
����������
�������

Citation: Jing, X.; Dorrius, M.D.;

Wielema, M.; Sijens, P.E.; Oudkerk,

M.; van Ooijen, P. Breast Tumor

Identification in Ultrafast MRI Using

Temporal and Spatial Information.

Cancers 2022, 14, 2042. https://

doi.org/10.3390/cancers14082042

Academic Editor: Katja

Pinker-Domenig

Received: 24 January 2022

Accepted: 11 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Breast Tumor Identification in Ultrafast MRI Using Temporal
and Spatial Information
Xueping Jing 1 , Monique D. Dorrius 2,*, Mirjam Wielema 2 , Paul E. Sijens 2, Matthijs Oudkerk 3,4

and Peter van Ooijen 1,*

1 Department of Radiation Oncology, University Medical Center Groningen, University of Groningen,
9700 RB Groningen, The Netherlands; x.jing@umcg.nl

2 Department of Radiology, University Medical Center Groningen, University of Groningen,
9700 RB Groningen, The Netherlands; m.wielema@umcg.nl (M.W.); p.e.sijens@umcg.nl (P.E.S.)

3 Faculty of Medical Sciences, University of Groningen, 9700 RB Groningen, The Netherlands;
m.oudkerk@umcg.nl

4 Institute for Diagnostic Accuracy, 9713 GH Groningen, The Netherlands
* Correspondence: m.d.dorrius@umcg.nl (M.D.D.); p.m.a.van.ooijen@umcg.nl (P.v.O.)

Simple Summary: The diagnosis of breast cancer with MRI is based on both morphological eval-
uation and kinetic curve assessment. Current computer-aided diagnosis methods for malignancy
determination mainly focus on morphology features but ignored the temporal information in dynamic
contrast-enhanced MRI sequences. Malignant and benign lesions usually have different enhancement
patterns during the wash-in phase. Ultrafast breast MRI with high temporal resolution can capture
the inflow of contrast in breast lesions. This advantage of ultrafast MRI enables the combination of
both temporal and spatial information for automatic breast lesion analysis model development. We
found that temporal information helps to significantly improve the performance of breast lesion clas-
sification. This suggests that ultrafast MRI provides useful information for malignancy identification
and temporal information, which is indispensable for similar model development.

Abstract: Purpose: To investigate the feasibility of using deep learning methods to differentiate
benign from malignant breast lesions in ultrafast MRI with both temporal and spatial information.
Methods: A total of 173 single breasts of 122 women (151 examinations) with lesions above 5 mm were
retrospectively included. A total of 109 out of 173 lesions were benign. Maximum intensity projection
(MIP) images were generated from each of the 14 contrast-enhanced T1-weighted acquisitions in
the ultrafast MRI scan. A 2D convolutional neural network (CNN) and a long short-term memory
(LSTM) network were employed to extract morphological and temporal features, respectively. The 2D
CNN model was trained with the MIPs from the last four acquisitions to ensure the visibility of the
lesions, while the LSTM model took MIPs of an entire scan as input. The performance of each model
and their combination were evaluated with 100-times repeated stratified four-fold cross-validation.
Those models were then compared with models developed with standard DCE-MRI which followed
the same data split. Results: In the differentiation between benign and malignant lesions, the ultrafast
MRI-based 2D CNN achieved a mean AUC of 0.81 ± 0.06, and the LSTM network achieved a mean
AUC of 0.78 ± 0.07; their combination showed a mean AUC of 0.83 ± 0.06 in the cross-validation.
The mean AUC values were significantly higher for ultrafast MRI-based models than standard DCE-
MRI-based models. Conclusion: Deep learning models developed with ultrafast breast MRI achieved
higher performances than standard DCE-MRI for malignancy discrimination. The improved AUC
values of the combined models indicate an added value of temporal information extracted by the
LSTM model in breast lesion characterization.
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1. Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has a higher
sensitivity compared with other modalities for breast cancer detection [1]. It is widely used
for breast cancer staging, screening in high-risk women, and chemotherapy evaluation.
For breast cancer screening, recent research reveals that supplemental MRI screening in a
high-risk population, especially in women with extremely dense breasts, could significantly
reduce the interval cancer rate compared with mammography alone [2]. For women with
a lifetime breast cancer risk above 20%, annual MRI screening helps to detect cancers
at an earlier stage than mammography [3]. However, the advantages of breast MRI are
accompanied by higher cost and a higher false positive rate.

