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Simple Summary: Early and accurate assessment of endometrial cancer (EC) aggressiveness is of
utmost importance for correct treatment in affected patients. However, features of EC aggressiveness
are currently assessable only after surgery. The aim of the present study was to investigate the
role of machine learning (ML)-based classification using 18F-FDG PET parameters in preoperatively
characterizing and predicting features of EC aggressiveness. Precisely, a signature integrating the
most conventional PET parameters and clinical data was built. As a result, the described approach
allowed the characterization and prediction of the investigated features of EC aggressiveness, demon-
strating how advanced PET image analysis based on conventional quantitative parameters and ML
can complement qualitative analysis, supporting the non-invasive preoperative stratification and
treatment management of EC patients, in an interpretable and applicable way.

Abstract: Purpose: to investigate the preoperative role of ML-based classification using conventional
18F-FDG PET parameters and clinical data in predicting features of EC aggressiveness.
Methods: retrospective study, including 123 EC patients who underwent 18F-FDG PET (2009–2021)
for preoperative staging. Maximum standardized uptake value (SUVmax), SUVmean, metabolic
tumour volume (MTV), and total lesion glycolysis (TLG) were computed on the primary tumour. Age
and BMI were collected. Histotype, myometrial invasion (MI), risk group, lymph-nodal involvement
(LN), and p53 expression were retrieved from histology. The population was split into a train and
a validation set (80–20%). The train set was used to select relevant parameters (Mann-Whitney U
test; ROC analysis) and implement ML models, while the validation set was used to test prediction
abilities. Results: on the validation set, the best accuracies obtained with individual parameters
and ML were: 61% (TLG) and 87% (ML) for MI; 71% (SUVmax) and 79% (ML) for risk groups;
72% (TLG) and 83% (ML) for LN; 45% (SUVmax; SUVmean) and 73% (ML) for p53 expression.
Conclusions: ML-based classification using conventional 18F-FDG PET parameters and clinical
data demonstrated ability to characterize the investigated features of EC aggressiveness, providing
a non-invasive way to support preoperative stratification of EC patients.

Keywords: endometrial cancer; 18F-FDG PET; machine learning; prognostic value; imaging
parameters
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1. Introduction

Endometrial cancer (EC) is the most common gynecological malignancy in high- and
middle-income countries [1]. Risk of EC is positively correlated with obesity, older age, early
menarche, and late menopause [2,3]. Based on histology, EC is classified into endometrioid
tumours, which account for 70–80% of all endometrial cancers [4] and non-endometrioid
tumours (10–20%), which include serous, clear-cell, mixed cell adenocarcinomas, and other
relatively rare types of tumours with poor prognosis [5].

For the most optimal treatment planning, an early and accurate assessment of EC status
and aggressiveness is of utmost importance. EC treatment includes surgery, radiation,
standard chemotherapy, and hormonal treatment [1]. Moreover, immune checkpoint
inhibitors and VEGF inhibitors have shown encouraging results in patients with advanced
endometrial carcinoma in terms of efficacy and safety profiles [6].

Radical surgery and lymphadenectomy are generally recommended for high risk
patients. However, the correct selection of patients who might benefit from this kind
of treatment is still challenging [7] and, especially when dealing with young patients of
reproductive age, fertility sparing approaches need to be considered [8–10]. International
Federation of Obstetrics and Gynecology (FIGO) stage, histology, depth of myometrial in-
vasion (MI) [7], and lymph node (LN) metastases are the most commonly reported features
of EC aggressiveness [11–13]. Moreover, recent findings demonstrate that genomic features
may strongly influence EC behaviour and prognosis, and the molecular characterization
of EC subtypes has become part of the risk stratification of disease [14,15]. In particular,
p53 overexpression is recognized as a relevant prognostic factor in EC, being also involved
in the regulation of several genetic factors including PTEN, which has been shown to be
associated with unfavourable prognosis in various types of cancer [5,16–18].

As a limit, many of these features of aggressiveness can only be assessed after surgery,
with few of them assessable on bioptic samples. Biopsy, however, may not represent
the whole tumour heterogeneity and therefore may provide only limited information on
tumour aggressiveness before surgical treatment [19,20]. Other strategies to characterize
tumour behavior include genomic and proteomic analysis, which have improved patient
outcome by uncovering genetic and molecular signaling affecting therapeutic efficacy [21].

