superior to Condel during
ev- and cfDNA analysis of SNVs. In line with PP-2 filtering, data quality as determined by
Bland–Altman analysis indicated tighter limits of agreement for evDNA, and the negative
systematic bias was also slightly reduced in comparison to cfDNA.

We have shown that the concordance of SNVs detected in ev- and cfDNA with tumor
biopsy samples is strongly dependent on stringent filtering for tumor-relevant variants.
Moreover, detection performance significantly improved upon rigorous filtering in the
case of evDNA. Next, we systematically explored how the respective single analytes or
a combination of both liquid biopsies would fare against tumorDNA sequencing by gen-
erating alteration plots using AVAtar, after employing different filters [28]. To this end,
for each patient, percent coincidence of alterations upon filtering was detected with the
objective “maximal overlap” to compare detection performance, whereby the n-number
indicated the number of different variants detected in the tumor over all patients. A rep-
resentative alteration plot depicting AVAtar results for ev-, cf- and a combination of ev-
and cfDNA is shown in Figure S15A,B. In line with our previous findings (Figure 7), on
average, evDNA detection performance was improved over cfDNA. In addition, the num-
ber of detectable variants was reduced from n = 1024 (impact moderate/high) to n = 144
(impact moderate/high + PP-2: damaging) and further to n = 84 for the highest stringency
(impact moderate/high + PP-2: probably damaging). At the same time, mean percent
coincidence for all patients was detected at 69% for evDNA, 67% for cfDNA and 84% for a
combination of ev- and cfDNA (impact moderate/high). Rigorous filtering and consequent
strong reduction of n-numbers again somewhat reduced concordance to 65% for evDNA,
62% for cfDNA, and 80% for ev- and cfDNA (impact moderate/high + PP2: damaging).
Interestingly, the most stringent filtering (PP-2: probably damaging) did not reduce con-
cordance for all conditions any further. Systematic optimization using the AVAtar tool
therefore indicated that the number of variants for subsequent downstream analysis can be
reduced by a factor of 12 by employing a PP-2 probably damaging score, without drastically
sacrificing detection efficacy. Furthermore, our data show that the combined analysis of
ev- and cfDNA has a clear advantage (80% as compared to 65% or 62%, respectively) and
could be considered as a new standard when comparing detection performance for SNVs
with respect to tumor biopsies. Of note, while comparing variants using AVAtar, we have
identified a number of variants for the following genes across all samples and all patients:
lysine N-methyltransferase 2C (KMT2C, seven variants); mitogen-activated protein kinase
kinase 3 (MAP2K3, five variants); fms-related receptor tyrosine kinase 3 (FLT3, one variant);
serine protease 1 (PRSS1, one variant); PARP4, one variant; gamma-glutamyltransferase
1 (GGT1, one variant), nuclear receptor corepressor 1 (NCOR1, one variant); and ERCC
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excision repair 5, endonuclease (ERCC5, one variant). The respective variants are listed in
Table S7 together with their CinVar, Varsome and OncoKB scoring. Although none of the
variants was identified as pathogenic, many remain of uncertain significance. Furthermore,
some of the genes were described as important regulators during PDAC development
and progression; e.g., KMT2C/myeloid/lymphoid or mixed-lineage leukemia protein 3
(MLL3) is a histone methyltransferase [34] and chromatin modifier with a large impact on
the expression of chromatin-regulating genes and genes involved in cell proliferation [35],
suggesting that MLL defects likely cause global epigenetic alterations that support tumor
development. Concerning MAP2K3, the constitutive activation of MAPK signaling was
described in pancreatic cancer by [36]. FLT3 may be a potential biomarker for individ-
ualized pancreatic cancer prognosis [37]. Germline mutations in PRSS1 were associated
with familial forms of chronic pancreatitis and extreme risk of PDAC [38,39]. PARPs have
been implicated in the pathogenesis of pancreatitis as well as pancreatic cancer, and certain
germline mutations were identified in patients with thyroid and breast cancers [40,41].
GGT1 has a suggested function in pancreatic carcinogenesis [42], whereas NCOR1 is part of
a corepressor complex with histone deacetylase 3 (HDAC3) and may act as an oncogene in
thyroid cancer [43,44], while ERCC5 polymorphisms were reported in breast cancer [45,46].

In summary, no known pathogenic germline or somatic variants were identified for the
respective genes; nevertheless, their presence in all patients may warrant further functional
analysis, as gene-level information hints at interesting connections to pancreatic cancer
carcinogenesis and progression.

Indels

We also determined the agreement of evDNA and cfDNA with the tumor with respect
to indels (Figure 8). To this end, we immediately employed filtering using moderate and
high settings since the respective filtering conditions were proven to be effective in the
SNV analysis. Bland–Altman plots indicated that all but one data point were set within the
limits of agreement for both ev- and cfDNA and a similar significant systematic bias was
detectable (Figure 8A).

