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Simple Summary: This review aims to analyze the emerging issue regarding PARP inhibitor’s
resistance in tumors and their consequence on disease prognosis and treatment. Besides, we evaluate
possible strategies and new therapeutic approaches to overcome PARPis resistance.

Abstract: PolyADP-ribose polymerase (PARP) inhibitors (PARPis) represent the first clinically ap-
proved drugs able to provoke “synthetic lethality” in patients with homologous recombination-
deficient (HRD) tumors. Four PARPis have just received approval for the treatment of several types
of cancer. Besides, another three additional PARPis underlying the same mechanism of action are cur-
rently under investigation. Despite the success of these targeted agents, the increasing use of PARPis
in clinical practice for the treatment of different tumors raised the issue of PARPis resistance, and the
consequent disease relapse and dismal prognosis for patients. Several mechanisms of resistance have
been investigated, and ongoing studies are currently focusing on strategies to address this challenge
and overcome PARPis resistance. This review aims to analyze the mechanisms underlying PARPis
resistance known today and discuss potential therapeutic strategies to overcome these processes of
resistance in the future.

Keywords: ovarian cancer; polyADP-ribose polymerase (PARP) inhibitor; PARP inhibitor resistance;
DNA damage repair; homologous recombination; BRCA; replication fork

1. Introduction

Genomic instability is one of the enabling characteristics of tumorigenesis. Reactive
oxygen species, ultraviolet lights, ionizing radiation, endogenous and synthetic compounds
represent recognized causes of DNA double-strand break (DSB) [1]. BRCA1 is an essential
factor in the DSBs repair through homologous recombination (HR). The BRCA1, survival-
dependency can be partially overcome by concomitant loss of p53 [2]. In addition to
BRCA1, several other genes encode factors involved in HR, such as BRCA2, PALB2, and
RAD51. Many tumors display the deficiency of one of these genes, presenting the so-
called ‘BRCAness’ phenotype characterized by the deregulation of HR (HRD) [3]. This

Cancers 2022, 14, 1420. https://doi.org/10.3390/cancers14061420 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14061420
https://doi.org/10.3390/cancers14061420
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-8763-6815
https://orcid.org/0000-0002-4442-4046
https://doi.org/10.3390/cancers14061420
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14061420?type=check_update&version=1


Cancers 2022, 14, 1420 2 of 15

phenotype represents a well-defined biomarker for predicting PARP inhibitors (PARPis)
activity in several cancer types, including breast, ovarian, pancreatic, and prostate cancer.
Approximately 50% of high grade serous ovarian cancers (HGSOC) present HR deficiency
(HRD). About 10–20% of breast tumors (mainly, triple negative breast cancers), metastatic
prostate cancers, and pancreatic cancers harbor biallelic mutations in HR genes, making
these tumors candidates for PARPis therapy [4–7].

The principal mechanism through which BRCA1/2 deficient tumors show their sus-
ceptibility to PARPis is represented by the “synthetic lethality” [8]. BRCA1 and RAD51C
promoter methylation results in transcriptional silencing and commonly leads to HRD in
HGSOC. In preclinical studies, BRCA1 or RAD51C methylation led to increased sensitivity
to PARPis and platinum [9], although it is difficult to establish an association between
methylation and clinical responses [10]. Given the variety of mechanisms that can result
in HRD, it is challenging to identify a single, standardized test to detect HRD tumors
regardless of the mechanisms involved. HRD cancers exhibit high genomic instability,
characterized by deletions of large genomic segments, and genome-wide loss of heterozy-
gosity (LOH), among other genomic aberrations [11]. Next-generation sequencing (NGS)
techniques can identify multiple patterns of genomic change, including copy number
variations, insertions/deletions and rearrangements which are characteristic of HRD.

At present, the myChoice CDx and FoundationOne CDx assays are the only NGS-
based, prospectively validated, commercially available tests for HRD status assessment. The
Myriad’s myChoice CDx generates a genomic instability score (GIS) from LOH’s combined
measurement, including telomeric allelic imbalance (TAI), and large-scale transitions (LST).
Meanwhile, the instability score derives from genomic signatures assessment, including
microsatellite instability (MSI) and tumor mutational burden (TMB), in the FoundationOne
CDx test [12,13].