Conventional imaging modalities, including transvaginal ultrasound, magnetic reso-
nance imaging (MRI), and computed tomography (CT), provide detailed morphological
information on EC, with only limited assessment of functional characteristics [22,23]. 18F-
fluoro-deoxyglucose (18F-FDG) positron emission tomography (PET) has a well-established
role in the preoperative staging of EC patients, and it is included in the clinical guide-
lines on EC management [24,25]. Precisely, 18F-FDG is useful in providing a whole-body
assessment of the disease, therefore identifying possible LN involvement and distant
metastases [26–30].

Medical images are commonly evaluated with qualitative analysis by expert physi-
cians. However, the estimation of quantitative data such as imaging-derived parameters
has recently attracted great interest [31] and is currently under evaluation as an inno-
vative tool for improving disease characterization and tumour heterogeneity [32]. With
respect to 18F-FDG PET images, standardized uptake value maximum and mean (SU-
Vmax, SUVmean), metabolic tumour volume (MTV), and total lesion glycolysis (TLG) are
among the most encountered and investigated parameters, now recognized as biomarkers
of pathophysiological processes in several types of tumours [33–36]. Moreover, com-
pared to the earliest radiomic features currently under investigation, these parameters
are not limited by clinical applicability and interpretability, being: (i) easily computable
by physicians using standard clinical software during a conventional qualitative analysis,
(ii) clearly interpretable by clinicians as strictly correlated to biological tumour processes.
Contrarily, these aspects represent two of the main limitations when dealing with radiomic
features, challenging the methodology by emerging from a research topic as a useful tool in
clinical settings.



Cancers 2023, 15, 325 3 of 17

At the same time, machine learning (ML) is emerging in clinical research as a powerful
analytical approach aimed at supporting the clinical decision-making process [37]. Learning
from past patients’ records, ML models are able to predict future outcomes, such as features
of tumour aggressiveness currently assessable only after surgery, therefore supporting
more accurate stratification and treatment planning for patients.

In the present study, the role of machine learning models in preoperatively predicting
several features of EC aggressiveness will be investigated. Precisely, conventional 18F-FDG
PET parameters, including SUVmax, SUVmean, MTV, and TLG, will be first individually
investigated and then combined as ML inputs together with standard clinical data, aiming
at supporting the most optimal EC stratification and treatment planning, in the most
clinically interpretable and applicable way.

2. Materials and Methods
2.1. Patients

In this retrospective monocentric study, all consecutive patients with biopsy proven
EC who underwent to 18F-FDG PET at the Nuclear Medicine Department of IRCCS San
Raffaele Scientific Institute from August 2009 to February 2021 for staging purpose were
included. Inclusion criteria were: (i) histological diagnosis of EC, (ii) availability of 18F-FDG
PET scan performed for staging purpose. Exclusion criteria was the non-availability of
imaging, clinical, and histological data required for the analyses.

Clinical and histological data were collected, including patients’ age and BMI, his-
tological subtype (endometrioid vs. non-endometrioid), presence of deep MI defined as
MI > 50%, EC risk group, presence of LN involvement, and expression of p53 genetic
marker (overexpressed: mutational-type; null: wild-type).

Patients were divided into a low risk group (low and intermediate risk) and a high risk
group (high-intermediate and high risk), according to the ESMO-ESGO-ESTRO consensus
conference classification [24].

Due to the multiple predictions performed in the study regarding the different features
of EC aggressiveness, different cohorts were generated based on the availability of specific
histological data.

This study was approved by the Institutional Ethics Committee of IRCCS San Raffaele
Scientific Institute (138/INT/2021), and all patients gave their informed consent to partici-
pate to the study. All procedures were carried out in accordance with the Declaration of
Helsinki (1964) and its later amendments.