Percent concordance for variant calls of evDNA with tumorDNA was around 71.28%,
and that of cfDNA with tumorDNA was 67.24%. The difference between ev- and cfDNA
was not significant. In line with SNVs, increased stringency of filtering to high-impact
indels substantially improved data quality and further reduced the systematic bias for both
ev- and cfDNA (Figure 8B). Again, one data point was outside of the limits of agreement for
both comparisons. Percent concordance was improved to 86.80% for evDNA and 81.88%
for cfDNA. However, there was only a numerical but no statistically significant difference
between ev- and cfDNA. Whether concordance will become significant in larger cohorts
remains to be tested in subsequent studies.

In summary, agreement analysis for CNVs, SNVs and indels indicated that in our
patient cohort a global determination of CNVs by ev- and cfDNA sequencing of PDAC
liquid biopsies is not sensible. The evaluation of SNVs demonstrated a good concordance
with tumors indicating valid results upon sequencing of evDNA with subsequent stringent
processing, which improved data quality and markedly reduced systematic negative
bias. It is important to note that filtering algorithms for damaging scores severely impact
concordance analysis, as the PP-2 score was superior to Condel in improving filtering
stringency. The analysis of indels also demonstrated high and similar concordance with the
tumor for both ev- and cfDNA. Data quality was again improved upon stringent filtering
for high-impact variants. These results suggest that evDNA sequencing may significantly
improve the detection of SNVs and indels in larger patient cohorts.
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3.7. Consequences and Biotypes of Detected Variants

We also wanted to understand how the different variants would impact the structure
and function of a gene product. To this end, we analyzed consequence and biotype
predictions using the VEP analysis tool (consequences: www.ensembl.org/info/genome/
variation/prediction/predicted_data.html (accessed on 15 December 2021); biotypes: https:
//m.ensembl.org/info/genome/genebuild/biotypes.html (accessed on 15 December 2021))
for SNVs and indels in the respective tumor-, ev- and cfDNA samples. The analysis of
consequences for SNVs in individual patients with and without filtering SNVs (AF ≤ 1%,
with moderate and high impact) is shown in Figures S16–S25.

We also compared the most abundant variants before (Figure 9A) and after filtering
(Figure 9B) across all patients. The most prominent consequences for tumor-, ev- and cfDNA
after filtering were missense- and nonsense-mediated decay (NMD) transcript, splice region
and stop-gained variants (Figure 9B). Here, the percentage of missense variants markedly
increased from around 18% (tumor-, ev-, cfDNA) to more than 97%, while splice region and
NMD variants were not drastically changed. However, stop-gained variants increased from
0.26% to more than 2% across all samples. There were also some significant differences
detectable between tumor-, ev- and cfDNA before filtering, which were mostly normalized
by the filtering process due to improved data quality as shown in Figure 7.

www.ensembl.org/info/genome/variation/prediction/predicted_data.html
www.ensembl.org/info/genome/variation/prediction/predicted_data.html
https://m.ensembl.org/info/genome/genebuild/biotypes.html
https://m.ensembl.org/info/genome/genebuild/biotypes.html
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SNVs (AF ≤ 1%) with moderate and high impact. Statistical tests: (A,B) Repeated-measures one-way
ANOVA with Tukey multiple comparisons test; * p < 0.05; ** p < 0.01; *** p < 0.001; ns: no significant
difference.

Furthermore, we determined the most prevalent biotypes of the respective variants ac-
cording to the VEP biotype legend, again before (Figure 10A) and after filtering (Figure 10B).

After filtering, protein-coding followed by NMD were the most predominant vari-
ants (Figure 10B). The percentage of protein-coding variants was enriched from around
73.06% to over 94.16% after filtering, and the percentage of NMD variants was slightly
increased (Figure 10B). Again, significant differences between tumor-, ev- and cfDNA were
normalized by filtering as shown for the consequence analysis. The analysis of biotypes for
individual patients is shown in Supplemental Figures S16–S25.

Concerning indels, the most predominant consequences after moderate and high
impact filtering were inframe deletions with a percentage of about 49.80%, followed by
frameshift variants at about 35.74%, inframe insertions with 7.267% and splice donor
variants with ~5% (Figure 11A).
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Figure 10. Analysis of biotypes for SNVs. (A) Mean percentage amount of most prevalent biotypes
in tumor-, ev- and cfDNA of total biotypes across all patients for unfiltered SNVs and (B) filtered
SNVs (AF ≤ 1%) with moderate and high impact. Statistical tests: (A,B) Repeated-measures one-way
ANOVA with Tukey multiple comparisons test; * p < 0.05; ** p < 0.01; ns: no significant difference.