HGSOC with a BRCA mutation or BRCA1/RAD51C methylation have high levels of
genomic LOH [11]. HGSOC with high LOH (≥16%) are correlated with improved response
to platinum and PARPis, regardless of BRCA status [14]. However, when homologous
recombination repair (HRR) is restored or other PARPis resistance mechanisms develop,
genomic scars in HRD cancer cells do not disappear, making them unsuitable biomarkers
of PARPis sensitivity in later lines of treatment [15]. Based on these reasons, understanding
the mechanisms leading to HRD and how they could change during the natural history of
disease is important to predict outcomes with PARPis therapy.

2. PARP Is Action

Several PARPis have been studied. In clinical practice, four of these have been ap-
proved (olaparib, rucaparib, niraparib, and talazoparib) [16–18], whereas three are currently
under evaluation (veliparib, pamiparib, and fluzoparib) [19].

Their common mechanism of action consists of preventing the repair of single strand
binding protein (SSBs), which is capable of compromising this repair system with the
consequent replication forks collapse [20]. Besides, the DNA damage induced by PARPis is
bound by PARP1. This process of PARP1 trapping consequently produces DNA protein
crosslinks, which in turn trigger the collapse of replication forks, thus resulting in DSBs
accumulation during the S phase of the cell-cycle. Normally, these errors are repaired by
the HR system, which is lacking in HR-deficient tumor cells, thus finally resulting in cell
death [21] (Figure 1).

Murai et al. demonstrated a relationship between the PARP1 trapping activity of
these agents and their cytotoxicity; the most effective PARP trapping activity belongs to
talazoparib, which is approximately 100 folds more potent than niraparib. In turn, the latter
is capable of PARP1 trapping better than olaparib and rucaparib. In preclinical models, a
limited PARP1 trapping activity has been related to veliparib, which, in contrast, showed
the ability to inhibit PARylation, and fails to elicit the same level of synthetic lethality [22].
Moreover, it has also been observed that PARP trapping activity is inversely proportional
to the maximum-tolerated dose (MTD) of PARPis; thus, more potent PARP trappers often
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have to be administered at lower doses [23]. Conversely, no relationship between PARP
trapping activity and the most common adverse effects of PARPis has been observed [24].
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Figure 1. Mechanism of action of polyADP-ribose polymerase (PARP) inhibitors. Step 1: DNA
damage caused by PARP inhibitors, with consequent creation of single strand DNA break (SSB);
Step 2: detection of SSB by PARP1; Step 3: production of DNA protein crosslinks; Step 4: collapse
of replication forks and double strand DNA breaks (DSBs) accumulation. While in homologous
recombination (HR)-proficient cells these errors are restored by HR system, in HR-deficient tumor
cells this process finally results in cell death.

3. Mechanisms of Resistance to PARPis

Despite the success of PARPis, the increasing use of these drugs in clinical practice
raised the issue of PARPis resistance, and it remains a therapeutic challenge.

Understanding the mechanisms of resistance is of outmost importance to oppose and
overcome resistance and improve therapeutic outcomes (Figure 2).
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Figure 2. Mechanism of resistance to polyADP-ribose polymerase (PARP) inhibitors. Several resis-
tance mechanisms have been identified: reversion mutation, DNA polymerase θ (POLQ), loss of
shieldin complex, stabilization of replication fork, increased drug efflux, overexpression of cyclin-
dependent kinase 12 (CDK12) and WEE1.

3.1. Restoration of HR Activity

In HR-deficient cells, the most common acquired PARPis resistance mechanism is
represented by the restoration of HR capacity, which may occur through different pro-
cesses [25].