During DCE-MRI scanning, the concentration of gadolinium contrast material in
the permeable blood vessels of tumor tissue causes a decrease in the relaxation time of
water protons and results in a high signal in T1-weighted images. The current DCE-MRI
protocol usually contains multiple T1-weighted acquisitions after contrast. The diagnosis
of breast lesions is highly dependent on the high spatial resolution and kinetic pattern
in the wash-out phase, making MRI scanning tedious. To enable a wider use of breast
MRI, protocols should be shorter to improve cost effectiveness [4,5]. Different abbreviated
protocols have been proposed to shorten the scanning time [6–8]. Studies also showed that
the diagnostic performance of abbreviated protocols matches the full diagnostic breast MRI
protocol [9–13].

Most abbreviated protocols are based on T1-weighted imaging before and after con-
trast agent administration. T1-weighted acquisitions may be performed in different time
resolutions. Conventional T1-weighted MRI has high spatial resolution, but is time consum-
ing, while the time-resolved angiography with stochastic trajectories (TWIST) technique
enables ultrafast acquisition at the cost of a lower spatial resolution [14,15]. Compared
with the use of only one high spatial resolution post-contrast T1-weighted series for image
interpretation [7], repeated acquisition of a T1-weighted sequence in TWIST enables not
only morphological evaluation but also pharmacokinetic analysis of the wash-in phase
(Figure 1). The current literature recognizes the critical role of kinetic analysis in the dif-
ferentiation of benign and malignant lesions in ultrafast MRI. The ultrafast T1-weighted
sequence might change the future of breast DCE-MRI and has proven useful for the charac-
terization of breast lesions. Abe et al. [16] concluded that there was significant difference
between benign and malignant lesions in enhancement rate and kinetic area under the
curve (AUC) in ultrafast MRI, and that the differential utility of ultrafast imaging is com-
parable to standard kinetic assessment. Other studies [17] found that features (time to
enhancement and maximum slope) derived from ultrafast MRI during initial enhancement
could help improve the performance of differentiating between malignant and benign
lesions, especially in case of non-mass enhancement. These studies revealed the potential
of kinetic analysis in ultrafast MRI for breast lesions [7,17–19].

Recently, artificial intelligence (AI) was introduced to help discriminate benign from
malignant lesions in breast MRI [20,21]. Most AI studies focus on 2D feature extraction with,
either, radiomics methods [22,23] or convolutional neural networks (CNN) [24]. Even though
it has proven to be a crucial factor and is widely used in clinical practice, temporal information
(kinetic features) has been ignored in the development of automated breast lesion analysis
systems. Long short-term memory (LSTM) networks [25], which are widely used for time
series analysis, have been employed for medical image analysis recently [26–28]. For example,
Zou et al. [29] used an LSTM model for pharmacokinetic parameter estimation in head and
neck cancer using a TWIST sequence and achieved promising results. These successful
applications indicate that temporal information extracted by LSTM models may further
improve the performance of automatic breast lesion diagnosis in DCE-MRI.

We hypothesized that fully automatic deep learning-based methods, with only ultra-
fast DCE-MRI as input, could be used for malignancy identification. Therefore, the aim of
this study is to evaluate the feasibility of this automatic deep learning-based method and
investigate the usefulness of temporal information extracted with an LSTM model.
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Figure 1. Maximum intensity projection images (MIP) of a malignant (left) and a benign (right)
lesion and their enhancement curves during ultrafast MRI. Plotted curves are the average brightness
of 10 × 10 pixels in the center of each lesion.