In line with the SNV analysis, after filtering, no significant differences were detected
for tumor-, ev- and cfDNA (Figure 11B). The individual analysis of consequences for
all patients is shown in Supplemental Figures S26–S35. Interestingly, upon high impact
filtering, the composition of consequences drastically changed, and inframe deletions
as well as inframe insertions were almost completely lost, whereas frameshift variants
increased to 87.5%, suggesting that high impact filtering of indels has to be considered
with caution, since putative relevant deletions may be removed (Figure 11B). Concerning
biotypes, the most predominant variants upon moderate/high or high impact filtering were
protein-coding variants with > 90% (Figure 12A,B). The individual analysis of biotypes for
all patients is shown in Supplemental Figures S26–S35.
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Figure 11. Analysis of consequences for indels. (A) Mean percentage amount of most prevalent
consequences in tumor-, ev- and cfDNA of total consequences across all patients for indels with
moderate and high impact and (B) indels with high impact. Statistical tests: (A,B) Repeated-measures
one-way ANOVA with Tukey multiple comparisons test; ns: no significant difference.
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Figure 12. Analysis of biotypes for indels. (A) Mean percentage amount of most prevalent biotypes
in tumor-, ev- and cfDNA of total biotypes across all patients for indels with moderate and high
impact and (B) indels with high impact. Statistical tests: (A,B) Repeated-measures one-way ANOVA
with Tukey multiple comparisons test; ns: no significant difference.
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3.8. Comparison of BRCA1/2 Variant Prediction between ev-, cf- and tumorDNA

Besides the analysis of consequences and biotypes, we were interested in evaluating
whether clinically relevant and therapeutically meaningful gene variants are properly
reflected by ev- and cfDNA analysis in comparison to tumor biopsy samples. To this end,
the incidence of germline pathogenic BRCA variants in pancreatic cancer was described
with a prevalence ranging from 0.3–2.3% for BRCA1 and 0.7–5.7% for BRCA2 [47]. BRCA
variants that impair protein function are known to sensitize tumors to platinum analogs
and inhibition with the poly(adenosine diphosphate ribose) polymerase (PARP) inhibitor
olaparib [48]. In our patient cohort, we identified 22 BRCA1 variants (Figure 13A) in
unfiltered SNVs, which however were not listed as damaging germline variants in the
ClinVar database.
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Figure 13. Heat maps of BRCA variant concordance between tumor-, ev- and cfDNA. (A) BRCA1
and (B) BRCA2 variants of unfiltered SNVs. (C) Percentage concordance of BRCA1 and BRCA2
variants between tumor-, ev- and cfDNA. Statistical tests: (C) Repeated-measures one-way analysis
with Tukey multiple comparisons test.



Cancers 2022, 14, 1074 20 of 32

We therefore went on to compare BRCA1 and -2 variants between the different analytes
to evaluate variant prediction performance for clinically relevant genes. Interestingly, two
BRCA1 variants, E742G and E991G, have been classified as possibly damaging by PP-2. A
complete classification by ClinVar, Varsome and OncoKB databases of all detected BRCA
variants in our patient cohort is shown in Table S8. Average percentage concordance for
evDNA with the tumor was determined to be 100%, whereas for cfDNA concordance was
lower with 88.89%, suggesting that evDNA may have a slight advantage for the detection
of BRCA1 variants in patients (Figure 13C). For BRCA2, we have identified four variants,
which however were also not listed as pathogenic germline mutations in ClinVar. As shown
in Figure 13B, all variants were detected in both ev- and cfDNA, compared to tumorDNA.
A full list of all BRCA1 and -2 variants in unfiltered SNVs of tumor-, ev- and cfDNA in
all patients is shown in Tables S9 and S10. For indels, no BRCA variants were detected,
whereas BRCA1 CNVs detected in tumor-, ev- and cfDNA are listed in Table S11, which
however did not include homozygous deletions but did include one heterozygous deletion
with unknown impact on the function of the gene product. Although we have determined
that CNV analysis utilizing ev- and cfDNA is not favorable, we have actually detected the
same BRCA1 CNVs in tumor- and evDNA, including the heterozygous deletion, in four out
of nine patients and none in cfDNA. This suggests that for specific variants, CNV detection
by evDNA might be possible in future applications, upon optimization of EV isolation,
sequencing and bioinformatic processing steps. In conclusion, although we did not detect
relevant germline variants, the BRCA1 mutational analysis indicates that there could be an
advantage for the detection of specific, clinically relevant SNVs in unfiltered evDNA.