3.2. Reversion Mutations

BRCA reversion mutations can restore protein function and lead to PARPis and
platinum-based chemotherapy resistance [26].
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Restoration of BRCA1/2 function occurs by genetic events that delete the frameshift
with the consequent restoring of the open reading frame (ORF), leading to the expression
of a functional nearly full-length protein. Besides, it can be caused by the genetic reversion
of the inherited mutation, which also restores a full-length wild-type protein. In vitro, the
exposure of BRCA1 and BRCA2 mutated cancer cells to cisplatin or PARPis favors the
development of secondary genetic changes on the mutated allele which restore a functional
protein and confer platinum and PARPis resistance [26,27]. This mechanism of resistance is
clinically relevant for BRCA-mutated cancer patients treated with platinum therapy: up
to 46% of platinum-resistant BRCA mutated HGSOC exhibits tumor-specific secondary
mutations that restore the ORF of either BRCA1 or BRCA2. Moreover, multiple reversion
events in BRCA1/2 genes have been reported as a mechanism of platinum-resistance in a
study of whole-genome characterization of chemo-resistant ovarian cancer [27]. Moreover,
the somatically-reverted BRCA1/2 alleles can be detected by analyzing the circulating free
DNA (cfDNA) derived from patients undergoing PARPis or platinum therapy [28].

3.3. DNA Polymerase θ (POLQ) (Required for MMEJ) Could Be a Driver of Resistance

It has been demonstrated that reversion mutations restoring the native reading frame
of the genes can occur in BRCA1-, BRCA2-, PALB2-, RAD51C-, or RAD51D-mutant cancers.
In HR genes, two different types of reversion were identified: true reversions and second-
site reversions. The latter were intragenic deletions joined by short regions (1–6 bp) of
DNA sequence microhomology or accompanied by an insertion [29]. This microhomology-
associated DNA sequence “scar” suggested that the predominant cause of reversion may
be the DNA-repair processes involving regions of microhomology able to repair DSBs.
Microhomology-mediated end joining (MMEJ) or single-strand annealing represent exam-
ples of these processes. DNA polymerase θ (Polθ, also known as POLQ) is a protein known
to be involved in one of the DSB repair pathways called the “error-prone MMEJ pathway.”
It is encoded by POLQ, and its expression has been demonstrated to be inversely correlated
with HR activity in epithelial ovarian cancers. The loss of Polθ in HR-proficient cells leads
to the upregulation of HR activity and RAD51 nucleofilament assembly. On the contrary,
Polθ knockdown in HR-deficient cells is linked to enhanced cell death. These results are
in line with the evidence of embryonic lethality observed in mice presenting the genetic
inactivation of an HR gene (Fancd2) and Polθ. Besides, RAD51-mediated recombination is
hampered by Polθ through its ability to bind RAD51. In this context, Polθmay represent a
new druggable target for ovarian cancer treatment due to its synthetic lethal relationship
with the HR pathway [30].

3.4. Restoration of BRCA1 via Other Mechanisms

Preclinical evidence showed a possible impact of ionizing radiation on the restoration
of BRCA1 function; the use of ionizing radiation seems to stimulate the truncated but
hypomorphic BRCA1 splice isoforms lacking exon 11 to form RAD51 and BRCA1 foci, thus
indicating partial restoration of HR [31].

Another condition that has been linked to this restoration is carrying the BRCA1C61G
mutation. It disrupts the N-terminal RING domain, conferring minimal residual activity in
DNA damage responses and consequently inducing PARPis resistance [32].

Furthermore, the restoration of BRCA1 activity is also possible through the action of
HSP90, which interacts with and stabilizes the C-terminal truncated BRCA1 protein [33].
This stabilization allows a partial function of the new stabilized protein and promotes
RAD51 loading into DNA, thereby conferring PARPis resistance.

Cancer cell lines and tumors harboring mutations in exon 11 of BRCA1 express a
BRCA1-∆11q splice variant lacking the majority of exon 11. The introduction of frameshift
mutations to exon 11 resulted in nonsense-mediated mRNA decay of full-length, but not
the BRCA1-∆11q isoform. CRISPR/Cas9 gene overexpression experiments revealed that
the BRCA1-∆11q protein may promote partial PARPis and cisplatin resistance relative to
full-length BRCA1, both in vitro and in vivo [31]. Furthermore, spliceosome inhibitors
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reduced BRCA1-∆11q levels and sensitized cells carrying exon 11 mutations to PARPis
treatment. Wang et al. provided evidence that cancer cells employ a strategy to remove
deleterious germline BRCA1 mutations through alternative mRNA splicing, giving rise to
isoforms that retain residual activity and contribute to therapeutic resistance [34].

3.5. BRCA1—Independent Restoration of HR

Several other mutations may compromise regulation of DNA end-resection via loss of
53BP1, MAD2L2/Rev7 or the shieldin complex and enable HRR in the absence of BRCA1.