2.2. 18F-FDG PET Protocols

Patients’ preparation, radiotracer injection, and acquisition protocol were performed
as previously described [22]. In relation to the retrospective design of the study, different
tomographs were used: (1) a fully hybrid 3T PET/MRI system (SIGNA PET/MRI; General
Electric Healthcare, Waukesha, WI, USA), (2) a Discovery ST (General Electric Health-
care), (3) a Discovery STE (General Electric Healthcare), (4) a Gemini-GXL (Philips Medical
Systems, Eindhoven, The Netherlands), and (5) a Discovery 690 (General Electric Health-
care). The PET scans were performed in 2-D mode (4 min per bed position) with the
Discovery ST, while 3-D mode acquisition was used with the PET/MRI (4 min per bed
position), Discovery STE (2.5 min per bed position), Discovery 690 (3 min per bed position),
and Gemini GXL (2 min per bed position). PET raw data were corrected for random, scatter
and attenuation, and reconstructed. To overcome the impact of PET image acquisition and
reconstruction factors (scanner effects) on imaging parameters, the ComBat harmonization
method and tool [38] were used.

2.3. 18F-FDG PET Qualitative and Semiquantitative Image Analysis

Images read-out was performed by two experienced Nuclear Medicine physicians
on the Advanced Workstation (AW, General Electric Healthcare, Waukesha, WI, USA),
allowing the visualization of PET images in axial, coronal, and sagittal planes. 18F-FDG
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PET images were qualitatively interpreted, and a consensus on each scan included in the
study was reached by the readers. 18F-FDG uptake was considered pathological when
higher compared to the physiological activity. In cases of pathological 18F-FDG uptake, the
exact anatomic location was defined based on morphological images. Regarding semiquan-
titative analysis, volumes of interest (VOIs) showing pathological radiotracer uptake on
the primary tumour were semi-automatically defined on transaxial PET images. Three-
dimensional volumetric measurements of the following PET semiquantitative parameters were
assessed: (1) SUVmax, (2) SUVmean, (3) MTV, and (4) TLG. For those PET scans not show-
ing any 18F-FDG pathological uptake corresponding to the primary tumour, an arbitrary
value of 0,1 was assigned to each parameter.

2.4. Surgery and Histopathological Analysis

One hundred twenty/123 patients underwent surgical intervention within 1 month
from the 18F-FDG PET scan. Surgery consisted in total open or laparoscopic hysterectomy,
bilateral salpingo-oophorectomy, peritoneal washing, nodal staging with pelvic/para-aortic
lymphadenectomy, or sentinel lymph node (SLN) dissection. A pathologist specialized
in gynecologic oncology (more than 30 years of experience), blinded to PET findings,
performed histopathologic examination of all cases with multiple sections for each case.
For each case, histological subtype, type of myometrial infiltration pattern, and lymph
node involvement were evaluated and collected for analyses. In addition, p53 immuno-
histochemical parameter was considered and collected: positivity for p53 was correlated
to mutational-type or wild-type expression (overexpressed or null). For nodal staging,
histopathological findings after pelvic/para-aortic lymphadenectomy or sentinel lymph
node (SLN) dissection, as well as imaging follow-up, were used as reference standards.
Staging was assessed according to the FIGO classification of endometrial tumors. The
3/123 patients who did not undergo surgical intervention were only included in the
analyses regarding the EC risk group and histological subtype, using biopsy as a refere-
nce standard.

2.5. Statistical Analysis

Statistical analyses were performed to assess the predictive role of 18F-FDG PET param-
eters and known preoperative clinical factors, such as patients’ age and BMI, with respect
to tumour’s features of aggressiveness, including EC histological subtype (endometrioid
vs. non-endometrioid), presence of deep MI, EC risk group (low and intermediate risk vs.
high-intermediate and high risk), presence of LN involvement, and p53 genetic marker
expression (overexpressed vs. null).