3.9. Agreement of Actionable Variant Prediction by ev- and cfDNA with Tumor Samples

Next, we went on to investigate how efficiently clinically relevant actionable genes and
specific variants are reflected by ev- and cfDNA with respect to tumorDNA samples. We
have therefore compared a list of moderate/high filtered SNVs (AF ≤ 1%) in combination
with a stringent PP-2 damaging score as well as moderate/high filtered indels against the
COSMIC actionability database (Download version 93). This database includes mainly
gene-level actionable information and some specific variants sorted into the four main
groups, i.e., tier 1–4, whereby approved marketed drugs with demonstrated efficacy at the
gene/mutation were classified as tier 1. Tier 2 is described as phase 2/3 clinical trial results,
which meet the primary outcome measures of the clinical trial, whereas tier 3 is drugs
in ongoing trials and tier 4 is case studies. Upon stringent filtering, as described above,
we have reduced the number of SNV variants from on average 22,623 SNVs in unfiltered
VEP predictions to around 11 variants for PP-2-sorted tier 1–4 actionable genes. A graph
displaying the number of all actionable PP-2-classified variants stratified for unknown,
benign and possibly and probably damaging scores, as well as only the damaging PP-2
variants, is shown in Figure S36. When applying an additional tier 1 + 2 filter, numbers
were further reduced to four variants per patient (Figure S36). The respective tables for
tumor-, ev- and cfDNA indicating the number of variants are presented as Tables S12–S14.

Since all detected actionable variants were selected by filtering on the gene level
using the COSMIC database (Tables S15–S17), we went on to compare the specific variants
across additional databases, including ClinVar, Varsome and OncoKB. The respective
results are shown in Table 4, which lists specific variants; severity scores from ClinVar,
Varsome and OncoKB; and levels of evidence for proposed treatment options, if available.
When comparing the detection performance for actionable variants depicted in Figure 14
across all analytes, our data show that tumorDNA consistently identified more variants in
actionability genes compared to ev- and cfDNA. Concerning concordance of the detected
variants for liquid biopsy analytes with the tumor, we show that both ev- and cfDNA
demonstrated similar concordance of ~43%, as in six out of nine patients, matching tumor
variants were identified by the liquid biopsy analytes. Interestingly, evDNA detected
five additional variants (BRAF L319I, RAD51B T107K) in patients 3, 4, 9 and 10 that were
not present in the respective tumor. cfDNA, on the other hand, detected three additional
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variants in patient 6 (ATM L98F, ALK R405H, ALK R1575H). Interestingly, these variants
were also not found in tumor- and evDNA. Thus, these data show that, in particular, evDNA
was able to detect additional variants that are not reflected by tumorDNA sequencing.
However, whether these variants are relevant and display increased tumor heterogeneity
that is not covered by localized biopsy stances cannot be determined with the available
data.

Table 4. Analysis of actionable variants tier 1 + 2 detected in filtered SNVs (AF ≤ 1%; impact:
moderate/high) of tumor-, ev- and cfDNA utilizing different databases.

Patient Variant ClinVar Varsome OncoKB
Level of Evidence

(According to
OncoKB)

1

IDH2 R261H
(tumor, ev, cf)

Benign/likely benign
(VCV000211177.4) Benign Unknown effect /

IDH2 R131H
(tumor, ev, cf)

Benign/likely benign
(VCV000211177.5) Benign Unknown effect /

IDH2 R209H
(tumor, ev, cf)

Benign/likely benign
(VCV000211177.5) Benign Unknown effect /

RAD51B T107K
(tumor) / Uncertain

significance Unknown effect /

TP53 Y220N
(tumor)

Conflicting interpretations
of pathogenicity;

pathogenic (1), likely
pathogenic (1), uncertain

significance (1)
(VCV000376688.7)

Pathogenic
Likely oncogenic

(likely loss of
function)

/

TP53 Y127N
(tumor) / Pathogenic

Likely oncogenic
(likely loss of

function)
/

TP53 Y88N
(tumor)

Conflicting interpretations
of pathogenicity;

pathogenic (1), likely
pathogenic (1), uncertain

significance (1)
(VCV000376688.7)

Pathogenic Unknown effect /

2

BRCA2 E394A
(ev, cf) Benign (VCV000051077) Likely benign Unknown effect /

BRIP1 P47A
(ev, cf)

Conflicting interpretations
of pathogenicity; benign

(3), uncertain significance
(13) (VCV000004736.28)

Likely
pathogenic

Oncogenic (loss
of function)

Therapeutic: Level 3B
(clinical evidence)

FDA Level 2 (prostate
cancer and NOS:

olaparib)

3

BRAF L319I
(ev) / / Unknown effect /

TP53 R141H
(tumor, ev, cf)

Pathogenic
(VCV000012366.20) Pathogenic

Likely oncogenic
(likely loss of

function)
/
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Table 4. Cont.