BRCA1 mutated cells result in less susceptibility to PARPis when 53BP1 is lacking; this
phenomenon is explained by the 53BP1 capacity of restoring HR through the promotion
of ATM activity which produces ssDNA targetable by HR [35]. Furthermore, loss of Lig4
can prevent the joining of DSBs into chromosome rearrangements, whereas it does not
have the capacity to rescue HR in BRCA1 mutated cells [36]. Dev et al. demonstrated that
the “shieldin” complex (SHLD1/2) consists of two proteins, C20orf196 and FAM35A. The
latter presents a C-terminal OB-fold region that binds single-stranded DNA (ssDNA). This
complex represents the downstream effector of 53BP1/RIF1/MAD2L2, which promotes
end-joining DSB, and antagonizing the BRCA2/RAD51 is able to counteract HR [37]. The
shieldin complex also interacts at the DNA damage sites, with the Christ–Siemens–Touraine
complex (CST/Polα/πριµασε), which engages ssDNA in order to fill in the resected DSBs.
This fill-in reaction, together with the CST/shieldin persistence at the DNA damage sites,
is responsible of the blockade of HRD, with the consequent lethal mis-repair [38].

3.6. Stabilization of Replication Forks

BRCA1 and BRCA2 genes are involved in the fork protection of stalled replication.
In the case of BRCA1-2 deficient tumor cells, the nucleases MRE1164 and MUS8165 are
able to attack the stalled replication forks, with consequent fork collapse and chromoso-
mal aberrations. When the PARPis resistance develop, a mechanism for inhibiting DNA
replication fork degradation has been observed, caused by some nucleases able to stabilize
the replication fork. In particular, in BRCA2-and BRCA1 deficient cells, EZH2 and PTIP
activity respectively are downregulated at the fork, reducing the recruitment of nucleases
and resulting in fork protection. PARPis in fact are known to induce fork degradation of an
unprotected replication fork, and, as a consequence, increased stabilization of replication
forks confers PARPis resistance [39].

3.7. Increased Drug Efflux

A murine model revealed another mechanism of PARPis resistance in BRCA1-deficient
breast tumors. An overexpression of drug-efflux transporter genes (Abcb1a and Abcb1b)
encoding for MDR1/P-gp and Abcg2 has been observed: increased drug-efflux enhanced
the rate at which compounds, such as PARPis, are removed from cells and, as a consequence,
their efficacy. Some evidence suggests that PARPis resistance may be related to the increased
expression of drug-efflux transporter genes. This phenomenon is supposed to be specifically
mediated by the Abc1a/b genes. A study showed that expression of Abcb1a/b was
increased by 2- to 85-fold in olaparib-resistant breast cancers [40]. Abc1a/b expression
was shown to be correlated with resistance to olaparib and rucaparib treatment in ovarian
cancer cell lines, and cotreatment with the P-glycoprotein (P-gp) efflux pump inhibitor
tariquidar resensitized the tumors to PARPis [41,42]. The resistance was also reversed
following treatment with verapamil or elacridar, two common Abcb1a/b inhibitors [43].
However, Abcb1a/b overexpression was not shown to induce resistance to treatment with
veliparib or AZD2461, an olaparib analog, indicating that this is unlikely to be the sole
mechanism of PARPis resistance [43].

Despite strong preclinical evidence, no clinical trials have yet been designed targeting
P-gp pump efflux for patients experiencing PARPis resistance [44]. In the near future,
clinical trials in this setting are needed to confirm the relationship between increased
expression of P-gp efflux pumps and PARPis resistance.
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3.8. Inhibition of PARP Trapping and PAR Glycohydrolase (PARG) Mutations Can Lead to
PARP Resistance

As described above, the PARPis ability of PARP trapping represents the meaning
cause of cell death by the accumulation of unrepaired SSBs and impaired progression of
replication forks [22]. Recent studies have demonstrated a functional link between the
inhibition of PARP trapping activity and the onset of PARPis resistance [45]. Petit et al.
showed a common mutation of PARP-1 (R591C) in PARPis-resistant tumor samples, which
is linked to a diminished PARP1 trapping activity on DNA, thus resulting in PARPis
resistance [31]. Besides, the PAR glycohydrolase (PARG) enzyme is also involved in PARP1
trapping activity, preventing polyADP-ribose (PAR) accumulation through the reversion of
PARylation. Consequently, the loss of PARG leads to the accumulation of PAR in PARPis-
treated cells, with the rescue of PARP1-dependent DNA damage signaling, thus reducing
the activity of PARP1 trapping on DNA, finally resulting in PARPis resistance [45].

