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Simple Summary: The assessment of tumor-infiltrating lymphocytes (TILs) is gaining acceptance as a
robust biomarker to help predict prognosis and treatment response. We evaluated TILs in whole-slide
images (WSIs) of breast cancer tissue specimens stained with hematoxylin and eosin (H&E) from
the Cancer Genome Atlas (TCGA BRCA) and the Carolina Breast Cancer Study (UNC CBCS). Our
approach utilized computational pathology to characterize the abundance and spatial distribution
of TIL infiltrates in breast cancer WSIs. This work (1) examines the relationship between the global
abundance and spatial features of TIL infiltrates with clinical outcomes in order to (2) evaluate their
significance as prognostic biomarkers in a multifactorial analysis of progression-free interval in the
TCGA BRCA and UNC CBCS datasets. Our findings present a paradigm for pathologists to assess
the risk of recurrence in breast cancer by using computational pathology to spatially map, quantify,
and interpret TILs in the tumor microenvironment.

Abstract: Tumor-infiltrating lymphocytes (TILs) have been established as a robust prognostic
biomarker in breast cancer, with emerging utility in predicting treatment response in the adju-
vant and neoadjuvant settings. In this study, the role of TILs in predicting overall survival and
progression-free interval was evaluated in two independent cohorts of breast cancer from the Cancer
Genome Atlas (TCGA BRCA) and the Carolina Breast Cancer Study (UNC CBCS). We utilized ma-
chine learning and computer vision algorithms to characterize TIL infiltrates in digital whole-slide
images (WSIs) of breast cancer stained with hematoxylin and eosin (H&E). Multiple parameters were
used to characterize the global abundance and spatial features of TIL infiltrates. Univariate and
multivariate analyses show that large aggregates of peritumoral and intratumoral TILs (forests) were
associated with longer survival, whereas the absence of intratumoral TILs (deserts) is associated with
increased risk of recurrence. Patients with two or more high-risk spatial features were associated with
significantly shorter progression-free interval (PFI). This study demonstrates the practical utility of
Pathomics in evaluating the clinical significance of the abundance and spatial patterns of distribution
of TIL infiltrates as important biomarkers in breast cancer.
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1. Introduction

Our understanding of immune interactions in oncology has evolved considerably
since Virchow associated inflammation with cancer [1]. The field of tumor immunology
gained further momentum after Coley witnessed tumor regression associated with a Strep-
tococcal skin infection and tumor shrinkage with injection of bacterial products [1–8]. These
observations were followed by Ehrlich proposing the concept of host immune responses
fighting against cancer and the association of intratumoral lymphocytic infiltration with
prolonged survival in cancer patients reported by MacCarty and Mahle [2,9]. In the last
100 years, numerous studies have investigated the relationship of tumor immunosurveil-
lance and patient survival in various types of cancers, which have shown that innate
and adaptive immune responses directly and indirectly influence oncogenesis and cancer
progression [5,6,8,10–13].

This study utilizes computational pathology to study tumor immune interactions in
digital hematoxylin and eosin (H&E) whole-slide images (WSIs) of breast cancer. Machine
learning and computer vision were used to perform Pathomics image analysis to identify
tumor regions and lymphocytic infiltrates in breast cancer images. We analyzed breast
cancer H&E WSIs from two cohorts, the Cancer Genome Atlas (TCGA BRCA) and Carolina
Breast Cancer Study at the University of North Carolina at Chapel Hill (UNC CBCS). Our
goal was to investigate the relationship between the abundance and spatial distribution
of tumor-infiltrating lymphocytes (TILs) with clinical outcomes in two cohorts that vary
greatly in composition. The TCGA BRCA consists of mostly Caucasian patients with
larger tumors in advanced stages of breast cancer, which have been aggregated across
geographical location. In contrast, the UNC CBCS cohort was designed to study breast
cancer in a predominantly younger and African American population in earlier stages of
disease since these two groups disproportionately experience worse outcomes.

We previously analyzed several thousands of H&E WSIs across distinct types of
cancer from several organ sites [14–16] with a first-generation lymphocyte detection model,
developed with machine learning and computer vision. The lymphocyte model utilizes
convolutional neural networks to identify two or more lymphocytes in tiled 50 square
micron image patches to generate spatial maps of lymphocytic infiltrates in 13 different
types of cancer [16]. The performance of our model has been further improved through
additional training to decrease known false positives and negatives to extend its use to map
tumor immune interactions in 23 types of cancer [14–16]. A similar approach was used
develop a Pathomics tumor segmentation model to delineate tumor regions of breast cancer
in H&E WSIs. As shown in Figure 1, the outputs of these machine learning algorithms
were combined to generate Tumor-TIL maps in 1021 diagnostic H&E WSIs of breast cancer
in TCGA BRCA, which were made publicly available [17].

In this study, the global percentage of intratumoral TILs and the spatial features of TIL
infiltrates were correlated with survival and risk of recurrence in TCGA BRCA and UNC
CBCS. The global TIL infiltrate percentage in breast cancer regions is based on dividing the
number of patches classified as positive for lymphocytes and tumor by the number of total
tumor patches to estimate the area of a tumor that is infiltrated by TILs. The computed
global TIL infiltrate percentage was correlated with progression-free interval (PFI) and
survival in the same manner as the previous study [17].