Patient Variant ClinVar Varsome OncoKB
Level of Evidence

(According to
OncoKB)

4

ATM E2156D
(tumor) /

Uncertain
significance

(VUS with minor
pathogenic
evidence)

Unknown effect /

BRAF L319I
(ev) / / Unknown effect /

PTEN Y155C
(tumor, ev, cf)

Pathogenic
(VCV000404168)

Pathogenic Oncogenic (loss
of function)

Therapeutic: Level 4
(biological evidence)
FDA level 3 (all solid

tumors: AZD8186,
GSK2636771)

ROS1 G374A
(tumor, ev, cf) /

Uncertain
significance

(VUS with minor
pathogenic
evidence)

Unknown effect /

ROS1 G365A
(tumor, ev, cf)

Likely pathogenic
(VCV000402166.1)

Uncertain
significance

(VUS with minor
pathogenic
evidence)

Unknown effect /

TP53 L17R
(tumor, ev, cf) / / Unknown effect /

TP53 L198R
(tumor, ev, cf) / Uncertain

significance

Likely oncogenic
(likely loss of

function)
/

TP53 L330R
(tumor, ev, cf) / Likely

pathogenic

Likely oncogenic
(likely loss of

function)
/

5

BARD1 R207C
(tumor, ev, cf)

Conflicting interpretations
of pathogenicity; benign

(7), likely benign (4),
uncertain significance (1)

(VCV000136500.20)

Benign Unknown effect /

TP53 V125G
(tumor) / Pathogenic

Likely oncogenic
(likely loss of

function)
/

TP53 V86G
(tumor)

Uncertain significance
(VCV000528249.2) Pathogenic Unknown effect /

TP53 V218G
(tumor)

Uncertain significance
(VCV000528249.2)

Pathogenic Likely oncogenic
(likely loss of

function)
/

6

RAD51B T107K
(tumor) / Uncertain

significance Unknown effect /

ALK R405H
(cf) /

Uncertain
significance

(VUS with minor
pathogenic
evidence)

Unknown effect /
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Table 4. Cont.

Patient Variant ClinVar Varsome OncoKB
Level of Evidence

(According to
OncoKB)

ALK R1575H
(cf)

Uncertain significance
(VCV000579141.4)

Uncertain
significance

(VUS with minor
pathogenic
evidence)

Unknown effect /

ATM L89F
(cf) / Benign Unknown effect /

7

ATM L89F
(tumor, ev, cf) / Benign Unknown effect /

BRAF L319I
(tumor) / / Unknown effect /

CHEK2 K373E
(tumor)

Conflicting interpretations
of pathogenicity; benign

(1), uncertain significance
(4) (VCV000481100.6)

Uncertain
significance

(VUS with minor
pathogenic
evidence)

Oncogenic (loss
of function)

Therapeutic: Level 3B
(clinical evidence)

FDA Level 2 (prostate
cancer and NOS:

olaparib)

CHEK2 K117E
(tumor) / / Unknown effect /

CHEK2 K344E
CHEK2 K152E
CHEK2 K416E

(tumor)

Conflicting interpretations
of pathogenicity; benign

(1), uncertain significance
(4) (VCV000481100.6)

Uncertain
significance Unknown effect /

CHEK2 K282E
(tumor)

Uncertain significance
(VCV000182433.4)

Uncertain
significance Unknown effect /

FGFR3 P449S
(tumor, ev, cf)

Benign/likely benign
(VCV000134409.8) Benign Unknown effect /

FGFR3 P450S
FGFR3 P451S
(tumor, ev, cf)

Benign/likely benign
(VCV000134409.10) Benign Unknown effect /

NF1 D109E
(tumor, ev, cf) / / Unknown effect /

RAD51B T107K
(tumor) / Uncertain

significance Unknown effect /

TP53 V157F
(tumor)

Conflicting interpretations
of pathogenicity; likely

pathogenic (2), uncertain
significance (1)

(VCV000012353.8)

Pathogenic
Likely oncogenic

(likely loss of
function)

/

TP53 V25F
(tumor)

Conflicting interpretations
of pathogenicity; likely

pathogenic (2), uncertain
significance (1)

(VCV000012353.8)

Pathogenic Unknown effect /

TP53 V64F
(tumor) / Pathogenic Unknown effect /
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Table 4. Cont.