3.9. Alterations in Cell Cycle Control

Cyclin-dependent kinase 12 (CDK12) and WEE1 are cell-cycle regulators involved
in PARPis resistance due to their ability to restore HR [46]. DNA repair proteins are
downregulated by CDK12 knockdown, conferring sensitivity to PARPis, thereby inducing
a phenocopied “BRCAness”. Besides, another mechanism that promotes PARPis sensitivity
is mediated by the inhibition of WEE1. The abrogation of G2 cell-cycle checkpoint causes
the premature entering of HR deficient cells into mitosis, with their unrepaired DNA
damage and the consequent accumulation of DNA DSBs.

3.10. Dysregulated Signaling Pathways

Several molecular signaling pathways regulating cell division are involved in PARPis
resistance. The proto-oncogene mesenchymal–epithelial transition tyrosine kinase reduces
the binding capacity of PARPis, through its ability to activate the PARP1 enzymatic activity
by phosphorylating PARP1 [47]. Furthermore, a significant upregulation of the PI3K/AKT
pathway has been observed following the PARPis use, thus resulting in the promotion of cell
growth and proliferation. Finally, the PARPis resistance is also linked to the upregulation of
the ATM/ATR pathway. It represents an essential checkpoint of the DNA damage response
process due to its capacity of recruiting DNA repair complexes through the phosphorylation
of histone H2A. This phenomenon leads to the HR restoration [48], and thus, the inhibition
of this pathway may represent a future strategy to overcome PARPis resistance.

4. Perspectives

Several studies are ongoing with the attempt to develop therapeutic strategies that
elude the emergence of acquired resistance.

Potential strategies to fight PARPis resistance may include combination therapies
aimed at amplifying the anti-tumor effects of PARPis by targeting the acquired vulnerabili-
ties of PARPis resistant cancers through the suppression of the mutator phenotype.

4.1. Suppression of Alternative HR Pathways

It has been demonstrated that the recruitment of ssDNA by PALB2 is dependent
on the RNF168 activity in BRCA1 mutated cells [49]. This phenomenon, together with
the increased end-resection caused by the loss of the 53BP1–RIF1–REV7–shieldin axis, is
responsible for the HR restoration in BRCA1/53BP1 double deficient cells [50]. Besides,
the type of BRCA1 mutation determines the extent of HR restoration caused by the loss of
53BP1, because this reactivation is linked to the overall efficiency of RAD51 loading.

Therefore, the loss of RNF168, which mediates the PALB2 recruitment, is able to com-
promise HR and confer PARPis sensitivity in BRCA1 heterozygous cells and in BRCA1/53BP1
double deficient cells [51]. Targeting of RNF168 may represent a therapeutic option in order
to improve PARPis efficacy, inhibiting BRCA1 independent PALB2/BRCA2 recruitment.
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4.2. Suppression of Mutator Phenotype

The genomic instability deriving from the error-prone MMEJ pathway is suppressed
by the POLQ inhibition. Novobiocin (NVB) is an antibiotic which is known to inhibit
the ATPase activity of POLQ. The depletion of POLQ is linked to DSBs end resection,
consequent accumulation of ssDNA, and finally leads to cell death in HR deficient tumors.
In a PDX model, it has been demonstrated that NVB in combination with BRCA1-and-53BP1
loss of function reduces tumor growth [52]. Clinical trials are needed to understand the role
of POLQ inhibition. POLQ depletion may be used as a novel anticancer strategy potentially
superior to PARPis, because it may be effective in tumors with acquired resistance to
PARPis, such as HR-deficient cancers of a ‘mutator phenotype’, and also in preventing or
attenuating the onset of PARPis resistance in HR deficient naïve cells. In conclusion, POLQ
inhibition may represent a promising strategy, combined with PARPis, or as an alternative
to their use.