Pathologists typically describe the constituents, abundance, and spatial distribution
of inflammatory infiltrates during histopathologic evaluation of formalin-fixed paraffin-
embedded (FFPE) cancer tissue specimens stained with H&E. The magnitude of inflam-
matory responses is described with terminology such as “minimal, mild, moderate, and
severe” or graded as “1+, 2+ or 3+”. Lymphocytic infiltrates are found in many types of
malignant neoplasms, including breast, colon, lung, ovarian, and endometrial cancers,
as well as melanoma and sarcoma, where their presence has been associated with pro-
longed survival [5,6,9,12,13,18–20]. When the presence of lymphocytic infiltrates is used
to classify tumors such as medullary breast cancer, the term “medullary” is used to com-
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municate a relatively favorable prognosis that is based on the presence of lymphocytic
infiltrates [5,20,21].
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Figure 1. Machine learning and computer vision in computational pathology to spatially map tu-
mor-infiltrating lymphocytes (TILs) in breast cancer. Top panels show tumor detection presented as 
a spatial probability heatmap to evaluate algorithmic performance (non-tumor tissue colored blue), 
which is then overlaid on the original H&E WSI. Bottom panels show automated lymphocyte de-
tection presented as a spatial probability heatmap (non-lymphocyte tissue colored blue) and then 
overlaid on the original H&E WSI. Combining the outputs of tumor and lymphocyte detection gen-
erates Tumor-TIL maps to evaluate the abundance and spatial distribution of peritumoral and in-
tratumoral TILs (tumor colored yellow, lymphocytes colored red, and background non-tumor/non-
lymphocyte tissue colored gray). This Tumor-TIL map shows the presence of peritumoral TILs with 
a paucity of intratumoral TIL infiltrates. Image: BRCA TCGA-B6-A0I1-01Z-00-DX1, high-grade 
breast cancer; cancer detection with ResNet model; lymphocyte detection with VGG16 model. 
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TILs in H&E tissue sections of breast cancer, the TIL Working Group of the International 
Immuno-oncology Biomarkers Working Group published guidelines for pathologists to 
score the percentage of stromal TILs (sTILs) to go beyond qualitative descriptions [12,43]. 
Pathologists are instructed to manually assess sTILs in breast cancer in H&E tissue speci-
mens through a series of steps that include identification of cancer-associated stroma 
within a tumor region, discerning the type of inflammatory infiltrate, and reporting the 
percentage of cancer-associated stroma infiltrated by mononuclear lymphoplasmacytic 
immune cells [12,43,45,46]. Intraepithelial TILs and sTILs in direct contact with cancer 
cells are excluded. 
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Figure 1. Machine learning and computer vision in computational pathology to spatially map
tumor-infiltrating lymphocytes (TILs) in breast cancer. Top panels show tumor detection presented
as a spatial probability heatmap to evaluate algorithmic performance (non-tumor tissue colored
blue), which is then overlaid on the original H&E WSI. Bottom panels show automated lymphocyte
detection presented as a spatial probability heatmap (non-lymphocyte tissue colored blue) and then
overlaid on the original H&E WSI. Combining the outputs of tumor and lymphocyte detection
generates Tumor-TIL maps to evaluate the abundance and spatial distribution of peritumoral and
intratumoral TILs (tumor colored yellow, lymphocytes colored red, and background non-tumor/non-
lymphocyte tissue colored gray). This Tumor-TIL map shows the presence of peritumoral TILs with a
paucity of intratumoral TIL infiltrates. Image: BRCA TCGA-B6-A0I1-01Z-00-DX1, high-grade breast
cancer; cancer detection with ResNet model; lymphocyte detection with VGG16 model.

These findings have led to the development and clinical adoption of various forms
of immunotherapy in recent decades [19,22–33] and a clinical need to assess lymphocytic
infiltrates in solid tumors [6,12,25,34–44]. In an effort to uniformly assess and quantify
TILs in H&E tissue sections of breast cancer, the TIL Working Group of the International
Immuno-oncology Biomarkers Working Group published guidelines for pathologists to
score the percentage of stromal TILs (sTILs) to go beyond qualitative descriptions [12,43].
Pathologists are instructed to manually assess sTILs in breast cancer in H&E tissue spec-
imens through a series of steps that include identification of cancer-associated stroma
within a tumor region, discerning the type of inflammatory infiltrate, and reporting the
percentage of cancer-associated stroma infiltrated by mononuclear lymphoplasmacytic
immune cells [12,43,45,46]. Intraepithelial TILs and sTILs in direct contact with cancer cells
are excluded.

Several studies have clinically established TILs as a robust prognostic biomarker in
triple-negative breast cancer (TNBC) and Her2+ breast cancer [42,47–52], which endorse
the need to incorporate TILs as part of standard clinical histopathologic examination of
TNBC [53–56]. TILs have also been evaluated in breast cancer as a predictive biomarker in
the adjuvant and neoadjuvant settings leading to interest in using TILs to monitor treatment
response [7,12,40,42,43,45–48,54–57]. The recognized importance of TILs in breast cancer
will most likely require TILs to be reported in solid tumors of the skin, lung, gastrointestinal
tract, and gynecologic tract as well [12,40]. However, there are pitfalls and challenges
associated with the assessment of sTILs that may impact the prediction of outcomes,
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which are primarily due to the heterogeneity of inflammatory infiltrates and their spatial
distribution in breast cancer [40,58].

Mapping TILs in thousands of breast cancer WSIs has revealed a fascinating spectrum
of global spatial patterns of lymphocytic immune responses that is not readily evident
during traditional light microscopy. Our computational approach that generates Tumor-TIL
maps is designed to help interpret global tumor immune interactions at the tissue level. We
designed our approach to provide an immediate global view of the relative abundance and
spatial heterogeneity of TIL infiltrates to complement and support the tissue/cellular-level
evaluation of sTILs endorsed by the TIL Working Group. By providing tissue-level insights
with visual maps that accentuate TIL infiltrates in breast cancer regions, our approach may
help minimize sampling and observer variability.

We utilized Tumor-TIL maps in TCGA BRCA and UNC CBCS to investigate the clinical
significance of TIL infiltrates in spatially distinct geographical regions of breast cancer.
We adapted concepts and terminology from ecology to characterize the magnitude and
presence of spatial = distribution of (1) intratumoral TIL infiltrates (forests), (2) peritumoral
TILs at the invasive margin, (3) tertiary lymphoid aggregates beyond the vicinity of the
leading edge of the tumor, and (4) immune cold regions (deserts). Univariate and multi-
variate analyses in the TCGCA BRCA and UNC CBCS cohorts were used to determine the
relationship between the abundance and spatial features of TIL infiltrates, cancer progres-
sion, and survival. This work presents a simple Pathomics approach to clinically interpret
the abundance and spatial distribution of TILs as biomarkers in breast cancer to potentially
predict tumor progression to identify at-risk patients and support the assessment of sTILs
in breast cancer.

2. Materials and Methods
2.1. Datasets and Algorithms

Two independent cohorts, containing demographic, hormone receptor status, and
molecular subtype data, were used in this study. Specifically, high-resolution H&E WSIs
of breast cancer tissue from the TCGA BRCA [59] and the UNC CBCS [60–68] cohorts, as
described in Table 1.

Table 1. Comparison of clinical features for TCGA BRCA and UNC CBCS.

Variation TCGA BRCA
(n = 935)

UNC CBCS
(n = 1081) p-Value

Race

African American 140 (15.0%) 577 (53.4%) <0.001

Non-African American 711 (76.0%) 504 (46.6%)

Missing 84 (9.0%) 0 (0%)

Stage

Stage I 162 (17.3%) 417 (38.6%) <0.001

Stage II 545 (58.3%) 499 (46.2%)

Stage III 213 (22.8%) 138 (12.8%)

Stage IV 15 (1.6%) 27 (2.5%)

Grade

1 N/A 199 (18.4%) N/A

2 N/A 377 (34.9%)

3 N/A 478 (44.2%)

Missing 935 (100%) 27 (2.5%)
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Table 1. Cont.