Patient Variant ClinVar Varsome OncoKB
Level of Evidence

(According to
OncoKB)

8 BRAF L319I
(tumor) / / Unknown effect /

9

BRAF L319I
(ev) / / Unknown effect /

TP53 Y163C
(tumor)

Pathogenic
(VCV000127814.9) Pathogenic Likely oncogenic

(loss of function) /

TP53 Y31C
(tumor)

Pathogenic
(VCV000127814.9) Pathogenic Unknown effect /

TP53 Y70C
(tumor) / Pathogenic Unknown effect /

10

ATM P1054R
(tumor, ev, cf)

Benign/likely benign
(VCV000132695) Benign Likely neutral /

BRAF L319I
(ev) / / Unknown effect /

PTEN Y27C
(tumor, ev, cf)

Likely pathogenic
(VCV000404160) Pathogenic

Likely oncogenic
(likely loss of

function)

Therapeutic: Level 4
(biological evidence)

(all solid tumors:
AZD8186,

GSK2636771)

RAD51B T107K
(ev) / Uncertain

significance Unknown effect /

TP53 S127Y
(tumor, ev, cf)

Pathogenic
(VCV000656751.2) Pathogenic

Likely oncogenic
(likely loss of

function)
/

TP53 S34Y
(tumor, ev, cf) / Pathogenic Unknown effect /

Upon comparison of the variants identified in the COSMIC actionable gene list with
additional databases, three out of nine patients (4, 7 and 10) displayed the following ac-
tionable variants with treatment options in tumorDNA: patient 4: PTEN Y155C (AZD8186,
GSK2636771), patient 7: CHEK2 K373E (olaparib) and patient 10: PTEN Y27C (AZD8186,
GSK2636771), which were also found in the case of patients 4 and 10 in both ev- and
cfDNA. For indels, in tumorDNA in all patients, moderate- and high-impact variants in
actionable genes were detected, which include frameshift variants in CHEK1 and TP53
as well as inframe deletions in ABL1 and FGFR1. Overall, more indels were detected in
actionable genes by tumorDNA, and again mean percent coincidence for ev- as well as for
cfDNA was calculated at ~43%. Indeed, matching actionable variants were found in four
out of nine patients for evDNA (CHECK1, TP53, ABL1) and in five out of nine patients
for cfDNA (CHEK1, ABL1) as shown in Tables S18–S20. For evDNA, additional indels in
actionable genes were detected for patients 4, 5 and 6, whereas cfDNA found additional
indels in patients 6, 8, 9 and 10 (Tables S18–S20). We have also cross-referenced all indels
of the respective actionable genes with the ClinVar, Varsome and OncoKB databases, but
no previously described variants were identified. However, as indels with high-impact
frameshift variants were detected in the respective genes, an altered protein functionality is
very likely. In summary, concerning actionability analysis, our data show that tumorDNA
consistently identified more variants in actionability genes compared to ev- or cfDNA,
which demonstrated a similar coincidence of 43%, respectively, with the tumor. Although
evDNA displayed improved detection concordance for SNVs and indels with the tumor
upon stringent filtering, no relevant differences were detected concerning actionable vari-
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ants with the proposed treatment options. However, this might be explained by the small
cohort size and needs further investigations in larger collectives.
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Figure 14. Analysis of tier 1 + 2 actionable variants. Tier 1 + 2 actionable variants detected in filtered
SNVs (AF ≤ 1%) with moderate/high impact and damaging PP-2 score of tumor-, ev- and cfDNA
per patient.

4. Discussion

In our proof-of-concept study, we have performed a comparative analysis of DNA
variants detected in cf-, ev- and tumorDNA from PDAC patients upon panel sequencing
using a large diagnostic tumor gene panel (TUM01, CeGaT, Figure 1, Table S1). We have
analyzed a cohort of 10 PDAC patients with advanced metastatic tumors that have been
presented at the clinical molecular tumor board to assess actionable DNA variants by
sequencing (Table 1 and Table S2). Bioanalyzer DNA characterization indicated significantly
longer fragment sizes for evDNA (up to 5500 bp) (Figure 4), which was described to
improve sequencing quality due to chromatin superstructures that favor amplification
during NGS [17,18]. Moreover, we show improved detection performance for evDNA
in calling of SNVs and indels upon stringent bioinformatic processing for high-impact
tumor-relevant variants (Figures 7 and 8). A systematic bioinformatic optimization of
filtering steps further indicated that rigorous filtering using impact (moderate/high) and
PP-2 (damaging) scores drastically reduced the number of SNV variants that need to be
considered for further downstream analysis of actionable variants, without a major sacrifice
of detection coincidence with the tumor samples. Moreover, the combined detection
performance of ev- and cfDNA was clearly superior to either single analyte. In line
with previous observations in other tumor entities, calling of CNVs was challenging and
uninformative for both ev- and cfDNA (Figure 6 and Figure S12). We have also determined
concordance for actionable variants from the respective biopsy samples (Figure 14, Tables
S12–S14). Yet, upon filtering for actionable genes, concordance of actionable variants that
were also found in the tumorDNA was no longer significantly improved in evDNA as
compared to cfDNA (Figure 14, Table 4). This may be explained by stringent filtering for
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actionable, damaging variants, as well as the small cohort size employed in our study.
Although we also identified additional variants found only in ev- and cfDNA, which may
represent tumor heterogeneity, it is currently unclear whether the detected variants are
indeed tumor-derived or represent somatic variants in other cells. In summary, concordance
analysis suggests that for SNVs and potentially indels, evDNA could improve detection
efficacy and a combination of ev- and cfDNA is superior (Figures 7 and 8). However,
further optimization, standardization and larger cohort sizes will be required to acquire a
fully informative statement on improved detection of actionable variants.