2. Materials and Methods
2.1. Study Population

This retrospective study was approved by the local Medical Ethics Review Board
(METc Nr: 2018/652) with a waiver of the requirement for informed consent from each
patient. A total of 1447 breast MRIs, including both screening and diagnostic examinations,
from 809 patients who underwent breast MRI scans at our hospital between 2016 and 2019
were retrospectively included. Among the 1447 consecutive breast MRIs, 443 were excluded
because no ultrafast DCE-MRI sequences had been acquired. Furthermore, 694 MRI
scans from 374 patients with only focus/foci (enhancing dots with diameters smaller than
5 mm) or with no lesion reported were excluded. A total of 34 MRI scans for chemotherapy
evaluation, 31 for breast implants, and 94 post-operative scans were also excluded, resulting
in 151 MRI scans from 122 patients. For the remaining 151 MRI scans, left and right breasts
were assessed separately for the presence of breast lesions. A total of 129 breasts with no
suspicious lesion were excluded, and 173 breasts with one or more lesions were included
in the final model development.

The label of each breast was determined by the primary lesion contained. For breasts
with no malignant lesions, the benign lesion with the biggest size was analyzed. For
breasts with malignant lesions, the possible additional present benign lesions were not
included in the analysis. The ground truth of those included lesions was obtained from
pathology reports (surgery or core needle biopsy) or follow-up examinations (2 years follow
up, verified by a senior radiologist). The final study dataset contained 109 benign and
64 malignant lesions (Figure 2).



Cancers 2022, 14, 2042 4 of 11

Figure 2. Flowchart of the patient inclusion.

2.2. MRI Protocol

All DCE-MRI scans were acquired on a 3 T (Siemens Magnetom Skyra, Siemens
Medical Solutions, Erlangen, Germany) or 1.5 T (Siemens Magnetom Avanto_fit, Siemens
Medical Solutions, Erlangen, Germany) scanner with a circularly polarized bilateral breast
coil (Siemens). The protocol consisted of a pre-contrast T1 and T2 and the following
sequences after contrast: DWI, TWIST, and four DCE-T1-weighted series. A measurement
of 15 mL of contrast agent (Dotarem, Guerbet, Villepinte, France) was injected using a
power injector. Acquisition parameters of the T1-weighted and TWIST sequence are list in
Table 1.

Table 1. Acquisition Parameters for ultrafast and standard DCE-MRI.

Parameter
TWIST T1-Weighted

1.5 T 3.0 T 1.5 T 3.0 T

TR/TE (ms) 2.50/0.90 4.12/2.08 5.27/2.39 4.50/1.60
Flip angle (◦) 20 20 10 10

Phase oversampling (%) 26 20 N/A N/A
Slice oversampling (%) 20 0 N/A N/A

Voxel size (mm3) 0.68 × 0.68 × 3.0 0.91 × 0.91 × 3.0 0.84 × 0.84 × 1.2 0.89 × 0.89 × 1.2
Temporal resolution (s) 5.2 4.3 120 120

Field of view (mm) 350 350 350 370
Fat suppression None None SPAIR SPAIR

2.3. Development of the Deep-Learning-Based Classification System

Breast segmentations were first performed by using a 3D U-Net [30] to remove the
redundant background; the left and right breasts were then separated by splitting the breast
regions in the middle. Maximum intensity projection (MIP) images were then generated
by applying MIP operation on the subtraction volume of each sequence and the sequence
before contrast agent injection.
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To take advantage of both morphological and temporal information provided by
ultrafast breast MRI, a CNN model and a long short-term memory LSTM network were
employed to extract morphological and temporal features, respectively. (Figure 3) The
CNN model, modified from the pre-trained ResNet-18 [31] by replacing the last output
layer, were trained with MIP images from the last four acquisitions in each ultrafast MRI
series. The LSTM model, with the ResNet-18 model as feature extractor, was trained with
the MIP clip (14 timed acquisitions of the ultrafast DCE sequence yielding 14 MIP images)
of each ultrafast MRI series. For standard DCE-MRI, the same method was used for the
training, where MIPs of the four T1-weighted acquisitions after contrast injection were
used as the input for both the 2D CNN and LSTM model.

Figure 3. Pipeline of the proposed system. The 2D CNN model takes a maximum intensity projection
(MIP) image of the last four acquisitions as input, while the LSTM model takes all 14 MIP images in
a TWIST sequence as a single input. In the LSTM model, a RseNet-18 model was used for feature
extraction. The extracted feature vector ft was then inputted to the LSTM unit, in which Ct-1 represents
the memory from last unit, ht-1 represents the output of the previous unit, Ct represents the memory
of the current unit, and ht represents the output of the current unit. The output probability of each
model was added up to generate a combined prediction.