Variation TCGA BRCA
(n = 935)

UNC CBCS
(n = 1081) p-Value

ER by IHC

Negative 197 (21.1%) 249 (23.0%) 0.676

Positive 692 (74.0%) 831 (76.9%)

Missing 46 (4.9%) 1 (0.1%)

PAM50 Subtype

Basal 167 (17.9%) 245 (22.7%) 0.0383

Her2 76 (8.1%) 82 (7.6%)

LumA 489 (52.3%) 553 (51.2%)

LumB 203 (21.7%) 201 (18.6%)

Percent Infiltration (%)

Mean (SD) 7.7 (10.4) 5.6 (10.2) <0.001

Median [Min, Max] 3.8 [0, 64.2] 1.9 [0, 88.9]

TIL Class

Low Infiltration 648 (69.3%) 806 (74.6%) 0.01

High Infiltration 287 (30.7%) 275 (25.4%)

“TIL Sensitive”

No 477 (51.0%) 599 (55.4%) 0.217

Yes 430 (46.0%) 481 (44.5%)

Missing 28 (3.0%) 1 (0.1%)

Progression Events

Number with Event 119 (12.7%) 164 (15.1%) 0.131

Median days to event [Min,Max] 791 (21,5117) 1048.5 (161,3274) 0.0288

2.1.1. The TCGA BRCA Dataset

The TCGA BRCA cohort contains 1098 patients with 1021 diagnostic WSIs of histologic
breast specimens. For this study, we excluded patients if diagnostic H&E WSIs were flagged
by a pathologist as having scant tumor or significant slide preparation artifact. Samples
with normal-like subtype were also excluded, bringing our study cohort to 934 samples.
All patients were classified by PAM50 subtypes (Basal: 167, Her2: 76, LumA: 489, LumB:
212) and IHC-derived estrogen receptor status (Negative: 197, non-Negative: 692) [69,70].
Patient stage at primary diagnosis was also recorded (Stage I: 162, Stage II: 545, Stage III:
213, and Stage IV: 15). For survival analysis, we utilized Progression-free interval (PFI) [71]
to study 117 events after filtering the cohort.

2.1.2. The UNC CBCS Dataset

The UNC CBCS Phase 3 cohort contains 2998 cases with 1138 diagnostic WSIs from
representative blocks selected by a pathologist and associated follow up recurrence and
survival data. The date of diagnosis, stage, and recurrence were abstracted from medical
records. Date of death data is limited as patients were diagnosed between 2008 and 2013
and are followed by medical record. The UNC CBCS diagnostic WSIs were processed
with the same machine learning algorithms that were used to analyze the TCGA BRCA
WSIs. Cases with scant tumor, slide preparation artifacts, and normal-like subtype samples
were excluded, leaving 1081 cases in the UNC CBCS cohort. Samples were classified by
PAM50 subtypes (Basal: 245, Her2: 82, LumA: 553, LumB: 201) and immunohistochem-
istry (IHC)derived estrogen receptor status (Negative: 249, non-Negative: 831). Patient
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stage at the time of diagnosis was also recorded (Stage I: 417, Stage II: 499, Stage III: 138,
Stage IV: 27).

2.1.3. Selection of Validation (“TIL-Sensitive”) Cohort

Initial analyses of the association of TIL infiltrate percentage with patient outcomes in
the TCGA BRCA cohort showed varying prognostic power based on molecular subtype
and estrogen hormone receptor status. Given that the cohort composition between TCGA
and UNC CBCS is significantly different in terms of tumor stage, patient race, and PAM50
subtype, we sought to ensure a like-to-like comparison of patient cohorts. Using this
information, we subsampled a validation cohort of patients from the overall UNC CBCS
cohort who were likely to be “TIL sensitive”. For this purpose, we created a cohort that
included patients with negative estrogen hormone receptor status by IHC expression
and/or patients in the PAM50 LumB and Her2 molecular subtypes (TCGA n = 430, UNC
CBCS n = 481), as shown in Table 1.

2.2. Machine Learning Computational Pathology Algorithms

Tumor and lymphocyte detection in H&E WSIs of TCGA BRCA and UNC CBCS were
performed by our previously developed machine learning algorithms [15,17], as shown
in Figure 1 [15,17]. Breast cancer tumor detection utilizes a ResNet34 model that was
previously trained, tested, and validated on breast cancer images from the TCGA and the
Surveillance, Epidemiology, and End Results Program of the National Cancer Institutes
(NCI SEER) [17]. We spatially mapped lymphocytes by utilizing our VGG16 model that
was trained, tested, and validated with images from multiple tumor types [15]. The models
process tiled image patches of WSIs with specified patch size for each algorithm, determined
by optimizing algorithmic performance. Tumor detection classifies 87.5 × 87.5 µm2 patches
(equivalent to 350 × 350 square pixels at 40× magnification) and outputs the prediction as
a probability, whereas the lymphocyte model classifies 50 × 50 µm2 patches (equivalent to
200 × 200 square pixels at 40×) to predict whether a patch contains 2 or more lymphocytes.

2.2.1. Generation of Composite Tumor/TIL Maps

As shown in Figure 1, the predicted results for each patch are represented as pixels
that are stitched together to generate probability heatmaps to identify cancer regions
and lymphocytic infiltrates. The heatmaps were then binarized so that patches with
probabilities ≥50% were considered positive and <50% considered negative. The binarized
patch-level predictions are ultimately combined in a post-processing step to create Tumor-
TIL maps, where yellow represents tumor, red depicts lymphocytes, and non-tumor/non-
lymphocyte patches are represented as gray background tissue. We utilized Tumor-TIL
maps to identify and grade the abundance of intratumoral TILs, peritumoral TILs, and
tertiary lymphoid aggregates for each H&E WSI. A four-panel composite image is generated
for each case in the TCGA and UNC CBCS cohorts, which contains a low-resolution image
of the H&E WSI, tumor probability heatmap, lymphocyte probability heatmap, and the
Tumor-TIL map, as shown in Figure 2.