The results of our study agree with previous findings that liquid biopsies and analysis
of cf- and/or evDNA during mutational profiling of tumors may in defined instances be
able to replace invasive tumor fine-needle biopsies, e.g., for longitudinal characterization
of tumors through treatment cycles. In line, fine-needle biopsies were described to be a
significant burden for patients [9,49] and are often hard to obtain; in some cases, tumors
are inaccessible and biopsy stances only represent a snapshot of the tumor, which does
not fully represent clonal heterogeneity or metastases [49]. In contrast, liquid biopsies
are easy to obtain with low burden for patients and cause lower costs for the healthcare
system [11,50]. Nevertheless, recent advances in patient organoid technology [51] have
created additional utility for biopsy material, allowing the examination of personalized
responses of the respective patient-derived organoids to chemotherapeutic agents and
small-molecule inhibitor targets identified by molecular profiling. To this end, our data
further suggest that for the initial diagnosis of PDAC and the molecular characterization
of tumor DNA variants, fine-needle biopsies can so far not be replaced by liquid analytes
with a similar high detection efficacy, yet actionable variant detection may be supported
by a combination of easy-to-obtain cf- and evDNA since they are thought to more closely
represent overall tumor heterogeneity [52,53]. To this end, additional variants were also
observed in ev- and cfDNA in our study (Figure 14). However, there are also some caveats
concerning cf- and evDNA profiling; e.g., cfDNA comprises circulating free tumor-derived
(ct)DNA and non-tumor-derived DNA, released from other somatic cells in the body, which
can also be mutated [54] (see Figure 13, BRCA1 variants). Moreover, EVs are secreted by
almost every cell type, impairing tumor-specific DNA analysis [55]. For evDNA, some
of these disadvantages may be compensated, e.g., by additional immune purification of
tumor-specific sEVs [56], which are also the main fraction of EVs in our samples (Figure 3).
Interestingly, successful immune enrichment of tumor sEVs has been shown as a proof-of-
concept study in PDAC patients for the analysis of KRAS mutations by ddPCR; however,
further optimization is still required prior to clinical implementation [16]. Tumor cells were
also described to release higher sEV concentrations [57], which is in line with Figure 3,
where particle concentrations for PDAC patients were significantly elevated by 2.4-fold
and sEV marker expression was increased as compared to healthy subjects. Thus, this
may be of advantage for tumor evDNA profiling, since evDNA was also described to
contain longer DNA fragments up to 10 kb [18] (Figure 4), whereas ctDNA fragments
(<100 bp) are even significantly shorter than cfDNA [19,20]. Nevertheless, due to easy
isolation and commercially available purification kits, cfDNA is currently still widely used
as an important liquid biopsy analyte, but this is slowly changing as different advantages
of evDNA are validated in more and more studies [58,59]. Of note, well-established
commercially available cfDNA purification kits may at least partially copurify evDNA,
which is not separated from plasma and serum samples during preparation [60]. This
might also explain the detection of the small fraction of longer-sized DNA fragments in
cfDNA (Figure 4). Moreover, most of the studies performed so far have utilized highly
sensitive ddPCR to compare cf- and evDNA concordance for specific variants [16], while
broad NGS approaches are rare [60]. We have therefore aimed to investigate the global
concordance of cf- and evDNA analytes with tumorDNA upon sequencing with a larger
diagnostic tumor panel. Our study has also limitations, such as the larger gene panel,
which did not allow for sequencing with extremely high coverage due to high sequencing
expenses. Nevertheless, we were able to successfully resolve the majority of SNVs and
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indels also covered by tumorDNA, in particular for evDNA samples (Figures 7 and 8). We
want to further caution that since comparative Bland–Altman graphs during concordance
analysis (Figures 7 and 8) are based on nine patients, the data suffer from higher variations
due to small n-numbers.