The Kolmogorov-Smirnov test was used to assess the distribution of parameters’
values. For the prediction of each feature of EC aggressiveness, based on the available
cohort, each population was randomly split into a training set (80%) and a validation set
(20%), with stratified selection and no overlapping. On the training set, the nonparametric
Mann-Whitney U test was performed. To avoid Type I errors (false positives), adjustment
for multiple comparisons was performed using the Benjamini-Hochberg correction, and
parameters with adjusted p-value < 0.05 (statistical significance) were subsequently anal-
ysed. The receiver operating characteristic (ROC) curve analysis was used to evaluate
PET and clinical parameters’ performance in predicting EC features of aggressiveness;
the area under the curve (AUC), along with its 95% confidence interval (CI) were used
to compare parameters’ performance, and optimal cut-off was derived by choosing the
value corresponding to the point on the ROC curve nearest to the upper left corner of the
ROC graph (Youden Index method). For each feature of EC aggressiveness, parameters’
optimal cut-off values were used as threshold to classify patients of the validation set,
and the predicted and corresponding reference-value pairs were recorded in a confusion
matrix for performance evaluation. Precisely, accuracy, sensitivity, specificity, negative
predictive value (NPV), and positive predictive value (PPV) were measured and compared.
All statistical analyses were performed using Python 3.7 (Scotts Valley, CA, USA).
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2.6. Machine Learning

A Machine Learning model was specifically implemented and optimized for the
prediction of each feature of EC aggressiveness, including the presence of deep MI, the EC
risk group, the presence of LN involvement, and the p53 expression

With respect to the model type, a Random Forest Classifier (RFC) was chosen for all
the prediction outcomes. RFCs, performing bootstrap sampling and feature sampling, are
in fact not affected by multi-collinearity issues, automatically dropping redundant features
at each tree split. This characteristic is particularly relevant when using conventional PET
parameters as inputs into ML models, as they are commonly subject to multi-collinearity.

For each model to be implemented, one for each feature of EC aggressiveness, the
following methodologies were specifically applied.

To avoid data leakage, the selection of model inputs was performed considering only
the training set. Precisely, input data were selected based on their previously demonstrated
prognostic value (see Section 2.5), by discarding parameters showing a non-statistically
significant AUC’s 95% CI. Hyperparameters tuning was also performed on the training
set exclusively. Finally, optimized models were tested on the validation set, and accuracy,
sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV)
were measured. Machine learning model implementation was performed using the Scikit-
learn library [39] (Python 3.7, Scotts Valley, CA, USA).

3. Results
3.1. Patients’ Population

One hundred twenty-three patients with histological diagnosis of EC and availability
of 18F-FDG PET scan performed for staging purpose were included in the study. Thirty-
eight/123 patients underwent 18F-FDG PET/MRI and 85/123 patients underwent 18F-FDG
PET/CT. To overcome the impact of PET image acquisition and reconstruction factors (scan-
ner effects) on imaging parameters, the ComBat harmonization method and tool [23] were
used, and harmonized PET parameters were used in subsequent analyses (Appendix A,
Figure A1). Moreover, scanners’ performances were previously investigated and were
assessed similar and comparable in terms of spatial resolution [40–43].

The mean age was 65 years (SD: 10.74) and the mean BMI was 27 (SD: 5.42). Due to the
multiple nature of the investigation, for the analysis of each feature of EC aggressiveness
different subpopulations were considered, based on the availability of histopathological
data. Specifically, 85/123 patients (69.1%) presented an endometrioid histotype of EC; MI
greater than 50% was present in 53/115 patients (46.1%); 76/119 patients (66.4%) were
classified as high-intermediate/high risk; 37/51 patients (72.5%) had p53 overexpression.
Finally, 90 patients were considered for the analysis of LN involvement; of these, 46/90
underwent pelvic systematic lymphadenectomy, 23/90 biopsy sampling, 19/90 SLN dis-
section, and 2/90 patients were evaluated at defined imaging and clinical timepoints
(minimum follow-up of these patients: 1-year post-surgery). Overall, LN involvement was
present in 14/90 patients (15.5%).

Pathological 18F-FDG uptake was detected in correspondence to the primary tumour
in 119/123 patients (96.7%).

Patients’ demographics and tumour characteristics are presented in Table 1.

Table 1. Patient’s characteristics.

Characteristic Value

Number of patients 123

Mean age. years (SD) 65 (10.74)

BMI. mean (SD) 27 (5.42)
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Table 1. Cont.