2.2.2. Calculation of Percent Infiltration

For each patient, TIL infiltrate percentage was calculated as the number of predicted
patches that were classified as positive for tumor and lymphocyte divided by total number
of cancer patches after scaling and alignment of the outputs from the two models. Survival
analyses were performed by scaling the percent infiltration to have a variance of 1. Patients
were then categorized as TIL-high or TIL-low based on the mean TIL infiltrate percentage
for their respective cohort, as shown in Table 1. Supplemental Figure S2 shows how
TIL infiltrate percentage stratifies the patients in the UNC CBCS dataset with respect to
molecular subtypes, estrogen receptor status, and stage of disease.
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areas devoid of TILs (deserts), and tertiary lymphoid aggregates are indicated on the left panel. In 
this example, case 131, intratumoral strength was graded as 3 with weak/absent deserts and strong 
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Figure 2. Scoring interface to characterize spatial features of TIL infiltrates in breast cancer. Compos-
ite Tumor-TIL maps of H&E WSIs of breast cancer provide the ability to estimate the abundance and
spatial distribution of TILs in a straightforward manner. Tumor-TIL maps are depicted as 4-panel com-
posites containing low-resolution H&E WSI (upper left), tumor probability heatmap (upper right),
lymphocyte probability heatmap (lower left), and the Tumor-TIL map (bottom right). Tumor and
lymphocyte probability maps use a color scale to indicate probability from 0 (blue) to 1 (red). In the
Tumor-TIL map, yellow represents tumor, red depicts lymphocytes, and non-tumor/non-lymphocyte
patches are represented as gray background tissue. Observers use this interface to characterize
the magnitude of intratumoral and peritumoral TIL infiltrates on a scale of 0 (none/absent) to 3
(marked). The presence of large intratumoral aggregates (forests), immune cold areas devoid of TILs
(deserts), and tertiary lymphoid aggregates are indicated on the left panel. In this example, case 131,
intratumoral strength was graded as 3 with weak/absent deserts and strong forests, peritumoral
strength was graded as 3, and tertiary peritumoral aggregates as absent. Poor quality images and
cases where the algorithms did not properly generate a Tumor-TIL map were flagged and excluded.

2.2.3. Spatial Feature Scoring

The Tumor-TIL maps revealed fascinating and unique global spatial patterns of the
distribution of TIL infiltrates in each WSI of breast cancer, as shown in Figure 2 and Supple-
mental Figure S1. To characterize these patterns, concepts and terminology were adapted
from ecology to describe high-level spatial features of tumor immune interactions that
were observed in each case. Candidate features were identified through visual inspection
of 1000+ Tumor-TIL maps by two pathologists and one MD/PhD student. Spatial features
were defined and graded by the criteria shown in Table 2 by three independent observers
at the graduate student trainee level, who were trained by the study pathologists.

A web interface was developed to record characterization of the spatial features of
Tumor-TIL maps, as shown in Figure 2. The web tool was also used to flag or exclude
cases with poor tissue quality or suboptimal algorithmic performance. The goal was to
characterize the abundance and spatial distribution of intratumoral and peritumoral TILs,
as well as tertiary lymphoid aggregates in the surrounding tissue microenvironment beyond
the invasive margin. Figure 3 depicts how we evaluated intratumoral strength, intratumoral
forests, intratumoral deserts, peritumoral strength, and lymphoid aggregates. Supplemental
Figure S1 shows representative Tumor-TIL maps demonstrating variations in TIL deserts,
forests, and lymphoid aggregates. Table 2 provides a description of the criteria used to score
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the spatial features of TIL infiltrates. All three independent observers used the web tool to
score all “TIL-sensitive” cases from the TCGA BRCA and UNC CBCS cohorts. Consensus
scores were generated for each feature on each image by taking the median value of the
three individual scorers for each feature.
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Figure 3. Representative Tumor-TIL maps from TCGA BRCA demonstrating the scoring paradigm
for spatial features of TIL infiltrates. Scores of 0, 1, 2, and 3 correspond to terminology used by
pathologists for grading, such as minimal, mild, moderate, and severe and/or 1+, 2+, and 3+.
Detailed descriptions for scores (columns) for each category (rows) are found in Table 2. Red depicts
lymphocytes, yellow depicts tumor regions, and gray represents non-tumor and non-lymphocyte
background tissue regions.
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Table 2. Descriptions of spatial features of Tumor-TIL maps and scoring criteria. Representative
images for each score and category are shown in Figure 3.

Scoring
Category Score Range Score Criteria

Intratumoral
Strength 0–3

0 No patches positive for TILs present within the tumor region

1 Low intratumoral TIL infiltration (weak) with scant/limited TIL-positive
patches within tumor region

2
Intermediate level of TIL infiltration (moderate) with variable spatial
distribution (e.g., high density of TILs in some regions and no TILs in
others, but not limited to a single focus)

3 High intratumoral TIL infiltration (strong) with numerous and diffuse
TIL-positive patches

Intratumoral
Deserts

0–1

0 small regions of tumor without TIL patches (absent) OR focal areas tumor
with little to no TIL patches (weak) (≤10% of tumor area)

1 significant intratumoral regions completely clear of TIL infiltrate (≥25% of
tumor area)

Intratumoral
Forests

0–1
0

TIL infiltrate either not present (absent) or TIL-positive patches are evenly
distributed alongside TIL-negative tumor patches (weak) with 1–2 small
confluent groups of TILs

1 Confluent groups of TILs spanning ≥10% of tumor area present (strong)

Peritumoral
Strength

0–3

0 No patches positive for TILs present in the region of the invasive
boundary (absent)

1 Low peritumoral TIL infiltration with scant/scattered TIL-positive patches
at the boundary of tumor and adjacent normal tissues (weak)

2 Intermediate level of TIL infiltration (moderate)

3
High peritumoral TIL infiltration (marked) with nearly confluent
accumulation of TIL-positive patches surrounding the tumor at the
invasive boundary

Tertiary
Lymphoid
Aggregates

0–1
0 No significant presence of TIL clusters or minimal focal aggregates beyond

the peritumoral region

1 Multifocal lymphoid aggregates exist beyond the peritumoral region

2.3. Assessment of Outcomes in Patient Studies with Computed TIL Infiltration

We first sought to replicate our previous findings by using progression-free interval
(PFI) instead of overall survival (OS) [71]. PFI measures the length of time that a patient
has no tumor-associated event. An event is registered with progression of disease, local
recurrence, distant metastasis, new primary tumors (all sites), or death without new tumor
event. PFI is a preferable clinical metric due to the relatively short follow up times for
patients in the TCGA BRCA cohort. This method of tracking clinical performance is the
same metric utilized in the UNC CBCS, which permitted external validation of comparable
metrics. Kaplan–Meier analyses were performed to show how computed TIL infiltrate
percentage is useful for predicting survival stratified by molecular subtype in the UNC
CBCS dataset, as shown in Figure 4.
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Figure 4. Comparison of computed intratumoral TIL infiltrate percentage in TCGA BRCA and
UNC CBCS and relationship to progression-free interval (PFI). The median TIL infiltrate percentage
was computed for each study to distinguish cases as high or low TIL class; percent infiltration was
determined using VGG TIL detection algorithm. (a–c) Percentage of patient strata classified as high
and low TILs is shown for the TCGA BRCA and UNC CBCS studies grouped by (a) PAM50 molecular
subtype, (b) estrogen receptor (ER) status, and (c) tumor stage. Blue denotes TIL class Low and Red
denotes TIL class High. (d,e) Kaplan–Meier plots to show disease progression in the UNC CBCS
cohort after dividing patients into high and low TIL classes around the mean TIL infiltrate percentage
for the (d) entire UNC CBCS cohort and (e) cases split by PAM50 molecular subtype. Log-rank test
was used to assess survival differences. *** = p < 0.001, ** = p < 0.05, * = p < 0.01.
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2.4. Evaluating Risk with Spatial Feature Inclusion