In our study, we compared concordance between DNA variants detected by liquid
biopsy analytes and the tumorDNA for CNVs, indels and SNVs. CNV calling from ev- and
cfDNA was challenging and uninformative when compared to the tumorDNA samples,
which detected ~3–4 times higher CNV numbers (Figures 6 and S1B). This is in line with
previous reports, indicating CNV detection with variable efficacies, depending on tumor
entities and in particular the fraction of ctDNA in samples. A study by Chae et al. showed
a concordance for CNV detection of only 3.5% by sequencing with a Guardant360 and
FoundationOne panel in a cohort of 45 breast cancer patients [33]. These data align with
the results from our study for the TUM01 panel (CeGaT), which detected a concordance
of 2.876% for cfDNA and 4.836% for evDNA with tumor material (Figure S12), indicating
increased concordance of CNV prediction by evDNA (Figure S12). However, higher
concordance values were reported in other tumor entities. In a cohort of 45 prostate cancer
patients, a concordance of 48.9% between cfDNA and tumor tissue was detected [61]. This
may be explained by study requirements for higher ctDNA fractions of >35% in the samples.
These data indicate that the parameters ctDNA or tumor EV fraction must be considered
when planning clinical studies or implementing liquid biopsy analysis in the clinical routine.
To this end, the tumor-derived cfDNA fraction may be quantified or enriched by focusing
on smaller fragmented DNA sizes [62]. Similar considerations apply to tumor EVs. Here,
detection or enrichment may be possible by tumor-specific markers such as glypican-1 [30]
or using immune-enrichment [56].

Nevertheless, this aspect requires further investigation with studies that are specifically
tuned towards tumor-derived cf- and evDNA enrichment and CNV detection, including
improved bioinformatic processing. For SNVs, higher concordance values were obtained
for evDNA after stringent filtering for tumor-relevant, high-impact, damaging variants,
using impact (moderate/high) as well as PP-2 (damaging) scores (Figures 7C and S15A),
which drastically reduced the number of variants for downstream applications. Filtering
even improved data quality, as analyzed by the Bland–Altman method, by reducing
systematic bias. Hence, our data indicate that for accurate SNV detection, stringent filtering
of tumor-relevant variants is essential. However, it must be noted that an optimal balance
has to be achieved between stringent filtering and a sensitive detection of SNVs to avoid
the exclusion of important variants. The type of filtering strategy chosen to improve data
quality and concordance also seems to be of major importance. Here, we demonstrate that
filtering with a PP-2 damaging score was superior to a stringent, aggregated prediction by
Condel, which further impaired overall percent concordance (Figure S14). Thus, filtering
optimization suggests that the application of an additional PP-2 damaging score may be the
optimal trade-off strategy to improve data quality and concordance with the tumor, while
at the same time drastically reducing variant numbers for downstream analysis. For indels,
improved concordance upon rigorous filtering was also shown similar to SNVs (Figure 8B),
yet concordance here was only numerically increased for evDNA and thus requires further
follow-up investigations in larger cohort sizes.

To improve the clinical relevance of our study, we have also analyzed SNVs with mod-
erate and high impact, as well as a damaging PP-2 score, for clinically meaningful variants
such as BRCA1, which sensitizes PDAC tumors to platinum analogs and inhibition with
the PARP inhibitor olaparib [48] upon loss of protein function. Although we did not detect
known germline variants, likely due to low prevalence, we were able to identify 22 BRCA1
variants (Figure 13), which were more readily detected in evDNA across patients than in
cfDNA (concordance with tumor for evDNA: 100% and cfDNA: 88.89%) (Figure 13C). Thus,
also for specific, clinically relevant genes, improved detection of variants by evDNA with
respect to cfDNA can be demonstrated, yet this does not always apply to all important
variants, as shown for BRCA2 with 100% concordance for both liquid biopsy analytes.
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Upon performing a global concordance analysis for the detection of variants in tier 1 + 2
actionability genes, no significant differences for the detection of actionable SNV variants
from cf- and evDNA were recorded (Table 4). This may be explained by rigorous data
processing using moderate/high impact, filtering with PP-2 scores, as well as the selection
of actionable tier 1 + 2 genes, which resulted in the identification of on average three
positive hits for ev- and cfDNA. Thus, in follow-up studies, larger cohort sizes may be
needed to fully elucidate any potential differences in the detection of actionable variants. In
summary, we propose that a combination of ev- and cfDNA should be considered as a novel
gold standard for liquid biopsy-based detection of DNA variants and may help to support
mutational profiling of tumor samples concerning tumor heterogeneity or longitudinal
analysis during treatment.

5. Conclusions

In conclusion, in our comparative analysis, we investigated CNV, SNV and indel
detection efficacy for ev- and cfDNA with respect to tumor biopsy material upon panel
sequencing. We were able to demonstrate some benefits for evDNA analysis, such as
in-creased fragment size and better sequencing data quality, that were further improved by
stringent bioinformatic processing. Although the investigated cohort size was limited, our
data suggest that evDNA or in particular a combination of ev- and cfDNA analytes may
have benefits for liquid biopsy NGS applications, but further investigation is needed to
fully validate and establish their use in the clinical routine.
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