4.3. Indirect Inhibition of HR

Nowadays, there is no literature evidence of direct inhibitors able to catalyze HR.
The inhibition of HR restoration following the treatment with PARPis may be mediated
by some oncoproteins interfering with gene expression, nuclear localization and/or the
recruitment of HR proteins, resulting in the indirect inhibition of HR. These oncoproteins
represent promising actionable targets currently under study in combination with PARPis
to overcome PARPis resistance.

For example, therapies targeting EGFR, IGF1R, VEGF or the PI3K/AKT pathway have
been reported to impair HR [53].

Combining the VEGF antagonist bevacizumab with olaparib or niraparib improved
the median progression free survival (PFS) in newly diagnosed and recurrent ovarian
cancer patients, in both HRD and HR-proficient cohorts [54]. The NRG-GY004 demon-
strated that the combination of cediranib and olaparib did not improve PFS compared
to standard chemotherapy in women with platinum-sensitive ovarian cancer; however,
post-hoc analysis suggested better activity in BRCA patients [55]. Moreover, the results
from phase IIb, single-arm CONCERTO trial demonstrated antitumor activity of the
cediranib-olaparib combination in heavily pretreated, non-gBRCAm patients, with re-
current platinum-resistant ovarian cancer [56].

Ongoing trials are addressing the combination of an oral anti-angiogenic agent, cedi-
ranib, with olaparib both in the platinum-sensitive (ICON9, NCT02345265) and platinum-
resistant (NRG-GY005, NCT02889900, NCT02345265) setting. Additionally, an ongoing
study is evaluating the addition of cediranib to olaparib in patients who progressed after
initial response to therapy with olaparib alone (NCT02681237) [57].

Several preclinical studies have demonstrated synergistic anti-tumor activity with the
combination of PARPis and PI3K/AKT pathway inhibitors in both BRCA deficient and
proficient cancer models [58]. A phase I trial combining the AKT inhibitor capivasertib
with olaparib revealed durable responses in patients with advanced-stage solid tumors,
irrespective of BRCA1/2 status [59]. Another study showed a potential clinical activity
with manageable toxicity with ceralasertib, an AKT inhibitor, in combination with olaparib
in BRCA-mutated PARPi-resistant HGSOC, with a duration of benefit that exceeded the
duration achieved on prior PARPi monotherapy [60,61].

Besides, the combination of PI3K inhibitors and PARPis has also been tested in clinical
studies; in particular, the alpha specific PI3K inhibitor alpelisib (BYL719) has demonstrated
to be safe in a multicenter, open-label, phase 1b trial [62] and a phase III trial is currently
ongoing to investigate the efficacy of this combination in women with platinum resistant
or refractory HGSOC, with no germline BRCA mutation detected (NCT04729387) [63].

However, this combination therapy does not directly inhibit HR; rather, it seems to
impair cell-cycle progression. These data suggest an additive effect rather than a synergistic
action of this combination therapy.
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4.4. Immunotherapy in HRD Deficient Cancers

An encouraging strategy to fight PARPis resistance is represented by the combination
of PARPis with immune checkpoint inhibitors. The rationale of this combination relies on
the evidence that an increased mutational burden in HRD cancers may result in increased
availability of tumor-specific neoantigens with consequent enhanced immunotherapy
efficacy [64]. In fact, it has been observed that the expression of repetitive RNAs may
activate immune signaling. In BRCA 1

2 deficient cells, the presence of these RNAs arises
from the disruptions of the chromatin boundaries, which in turn is caused by the genomic
rearrangements. PARPis induces both PD-L1 expression and cGAS–STING signaling,
leading to increased CD8+ T cell infiltration and activation [65]. However, whether PARPi-
mediated activation of cGAS–STING signaling is dependent on the BRCA mutation status
of the tumor is still a matter of debate. Results from various studies indicate that PARPis
enhance the anti-tumour effects of anti-PD-1 antibodies in breast and ovarian cancer mice
models [66]. Ongoing clinical trials are evaluating the clinical impact of this combination
therapy [67]. Results from Phase II clinical trials show that antibodies targeting PD-L1 in
combination with PARPis exhibit a good response against germline BRCA1/2-mutated
breast cancer and ovarian cancers [67,68].

Besides, this combination is currently under evaluation in several trials in newly
diagnosed and recurrent (either platinum sensitive or resistant) ovarian cancer patients.