Each consensus spatial feature was assessed for interrater agreement using Fleiss’
Kappa and then used in a univariate Cox Regression model to identify whether the presence
of a particular feature increased or decreased risk of recurrence, as shown in Supplemental
Figure S3. Despite prognostic impact in the TCGA BRCA cohort, tertiary lymphoid ag-
gregates were excluded from “high-risk features” scoring due to low interrater agreement
(κ = 0.37). A Fleiss’ Kappa score of 0.4–0.6 was considered moderate agreement; 0.61–0.80,
substantial; 0.81–1.0, almost perfect agreement; below 0.5, unacceptable for downstream
analysis [72]. Spatial feature scores that increased risk of recurrence were categorized as
“high-risk feature scores”. Patients were then clinically stratified based on the presence of
two or more high-risk features and grouped into high-risk and low-risk cohorts.

2.5. Statistical Tests

For all p-value representations throughout this study, *** = p < 0.001, ** = p < 0.05,
* = p < 0.01. Survival experiment p-values were generated using log-rank test for Kaplan–
Meier analysis or Cox Regression Analysis. Cohort composition differences in Tables 1 and 2,
as well as the bar graphs in Figure 4a were generated using chi-squared test for independence.

3. Results
3.1. Cohort and Lymphocyte Infiltration Characteristics

We extended our previous analyses of TILs in the TCGA BRCA cohort to study TIL
infiltrates in the UNC CBCS cohort of breast cancer patients from North Carolina who were
diagnosed from 2008 to 2013. In comparing the UNC CBCS cohort to the TCGA BRCA
cohort that contains more aggressive subtypes, the UNC CBCS cohort has a distribution of
PAM50 molecular subtypes across different stages of breast cancer that is representative
of population-based sampling. Further, UNC CBCS tissue samples reflect the diversity
of race and age that were a product of its randomized recruitment design. Significant
differences between the TCGA BRCA and UNC CBCS cohorts include race, disease stage,
and distribution of PAM50 molecular subtype, as shown in Table 1.

The UNC CBCS patient population was 53.4% African American (vs. 15% in TCGA).
The UNC CBCS cohort also has a larger percentage of lower stage tumors, particularly
stage I (38.6% vs. 17.3% in TCGA), in comparison to the TCGA BRCA cohort that consists
of later stage tumors than the general population. These differences in cohort composition
resulted in having complementary datasets. For both cohorts, we calculated TIL infiltrate
percentage and grouped patients into high and low TIL infiltration classes around the
median. The median percent infiltration for TCGA BRCA was 3.67% (min: 0, max: 64.23)
and 1.82% (min: 0, max: 88.90) in the UNC CBCS cohort. The mean TIL infiltrate percentage
was 7.56% in TCGA BRCA and 5.55% in UNC CBCS, as shown in Figure 4. The proportion
of cases that were classified as TIL class Low was 69.3% in TCGA in comparison to 74.6%
in UNC CBCS.

We also characterized differences in TIL infiltrate percentage in the UNC CBCS cohort
with respect to molecular subtypes and estrogen receptor status. Using chi-squared anal-
ysis, the percentage of patients categorized as TIL class High and TIL class Low did not
significantly differ between the TCGA BRCA and UNC CBCS datasets in the Basal, Her2,
and ER hormone receptor negative cohorts. Figure 4 also shows that TIL infiltration class
by tumor stage was also consistent between study populations, indicating that study level
differences will not confound the evaluation of the impact of TIL infiltration on PFI.

3.2. Computed Lymphocyte Infiltration from Tumor-TIL Maps Strongly Predicts PFI and Survival

The percent infiltration in the TCGA BRCA and UNC CBCS cohorts were significantly
associated with increased PFI in multivariate analysis with PAM50 molecular subtype and
tumor stage, as shown in Figure 4. When UNC CBCS cases were split into TIL class High
and TIL class Low, we did not observe a difference in length of progression-free interval.
However, TIL class High was associated with longer survival in basal, Her2, and LumB
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molecular subtypes in the UNC CBCS cohort when stratified by PAM50. The forest plots
of multivariate Cox proportional Hazard Ratio (HR) show that percent infiltration as a
continuous variable is correlated with prolonged progression-free interval in the UNC
CBCS cohort in all molecular subtypes except LumA and stages II-IV.

To further compare the two study populations, we defined TIL responsive subsets
defined as estrogen receptor negative by IHC or PAM50 molecular subtype of LumB or Her2,
as shown in Figure 5. In predicted TIL-sensitive cases in both the TCGA BRCA (n = 428)
and UNC CBCS (n = 491) cohorts, both the continuous TIL infiltration and categorical
TIL status were robustly associated with outcomes. (Figure 5b,d). TIL class High was
significantly associated with increased survival.
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Figure 5. TIL infiltration remains strongly predictive of survival across TCGA BRCA and UNC CBCS.
(a) Forest plots of hazard ratios (estimates and 95% CIs) from a multivariate Cox proportional hazards
model of progression-free interval (PFI) incorporating PAM50 subtype and tumor stage. Vertical
dotted line indicates a hazard ratio of 1. TIL infiltrate percentage ranges from 0% to 64.2% with SD of
10.4%. TIL infiltrate percentage is scaled by SD for all Cox Regression Analyses. (b) Kaplan–Meier
survival analyses of TCGA BRCA patients after splitting into high and low TIL classes around the
mean percent infiltration. (c) Forest plot of hazard ratios from a multivariate Cox proportional hazards
model of PFI in the UNC CBCS including PAM50 subtype and tumor stage. TIL infiltration was
calculated as a continuous variable with a range of 0% to 88.9% and scaled by SD (0.1), AIC: 2121.57.
The dotted line indicates a hazard ratio of 1. The Concordance Index shows how much variance of
risk is explained by the model, where 1 encapsulates all risk whereas 0.5 is random. (d) Kaplan–Meier
survival analyses after dividing UNC CBCS patients into high and low TIL infiltration groups around
the mean TIL infiltrate percentage. *** = p < 0.001, ** = p < 0.05, * = p < 0.01.
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3.3. Spatial Feature Interrater Agreement and Feature Correlation

Once we annotated the spatial features listed in Table 2, we assessed interrater agree-
ment, shown in Supplemental Figure S2. We measured the reliability of the agreement
between observers by using Fleiss’ kappa and show moderate to substantial agreement
across all categories, with overall kappa scores ranging from 0.56 to 0.68. We note that
there is slightly higher agreement for all five spatial features in TCGA BRCA compared to
UNC-UNC CBCS, where the largest difference is observed in identifying and grading the
presence of tertiary lymphoid aggregates. We correlated spatial metrics and percent infil-
tration to observe strong correlations between the magnitude of intratumoral TIL infiltrates
and global TIL infiltration percentage.