The output of each model was a numerical value between zero and one, which indi-
cates the probability of malignancy. The performance of each model and their combination
was evaluated with 100-times repeated stratified 4-fold cross-validation. During inference,
the CNN models assessed each of the four MIP images from a single validation sample, and
the highest output value was then determined as the malignancy probability of the sample.
The output of the proposed system was then determined by averaging the predicted scores
from both models. The receiver operating characteristic (ROC) curve was plotted for each
model and the entire system based on the predicted probability. Sensitivity and specificity
were used to evaluate the performance of each model with different thresholds applied.

Models were developed with Pytorch framework (v1.9.1) and trained with an NVIDIA
Quadro P4000 GPU. For the 2D CNN (ResNet-18) model, transfer learning was adopted
with pre-trained weights on ImageNet; convolution layers were frozen while only fully
connected layers’ parameters were finetuned. The training was run for 30 epochs with
a learning rate of 1e-4, a batch size of 16, and a momentum of 0.9. The Adam optimizer
and a categorical cross-entropy loss function were used. For the LSTM model, a ResNet-18
model was used as feature extractor. The same hypermeters were used for training, except
the batch size was reduced to four and training epochs were extended to 40. During
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training, MIP images were first resized to 224 × 224, and then sent into the models; random
horizontal flip (probability of 0.5) and random rotation (within 10◦) were performed for
data augmentation. The training (30 epochs) and validation of the 2D CNN model took
28.8 and 1.5 min, respectively, while the training (40 epochs) and validation of the LSTM
model took 34.3 and 2.2 min, respectively, in each fold.

3. Results
3.1. Patient and Lesion Characteristics

A total of 122 patients with 173 breasts were included in this study. The patient
and lesion characteristics are provided in Table 2. The median age was 47 years (range,
24–80 years). The median size of all lesions was 13.0 mm (range, 5.0–110.0 mm), while for
benign lesions it was 9.0 mm (range, 5.0–81.0 mm) and malignant lesions it was 22.0 mm
(range, 6–110 mm).

Table 2. Lesion characteristics.

Characteristics Value (Proportion)

Benign lesions 109 (0.63)
Adenosis 24 (0.14)

Fibroadenoma 19 (0.11)
Hyperplasia 6 (0.03)

Glandular tissue 4 (0.02)
Cyst 3 (0.02)

Inflammation 1 (0.01)
Other 1 51 (0.29)

Malignant lesions 64 (0.37)
Invasive ductal carcinoma 51 (0.29)
Invasive lobular carcinoma 4 (0.02)

Ductal carcinoma in situ 4 (0.02)
Micropapillary carcinoma 2 (0.01)

Apocrine carcinoma 1 (0.01)
Mucinous carcinoma 2 (0.01)

Lesion size (mm) 2

Overall 19.9 ± 18.4
Malignant 28.6 ± 20.8

Benign 13.9 ± 13.6
1 The “Other” category included enhancement around fat necrosis, scar tissue, hyperplasia, atheroma cyst,
regional background enhancement, and other benign-appearing enhancements not specified. 2 Data are ±
standard deviation.

3.2. Performance of Models

The ROC curves of each model for malignancy differentiation with TWIST sequences
are shown in Figure 4. During the repeated stratified cross-validation, the 2D CNN showed
a mean AUC of 0.81 ± 0.06, the LSTM network showed a mean AUC of 0.78 ± 0.07, while
their combination showed a mean AUC of 0.83 ± 0.06. For standard DCE-MRI, the 2D
CNN model showed a mean AUC of 0.67 ± 0.09, the LSTM network showed a mean AUC
0f 0.66 ± 0.08, and their combination showed a mean AUC of 0.70 ± 0.07.
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Figure 4. Receiver operating characteristic (ROC) curves for CNN, LSTM model, and their combina-
tion in the (a) TWIST and (b) standard DCE-MRI validation sets. The plots show the mean ROC of
each model over 100-times repeated cross-validation, reflecting the variance of the curves when the
dataset is split into different training and validation sets.