ENGOT-ov46/AGO/DUO-O is a phase III randomised, double-blind, multi-centre
study evaluating the efficacy and safety of durvalumab in combination with standard of
care platinum-based chemotherapy and bevacizumab followed by maintenance durval-
umab and bevacizumab or durvalumab, bevacizumab and olaparib in patients with newly
diagnosed advanced ovarian cancer [69]. Besides, the ENGOT-ov43/MK-7339/KEYLYNK-
001 study is a randomised phase III, double-blind trial, aiming at investigating the role of
immunotherapy (pembrolizumab) given in combination with chemotherapy and after the
completion of the first-line treatment as maintenance therapy, given in combination with ola-
parib/placebo in patients diagnosed with BRCA non-mutated advanced epithelial ovarian
cancer [70]. Another randomized, double-blind, phase III study, the ENGOT-OV44/FIRST
study, is evaluating platinum-based therapy ± dostarlimab followed by niraparib ± dostar-
limab maintenance as first-line treatment of advanced ovarian cancer [71]. ATHENA
(GOG-3020/ENGOT-ov45) is a randomized phase III trial evaluating maintenance therapy
after first-line treatment with rucaparib as monotherapy (ATHENA-MONO) vs. rucaparib
in combination with nivolumab (ATHENA-COMBO) [72].

The role of PARPis in combination with immunotherapy in the platinum-resistance set-
ting is under investigation in different trials (NItCHE-MITO 33 [73], MOONSTONE/GOG-
3032 [74], NCT02485990 [75], even with the addition of an anti-angiogenic agent (BOLD [76]
and OPAL trial [77], NCT04739800 [78], NCT02484404 [79]). The TOPACIO/KEYNOTE-162
study showed an ORR of 18% (90% CI, 11–29%), with a disease control rate of 65% (90% CI,
54–75%) with the combination of pembrolizumab-niraparib in platinum resistant, heavily
pretreated OC patients [80].

Concerning the platinum-sensitive recurrence, the ANITA trial is a phase III random-
ized, double-blinded trial evaluating the efficacy of platinum-based chemotherapy with
or without atezolizumab followed by niraparib maintenance +/− atezolizumab [81]. Fur-
thermore, GINECO-EN203b/ENGOT-EN8 (ROCSAN trial) is a multi-centre randomized
phase II/III trial, evaluating dostarlimab in combination with niraparib versus niraparib
alone compared to chemotherapy in the treatment of endometrial/ovarian carcinosarcoma
(recurrent or progressing) after at least one line of platinum-based chemotherapy [82].

4.5. Abrogation of Cell-Cycle Checkpoint Signalling

As described above, the ATM/ATR pathway represents one of the most involved
checkpoints of the DNA damage response.



Cancers 2022, 14, 1420 9 of 15

Combination therapy with PARPis and ATR inhibitors are under investigation as
potential methods of overcoming resistance to PARPis in BRCA1 deficient tumors with
restored HR function or fork protection [83].

The chromatin-remodeling enzyme ARID1A interacts with ATR in order to regulate
the DNA damage checkpoint. Cells lacking ARID1A are consequently unable to activate
this cell-cycle checkpoint, thereby acquiring susceptibility to PARPis treatment [84]. Besides,
the first phase of HR is dependent on the ATM kinase activity, and its inhibition is linked
to the susceptibility to PARPis in BRCA1-53BP1 and/or BRCA1-REV7 deficient cells [85].

Preclinical studies support the existing hypothesis that targeting other cancer-promoting
pathway components (such as WEE1, MEK/MAPK, and PI3K) may enhance PARPis ef-
ficacy; in particular, while still preserving anti-tumor activity [86]. The phase II random-
ized, non-comparative EFFORT trial reported the efficacy of adavosertib (WEE1 inhibitor)
in PARP-resistant ovarian cancer with an objective response rate (ORR) of 29% in the
combination adavosertib plus olaparib arm and 23% with adavosertib alone [87]. The
ongoing randomized phase I/II SOLAR (NCT03162627) trial combines olaparib with the
MEK/MAPK/ERK inhibitor selumetinib in solid tumors. The rationale of this combination
relies on the MEK inhibitors’ capacity to alter the apoptotic balance, induce HR deficiency,
and decrease DNA damage checkpoint activity in RAS-mutant cells. These two agents
synergistically act to increase DNA damage and apoptosis in response to PARPis [88].