3.4. Relationship between Percent TIL Infiltration and Spatial Features

The distribution of spatial feature scores differed between the “TIL sensitive” subsets of
the TCGA BRCA and UNC CBCS cohorts, as seen in Table 3. Spatial features describing TIL
infiltrates were positively correlated with percent TIL infiltration, whereas TIL deserts (the
absence of TILs) were negatively correlated with percent TIL infiltration. The percentage
of cases from the TCGA cohort with high intratumoral strength (scores of 2 or 3) was
higher than the UNC CBCS cohort, which was also evident in the percentage of cases with
intratumoral TIL forests. The percentage of cases with intratumoral TIL deserts peritumoral
lymphoid aggregates was also higher in the UNC CBCS cohort. Peritumoral strength was
comparable between cohorts.

Table 3. Comparison of spatial features in the “TIL sensitive” cohorts of TCGA BRCA and UNC-
UNC CBCS.

Feature TCGA BRCA
(n = 430)

UNC CBCS
(n = 481) p-Value

Percent Infiltration (%)

Mean (SD) 10 (11.9) 7.89 (12) 0.00725

Median [Min, Max] 5.4 [0, 64.2] 3.3 [0, 88.9]

TIL Class

Low 247 (57.4%) 298 (62.0%) 0.187

High 183 (42.6%) 183 (38.0%)

Intratumoral Strength

0 4 (0.9%) 11 (2.3%) <0.001

1 247 (57.4%) 282 (58.6%)

2 113 (26.3%) 64 (13.3%)

3 42 (9.8%) 34 (7.1%)

Unscored 24 (5.6%) 90 (18.7%)

TIL Forests

Absent 188 (43.7%) 260 (54.1%) <0.001

Present 218 (50.7%) 131 (27.2%)

Unscored 24 (5.6%) 90 (18.7%)

TIL Deserts

Absent 260 (60.5%) 191 (39.7%) <0.001

Present 146 (34.0%) 200 (41.6%)

Unscored 24 (5.6%) 90 (18.7%)
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Table 3. Cont.

Feature TCGA BRCA
(n = 430)

UNC CBCS
(n = 481) p-Value

Peritumoral Strength

0 9 (2.1%) 3 (0.6%) 0.365

1 149 (34.7%) 138 (28.7%)

2 146 (34.0%) 149 (31.0%)

3 102 (23.7%) 101 (21.0%)

Unscored 24 (5.6%) 90 (18.7%)

Peritumoral Aggregates

Absent 87 (20.2%) 10 (2.1%) <0.001

Present 319 (74.2%) 381 (79.2%)

Unscored 24 (5.6%) 90 (18.7%)

3.5. Presence of Two or More High-Risk Spatial Features Is Associated with Poor Prognosis

Table 4 shows how graded spatial features of TIL infiltrates were grouped to derive
high-risk features. For example, intratumoral strength categories represent intratumoral
TIL abundance. Each consensus feature was used in a univariate model to identify whether
its presence alone increased or decreased risk. Table 4 shows that increasing intratumoral
and peritumoral strength appears to be associated with longer PFI, even though these
associations were not significant in both cohorts. However, statistically significant associa-
tions showing how immune cold TIL deserts were associated with two times the risk of
progression. TIL forests were found to be associated with decreased risk or recurrence in
the TCGA BRCA cohort. In the UNC CBCS cohort, only the highest level of peritumoral
strength was significantly associated with PFI in univariate analyses.

Table 4. Univariate hazard ratios for spatial features.

Metric Level TCGA BRCA
Hazard Ratio

UNC CBCS
Hazard Ratio

High-Risk
Feature (Score)

Intratumoral
strength

1 0.62 0.69
Low intratumoral

strength (0–1)2 0.27 0.34

3 0.19 0.28

TIL deserts Present 2.0 ** 1.2 TIL deserts present (1)

TIL forests Present 0.56 * 0.65 TIL forests absent (0)

Peritumoral
strength

1 2.07 0.49
Low peritumoral

strength (0–1)2 1.14 0.41

3 0.61 0.17 *

Lymphoid
aggregates Present 0.78 0.42 Lymphoid aggregates

absent (0)

** = p < 0.05, * = p < 0.01.

These trends and statistically significant findings were used to describe “high-risk
features,” which include low intratumoral strength (score of 0 or 1), presence of TIL deserts
(score of 1), absence of TIL forests (score of 0), low peritumoral strength (score of 0 or 1),
and absence of lymphoid aggregates (score of 0). Increasing the number of high-risk
features was associated with increased risk of recurrence. We utilized having two or more
high-risk features clinically stratify patients into high-risk and low-risk groups to predict
risk of progression in the TCGA BRCA and UNC CBCS cohorts.
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Figure 6 shows that two or more high-risk spatial features were associated with
decreased PFI in both TIL-sensitive TCGA BRCA and UNC CBCS cohorts. Our observations
are consistent with what was observed when using computed TIL infiltrate percentage, as
shown in Figure 5. The addition of continuous percent infiltration to the models shown in
Figure 6c,d did not result in a significant increase in the explanation of risk in either cohort,
as shown in multivariate analysis in Supplementary Figure S3.
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Figure 6. The presence of two or more ‘high-risk’ spatial features provides independent prognostic
information. High-risk feature scores include low intratumoral TILs (scores of 0 or 1), absence of
TIL forests (0), presence of immune cold TIL deserts (1), and low peritumoral TIL scores (0 or 1).
(a,b) Forest plots of hazard ratios (estimates and 95% CIs) from a univariate Cox proportional hazards
model of progression-free interval (PFI) comparing cases with two or more high-risk features (2+) to
those with ≤1, as shown in (a) TCGA and (b) UNC CBCS. (c,d) Forest plots of hazard ratios (estimates
and 95% CIs) from a multivariate Cox proportional hazards model of progression-free interval (PFI).
The dotted line indicates a hazard ratio of 1, where (c) TCGA and (d) UNC CBCS. *** = p < 0.001,
** = p < 0.05, * = p < 0.01.