The 2D CNN achieved a higher mean AUC than LSTM (p < 0.01), but the combined
prediction could further improve the performance (all p < 0.01). There is clearly an added
value in using the temporal information extracted by the LSTM model. A detailed analysis
of the diagnosis performance with different cutoff values is listed in Table 3.

Table 3. Diagnostic performance of each model with ultrafast MRI under different threshold settings.

Threshold
2D CNN LSTM Combined

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

0.1 0.92
(0.91, 0.93)

0.25
(0.23, 0.27)

0.92
(0.91, 0.93)

0.22
(0.20, 0.24)

0.96
(0.95, 0.96)

0.14
(0.13, 0.16)

0.2 0.82
(0.81, 0.84)

0.56
(0.54, 0.58)

0.81
(0.80, 0.83)

0.48
(0.46, 0.50)

0.87
(0.86, 0.88)

0.48
(0.46, 0.50)

0.3 0.73
(0.72, 0.74)

0.76
(0.75, 0.77)

0.73
(0.72, 0.75)

0.65
(0.63, 0.67)

0.78
(0.77, 0.79)

0.72
(0.71, 0.74)

0.4 0.64
(0.63, 0.66)

0.88
(0.87, 0.88)

0.66
(0.64, 0.68)

0.78
(0.77, 0.79)

0.68
(0.67, 0.70)

0.86
(0.85, 0.86)

0.5 0.56
(0.55, 0.57)

0.93
(0.92, 0.93)

0.59
(0.57, 0.61)

0.88
(0.87, 0.88)

0.57
(0.55, 0.58)

0.92
(0.91, 0.93)

0.6 0.44
(0.43, 0.46)

0.95
(0.94, 0.95)

0.46
(0.44, 0.48)

0.92
(0.91, 0.93)

0.44
(0.43, 0.46)

0.96
(0.95, 0.96)

0.7 0.34
(0.33, 0.35)

0.96
(0.96, 0.97)

0.34
(0.33, 0.36)

0.94
(0.94, 0.95)

0.32
(0.31, 0.33)

0.98
(0.97, 0.98)

0.8 0.25
(0.23, 0.26)

0.98
(0.97, 0.98)

0.24
(0.22, 0.25)

0.97
(0.96, 0.97)

0.18
(0.17, 0.19)

0.99
(0.99, 0.99)

0.9 0.15
(0.14, 0.16)

0.99
(0.99, 0.99)

0.12
(0.10, 0.13)

0.99
(0.98, 0.99)

0.07
(0.06, 0.08)

1.0
N/A

To better illustrate the classification patten of the models developed with ultrafast MRI,
boxplots of the mean AUC values of each model during cross-validation are illustrated in
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Figure 5a. Compared with the 2D CNN and LSTM model, less dispersed AUC values and
fewer outliers indicate an improved performance of the combination. The distribution of
predicted risk scores of the combined model in relation to malignancy is shown in Figure 5b.
Malignant lesions were shown to likely be predicted with a higher risk score compared
with benign lesions. The mean risk scores for malignant and benign lesions were 0.588
(95% CI: 0.582, 0.594) and 0.294 (95% CI: 0.291, 0.297), respectively.

Figure 5. The boxplots of the mean AUC values of each model on the TWIST validation set (a)
and the distribution of AI risk scores predicted by the combined model for benign and malignant
lesions (b).

4. Discussion

In this study, we investigated the possibility of using a deep learning model for breast
lesion discrimination with only ultrafast MRI as input. Motivated by recently discovered
kinetic features derived from ultrafast MRI, we looked at the effectiveness of deep learning-
based automatic pharmacokinetic analysis of the wash-in phase and possible improvements
to morphological analysis. For this purpose, a 2D CNN model and an LSTM model were
first trained and evaluated separately for the classification of benign and malignant lesions,
and then combined by the fusion of the predicted scores of each model.