The clinical applicability of these combinations, in the light of their toxicity
profiles (Table 1).

Table 1. Perspectives for eluding resistance to PARP inhibitors. Potential strategies to enhance the
efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors in treatment-resistant tumors.

Perspectives for Eluding PARPI Resistance

Suppression of Alternative
HR Pathways

Suppression of mutator
phenotype

Loss of RNF168
POLQ inhibition by novobiocin kills HR deficient tumors

in vitro/in vivo

Indirect inhibition of HR
CONCERTO trial: cediranib + olaparib
AKT inhibitor: capivasertib + olaparib

ceralasertib + olaparib

Immunotherapy in HRD
deficient cancers

durvalumab + olaparib + bevacizumab (AGO-DUO) (BOLD)
durvalumab + olaparib + cediranib

pembrolizumab + olaparib (ENGOT ov43)
pembrolizumab + niraparib (TOPACIO)

atezolizumab + niraparib (ANITA)
nivolumab + rucaparib (ATHENA combo)

dostarlimab + niraparib (MITO33) (MOONSTONE) (ROCSAN)
dostarlimab + niraparib + bevacizumab (OPAL)

tremelimumab + olaparib
tremelimumab + durvalumab + olaparib

Abrogation of cell-cycle
checkpoint signalling

EFFORT trial: adavosertib (WEE1 inhibitor) + olaparib
SOLAR trial: selumetinib (MEK inhibitor) + olaparib

Targeting acquired
vulnerabilities Ioniziting radiation

4.6. Targeting Acquired Vulnerabilities

It has been demonstrated that despite the detrimental activity of PARG inactivation to
PARPis efficacy, the loss of functional mutations involved in PARPis increases sensitivity to
ionizing irradiation [45]. Furthermore, the loss of 53BP1–RIF1–REV7–shieldin or CST end-
protection complexes and PARP1 loss may enhance the ionizing radiation effect [89]. As a
consequence, radiotherapy might be a valid option for patients with BRCA deficient tumors
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with acquired resistance to PARPis. Besides, the combination of PARPis and radiotherapy
may be of particular interest in the oligometastatic progression setting. In fact, the patients
progressing on PARPis treatment with evidence of oligometastatic disease may benefit
from local stereotassic radiotherapy, and prolong PARPis treatment beyond progression
while achieving continuous benefit [90].

5. Conclusions

Several PARPis received FDA approval both in the frontline and second-line main-
tenance settings in ovarian cancer and in the treatment of other solid tumors such as
pancreatic, prostate and breast cancer, thus enhancing the number of patients potentially
benefitting from this strategy. However, despite the established clinical benefits across
several solid tumor types, the increasing use of PARPis in clinical practice switch on the
light on an emerging clinical issue which is represented by the PARPis resistance. The HR
restoration, the DNA replication fork stabilization, the BRCA reversion mutations, the drug
efflux increase, the dissociation of PARP1 and PARG, and the epigenetic molecular modi-
fications are only some of the established mechanisms contributing to PARPis resistance.
Preclinical models have offered insight into these mechanisms; still, analyses of paired
tumor samples in early-phase clinical trials have suggested that multiple mechanisms may
be inherent to progression on PARPis treatment. Ongoing clinical trials are evaluating the
rationale of combination strategies to evade PARPis resistance. Promising combinations
are represented by PARPis + anti-angiogenic agents, PARPis + immunotherapy, PARPis
+ PI3K/AKT pathway inhibitors, PARPis + Ras/Raf/MEK/MAPK pathway inhibitors,
PARPis + ATR/WEE1 inhibitors, and PARPis + epigenetic modifiers. Although preliminary
analyses suggested favorable response and clinical benefits, the short durability of response
and the challenging toxicity profiles of the combined treatments are relevant clinical issues;
in fact, it has to be noted that a combination treatment often involves more severe toxicity
profiles. Further exploration of meaningful molecular markers of response is needed to
delineate which patient will benefit most from each combination therapy, thus prompting
the necessity to re-characterize from a molecular point of view the tumors progressing on
PARPis treatment.
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