4. Discussion

Our pan-cancer analyses of mapping lymphocytes in thousands of H&E WSIs from
different types of cancer revealed the exquisite diversity of the global abundance and
spatial patterns of TIL infiltrates [73]. As shown in Figure 3 and Supplemental Figure S1,
lymphocytic immune responses in cancer are highly complex and heterogeneous within
the spatial context of microenvironmental geography in cancer tissue specimens. We
previously investigated the spatial architecture of TILs with agglomerative clustering,
which was correlated with patient survival in multiple cancer types [16]. At that time, we
categorized the spatial patterns of immune responses in TIL maps alongside corresponding
H&E WSI by borrowing terminology used to describe peritumoral lymphocytic responses in
malignant melanoma [16]. After pairing the ability to map the distribution of lymphocytes
with breast cancer tumor segmentation, this work characterizes the spatial features of TIL
infiltrates for use alongside computed intratumoral TIL infiltrate percentages.

Combining tumor and lymphocyte detection to quantify TILs with computational
pathology is a novel approach that allowed us to confirm that greater intratumoral TIL
infiltration is correlated with increased overall survival (OS) in breast cancer in the TCGA
BRCA cohort. Stratifying by molecular subtype showed an even more pronounced effect
and statistically significant relationship between TIL infiltrate percentage and survival
within the Her2 and Luminal B subsets. However, straightforward calculation of TIL
infiltrate percentage does not capture the nuances of spatial distribution, so we decided to
revisit first principles by exploring whether we could ascertain the clinical significance of
the various types of spatially distinct TIL infiltrates that are evident in Tumor-TIL maps.
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Analyzing TILs in the H&E WSIs from the UNC CBCS cohort with the same method-
ology that was used for the TCGA BRCA dataset provided a tremendous opportunity to
fundamentally ascertain whether the spatial features of TIL infiltrates have any clinical sig-
nificance. Before we characterized spatial features, Tumor-TIL maps were used to compute
global intratumoral TIL infiltration to confirm previous observations about the prognostic
impact of TIL infiltrates stratified by molecular subtype and estrogen receptor hormone
status. Despite the differences in the TCGA BRCA and UNC CBCS cohorts in terms of
the distribution of age, race, disease stage, and distribution of PAM50 molecular subtypes
of breast cancer, many substrata showed similar overall TIL infiltration characteristics, as
shown in Figure 4. This supports the use of TILs as a biomarker to predict survival in breast
cancer patients with similar clinicopathologic characteristics since this relationship was
present when comparing two very different cohorts. Subsampling a TIL-sensitive cohort
from UNC CBCS cohort based on previous analyses of TCGA BRCA to study the presence
of high-risk spatial features alongside TIL infiltrate percentage lends support to the concept
of potentially stratifying patient care and surveillance with respect to risk of recurrence.

As stated previously, the visual assessment of TILs is challenging in cancer-associated
stromal regions, which can impact scoring sTILs and predicting outcomes on a case-by-case
basis. The primary source of scoring variability was attributed to the heterogeneity of the
global distribution of TIL infiltrates in breast cancer [40,58], which is clearly evident when
viewing conceptually simple Tumor-TIL maps. Additional factors leading to observer
variability include scoring sTILs beyond the boundary of the tumor, minimal cancer-
associated stroma, and distinguishing TILs in mixed immune infiltrates. In order to
improve consistency, evaluating multiple areas and averaging percentage scores of sTILs,
and the use of reference images have been proposed, alongside growing interest in using
computational image analysis to evaluate TILs in breast cancer [16,40,58,74–79].

Multiple studies have shown that machine learning algorithms can be used to quantify
TILs in cancer, including TNBC [40,74,75,77,80]. As we march towards precision medicine,
methods that perform tumor segmentation, subclassification of tissue compartments (e.g.,
neoplastic, dysplastic, and normal epithelium, stroma, and necrosis), and nuclear segmen-
tation and classification have been developed. However, the current limitation is validation
since it is extremely cost, time, and resource prohibitive to evaluate the performance of
algorithms in correctly identifying and classifying every cell in an image across hundreds of
thousands of cells per WSI. Nonetheless, algorithms have been developed that can compute
the number of sTILs per the TIL Working Group [74,75,77,80]. We have also developed
a method to segment and classify tumor cells, lymphocytes, and stroma (non-tumor and
non-lymphocytes) in breast cancer to extend the functionality of Tumor-TILs analyses to
identify salient regions to compute sTILs [73,81].

The premise of this study is computationally and conceptually simple in comparison.
Since Tumor-TIL maps are useful for quantifying global intratumoral TILs and identifying
spatially distinct TIL infiltrates at the tissue level, we investigated the clinical significance
of these computed parameters as Pathomics biomarkers in breast cancer. Our downstream
analyses are also straightforward since we divide the cohorts into TIL class High and TIL
class Low by using the mean value of TIL infiltrate percentage. Therefore, we present this
Pathomics workflow to (1) demonstrate how easily additional datasets of breast cancer
WSIs can be processed to (2) compute intratumoral TIL infiltrate percentages, (3) char-
acterize tissue-level spatial features of TIL infiltrates, and (4) correlate TILs with clinical,
histopathologic, and genomic data in order to (5) help clinical researchers interpret evaluate
TILs as a biomarker in cancer and (6) motivate pathologists to use Tumor-TIL maps in daily
practice to routinely evaluate TILs in every type of cancer.

Since our study encompasses the use of computational histopathology, immunohis-
tochemistry (IHC), and genomics, we focused on investigating how molecular subtype
and estrogen receptor status influence the prognostic value of TILs and spatial features to
predict survival and risk of recurrence in the basal (TNBC), HER2, and LumB subgroups.
Thus, being able to associate a significantly elevated likelihood of recurrence with TIL infil-
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trate percentage and two or more “high-risk” spatial features in Tumor-TIL maps of breast
cancer from TCGA BRCA and UNC CBCS represent important clinically useful findings.
We hope that pathologists will be motivated to use Tumor-TIL maps to evaluate the global
abundance and spatial distribution of TILs en route to evaluating sTILs, which could serve
as a potential solution to help address high observer variability and low inter-pathologist
concordance [82,83].

Even though pathologists generally note the presence and relative magnitude of
inflammatory responses after describing the histopathologic features of cancer in tissue
specimens, it is a challenging endeavor to just focus on evaluating the nuances of the
abundance and spatial distribution of TILs at the tissue level. Not only are pathologists
limited by the field of view of microscope objectives, but they would also need to evaluate
numerous fields at multiple magnifications to create mental representations resembling
Tumor-TIL maps for each case. One could potentially annotate glass slides or WSIs as
well, but it would extremely time consuming, cost prohibitive, and limited in terms of
the number of cases that could be manually examined. Furthermore, the issues of intra-
and interobserver variability would remain unresolved for the most astute pathologist
in terms of how TIL infiltrates are examined, classified, and scored. In comparison, our
algorithmic approaches uniformly analyze thousands of WSIs and generate Tumor-TIL
maps to provide immediate insight about the magnitude and spatial distribution of TILs
within the tumor microenvironment.