The results showed that deep learning models could achieve high performance for
lesion differentiation with only ultrafast breast MRI. The models developed with ultrafast
MRI had a significantly higher mean AUC values compared with the model developed
with standard DCE-MRI. Meanwhile, the combined model achieved the highest mean
AUC value during repeated straited cross-validation. Even though the mean AUC value
of the LSTM model was lower than the 2D CNN model, after integrating them together,
the temporal information extracted by the LSTM model turned out to have added value
for diagnostic performance. This upward trend was observed with both ultrafast and
standard MRI.

Machine learning was also adopted for malignancy prediction in previous studies
with different sequences. Platel et al. [32] used 5 morphological features and 18 uptake-
curve features extracted from ultrafast MRI to train support vector machine (SVM) models.
The AUC of the SVM models trained with only kinetic features or only morphologi-
cal features were 0.80 and 0.79, respectively, while the SVM model trained with all the
23 handcraft features together showed an AUC of 0.85. These results are consistent with
our findings, indicating that both temporal and morphological features are indispensable
for the development of breast lesion classification models in ultrafast MRI. In another study,
Dalmış et al. [24] developed a deep-learning-based classifier which takes image patches
from TWIST, T2w, DWI sequences, and patient information as input. When only image
patches were used, an AUC of 0.83 was achieved, while with combining all imaging and
patient information, the AUC was 0.85. Pötsch et al. [22] extracted 86 pharmacokinetic en-
hancement features from TWIST sequences to train a multilayer perceptron (MLP) artificial
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neural network. The MLP model achieved an AUC of 0.83 on the test dataset and could
help avoid 14.5% biopsies without false negatives. Radiomics has also been used for breast
lesion differentiation [33–35].

Compared with previous studies developing classifiers with handcraft or radiomics
features, in this work, we used a 2D CNN model and an LSTM model to automatically
extract morphological and kinetic features separately. Instead of highly depending on the
manually delineated lesion area for feature extraction, a big advantage of the proposed
method is that neither manual annotation nor dedicated segmentation of the lesions are
required before analysis. The models take raw images as input and provide predictions
based on the content only; therefore, it could be easily integrated in the clinic workflow
and works fully automated.

What should also be noticed is that there is no associate relationship of identification
ability between machine learning models and radiologists. Radiologists still rely more on
high-resolution T1-weighted sequences for malignancy discrimination, which intuitively
contradicts the finds of this paper. A possible explanation for the inferior performance
of the standard DCE-MRI-based models might be that temporal analysis of the TWIST
sequence with the LSTM model made up for the defect of morphological analysis caused
by insufficient spatial resolution.

Despite these promising results achieved with ultrafast MRI sequences, we can easily
envision the improvements when taking other sequences into consideration. For accurate
diagnosis, delayed sequences are indispensable in clinical practice, especially the wash-out
phase in DCE-MRI which provides irreplaceable functionality of indicating malignancy.
However, in the trend of shortening MRI protocol for screening, identifying the malignancy
of a tumor from an easily accessible sequence with a fully automatic model could provide
support for a flexible scanning strategy, in which additional MRI sequences could be added
from the protocol as needed. The flexibility of MRI could save time while maintaining the
performance of breast cancer screening.

There are still several limitations of our study. This retrospective study had a relatively
small dataset from a single medical center, and not all the benign lesions were pathologically
confirmed. Even though the dataset has been randomly split 100 times to illustrate the
robustness of the models, a large multivendor multicenter dataset is still needed for further
validation. Another limitation of the work is that the study was conducted in a high-risk
screening population and included pre-operation examinations; therefore, the prevalence
of malignant lesions in our study is higher compared with the general screening population,
which may weaken the model’s generalizability. Additionally, patient information has been
proven effective to improve the decision-making of classification models, and properly
integrating patient information may further improve the performance. Furthermore, we
focused on the validation of the usefulness of temporal information extracted with an LSTM
model; all the models were trained with the same hyperparameter setting and training
strategy, which may lead to an underestimated performance of the system. Finally, models
were trained and validated with the output of the primary lesion in each breast. Therefore,
the predictions only revealed the status of primary lesions but overlooked associated
lesions. Object detection models, which could locate each single lesion, may help address
this problem.

5. Conclusions

In conclusion, deep learning models achieved promising results for the fully automatic
differentiation of benign and malignant lesions. Kinetic information extracted by LSTM
model has added value in the 2D CNN-based morphology analysis.
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