Furthermore, the spatial features of TIL infiltrates provide insight into the heterogene-
ity of tumor immunogenicity. Related research in lung adenocarcinoma utilized machine
learning to map spatial histology with tumor segmentation and cell segmentation in WSIs,
which was integrated with multiregion exome and RNA-sequencing (RNA-seq) data to
study geospatial immune variability [84]. High geospatial immune variability was observed
between tumor regions within each patient that was not associated with pathologic stage
in a sizable study of 970 patients, which supports our observations in Tumor-TIL maps
of breast cancer in TCGA BRCA and UNC CBCS. Interestingly, more than one immune
cold region in tumors was associated with a higher risk of relapse, independent of tumor
size, stage and number of samples analyzed per patient. In addition, low clonal neoantigen
burden was observed in tumor regions with decreased lymphocyte accumulation in tumor
adjacent stroma, which was hypothesized to be associated with immune-evading subclones
and aggressive clinical phenotypes [84].

Limitations of our study include not being able to investigate the association between
computed TIL infiltrate percentage and spatial features with histopathologic parameters
such as tumor grade due to incomplete data availability. We also could not correlate
and compare the association of TILs with chemotherapeutic treatment response in the
TCGA BRCA and UNC CBCS cohorts. We also describe both continuous and categorical
mechanisms of defining TIL-associated risk. While the continuous computed TIL infiltration
score appears to provide finer resolution, it may be more susceptible to noise from tumor
burden due to how it is calculated. The spatial features describe several characteristics of
TIL infiltrates per entire WSI, which are then grouped into a single categorical variable of
multiple “high-risk” features to increase the sensitivity of the metric.

Other limitations of this study include computing TIL infiltrate percentage and scoring
high-risk features from only one representative diagnostic WSI per patient. In surgical
pathology laboratories, multiple tissue sections are evaluated to classify, grade, and stage
each case of cancer, where the most representative slides are typically used for IHC and
molecular testing. In future work, we intend to analyze multiple diagnostic WSIs per case
in an effort to comprehensively assess the prognostic capability of the abundance and
spatial features of TILs to predict high-risk features that were not captured in this study.

The strength of our study is firmly rooted in being able to use the TCGA BRCA
and UNC CBCS datasets investigate how the global properties of TILs is associated with
clinical outcomes despite several differences in patient demographics and disease states,
which we were able to interpret within the context of other studies of TILs in breast cancer.
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For example, increased TIL infiltration was associated with treatment response in the
neoadjuvant setting in all molecular subtypes and longer survival in Her2 and TNBC in a
pooled study of several thousands of patients [47]. Notably, increased TILs served as an
adverse prognostic factor for survival in luminal Her2 negative breast cancer, indicating
the need to better understand the immunogenicity of breast cancer [47]. In a separate
study in early breast cancer, high TILs were associated with negative prognostic parameters
like increased mitotic activity/high Ki-67 proliferation and negative hormone receptor
status while being associated with favorable 5-year disease-free survival (DFS) in hormone
receptor positive/Her2-negative patients [85].

Therefore, we intend to use Tumor-TIL maps to guide the development of more sophis-
ticated methods for advanced data mining efforts to explore the relationship of TILs with
ductal histology, nuclear size (grade), and mitotic activity/Ki-67 proliferation in different
histologic and molecular types of breast cancer [20,42,86–90]. We will also explore whether
we can utilize the global abundance and spatial features of TILs to predict the composition
of TILs in terms of functional subtypes of T cells, B cells, monocytes, and NK/NKT cells
through correlation with IHC, transcriptomic, and methylomic data [5,20,47,78,91–95]. For
example, we can envision using spatial features such as the presence of tertiary lymphoid
aggregates to investigate the role of humoral responses in breast cancer and predict subtle
alterations of TILs in terms of proportions of B cells and T cells [78,93,95,96].

After characterizing these basic relationships of TILs and their spatial features in the
TCGA BRCA and UNC CBCS cohort, additional future directions will include exploring
how the exquisite diversity of tumor immune interactions in breast cancer can be utilized
to study tumor heterogeneity, heterogeneous immunogenicity, and the dynamics of pheno-
typic plasticity [8]. We also need to explore how Tumor-TIL maps can be used to elucidate
the highly complex relationship between the magnitude and spatial distribution of TIL
infiltrates with tumor mutational burden (TMB), chromosomal instability (CIN), expression
of neoantigens, and treatment response [9,97–104]. We also plan to develop automated
methods to computationally define spatial features by using traditional image analysis.
After determining the clinical significance of spatial features of TIL infiltrates in this study,
further automation of this pipeline will include computationally classifying spatial features
in future TIL analyses alongside enabling the integration of other modalities to characterize
TILs to support precision oncology applications in breast cancer and other solid tumors.

5. Conclusions

We use computational pathology to recapitulate and refine observations about the
association of intratumoral lymphocytic infiltrates with prolonged survival in cancer pa-
tients, which were first reported a century ago. We present our findings to help achieve
greater market penetration for image analysis, machine learning, and computer vision
methodology in translational biomedical research and diagnostic pathology. This study
demonstrates the use of simple computational pathology tools and statistical analyses
in characterizing the utility of TILs as a biomarker to predict clinical outcomes such as
survival and risk of recurrence in two special cohorts of breast cancer patients. We also
show the value of borrowing concepts and terminology from ecology to describe TILs in a
manner that complements the practice of pathology and support the evaluation of TILs as
a biomarker. In terms of Pathomics methodology, tumor detection and segmentation are
essential tasks for pathologists who microscopically examine histologic tissue samples for
cancer classification, grading, and staging. Similarly, classifying lymphocytes is also part
of the pathologist’s toolkit when evaluating inflammatory responses. Thus, we hope that
showing the ability to predict survival and risk of recurrence by using pathologist inspired
Pathomics tools to evaluate TIL infiltrates in two valuable cohorts of breast cancer patients
will motivate further research in tumor immunology. While we are not the first group
to demonstrate the impact of lymphocytic infiltrates on prognosis, we hope that others
might consider implementing similar Pathomics methodology to formally investigate TILs
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in breast cancer and other solid tumors within the context of the guidelines of the TIL
Working Group.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14092148/s1, Figure S1: Representative Tumor-TIL maps
demonstrating variations in TIL deserts, forests, and lymphoid aggregates. Figure S2: Spatial features pro-
vide information about spatial distribution of TILs beyond percent infiltration. Figure S3: Multivariate
analyses of spatial features and overall TIL invasion provide similar information.
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