Characteristic Value

FIGO stage. n (%):
I
II
III
IV

82/123 (66.7%)
12/123 (9.7%)

23/123 (18.7%)
6/123 (4.8%)

Histological subtype. n (%):
endometrioid EC
non-endometrioid EC

85/123 (69%)
38/123 (31%)

Myometrial Invasion. n (%):
<50%
>50%

53/115 (46.1%)
62/115 (53.9%)

EC risk group. n (%):
low and intermediate risk groups
high-intermediate and high-risk groups

43/119 (36.1%)
76/119 (63.9%)

LN involvement. n (%)
yes
no

14/90 (15.6%)
76/90 (84.4%)

p53 expression. n (%)
overexpression
null

37/51 (72.5%)
14/51 (27.5%)

18F-FDG PET finding. n (%)
pathological uptake
non-pathological uptake

119/123 (96.7%)
4/123 (3.3%)

Continuous variables are expressed as mean and standard deviation (SD); dichotomous variables as percentage
and ratio. FIGO: International Federation of Obstetrics and Gynecology; EC: endometrial cancer; LN: lymph node;
SUV: standardized uptake value; MTV: metabolic tumour volume; TLG: total lesion glycolysis.

3.2. Predictive PET and Clinical Parameters
18F-FDG PET parameters demonstrated discriminative ability in differentiating pa-

tients according to all the investigated features of EC aggressiveness, except for the histolog-
ical subtype (Table 2; Figure 1). Precisely, SUVmax and SUVmean were able to differentiate
patients with respect to the presence of deep MI and the EC risk group, with SUVmean
also showing a role in discriminating the p53 expression. Moreover, MTV and TLG demon-
strated their ability in discriminating deep MI, EC risk group, LN involvement and p53
expression. Conversely, age and BMI demonstrated poor discriminative potential, with
only age being able to differentiate patients with respect to the presence of deep MI.

Table 2. Comparison of the distribution of 18F-FDG PET and clinical parameters between the groups
defined by the different features of EC aggressiveness.

Feature of EC
Aggressiveness SUVmax SUVmean MTV TLG Age BMI

Histological Subtype
p-value 0.080 0.134 0.556 0.389 0.405 0.432

adjusted p-value 0.402 0.402 0.556 0.518 0.518 0.518

Myometrial Invasion
p-value 0.001 * 0.007 * 0.002 * <0.001 * <0.001 * 0.117

adjusted p-value 0.002 * 0.008 * 0.003 * 0.001 * 0.001 * 0.117

EC Risk Group
p-value <0.001 * <0.001 * 0.016 * 0.005 * 0.109 0.991

adjusted p-value <0.001 * <0.001 * 0.024 * 0.010 * 0.131 0.991
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Table 2. Cont.

Feature of EC
Aggressiveness SUVmax SUVmean MTV TLG Age BMI

LN Involvement
p-value 0.341 0.126 0.001 * 0.003 * 0.929 0.316

adjusted p-value 0.409 0.252 0.006 * 0.009 * 0.929 0.409

p53 Expression
p-value 0.051 0.013 * 0.008 * 0.006 * 0.704 0.499

adjusted p-value 0.076 0.026 * 0.024 * 0.024 * 0.704 0.599

Mann–Whitney U test p-values adjusted according to the Benjamini-Hochberg correction for multiple testing;
EC= endometrial cancer; LN= lymph node; * statistical significance.
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Whitney U test’s adjusted p-value < 0.05) are marked with a red *. SUV = standardized uptake value; 
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Figure 1. Distributions of 18F-FDG PET and clinical parameters’ values with respect to the different
features of EC aggressiveness. Boxplots represent parameter’s distribution according to: (a) presence
of deep myometrial invasion (>50%); (b) risk group classification; (c) presence of lymph nodes (LN)
involvement; (d) p53 expression. Differences that are statistically significant (Mann-Whitney U test’s
adjusted p-value < 0.05) are marked with a red *. SUV = standardized uptake value; MTV = metabolic
tumour volume; TLG = total lesion glycolysis; BMI = body mass index.
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SUVmax and SUVmean demonstrated a role in predicting the presence of deep MI. EC
risk group and the p53 expression, while MTV and TLG showed potential in the prediction
of deep MI, EC risk group, LN involvement, and p53 expression. In contrast, no parameter
was able to predict histological subtype. Finally, patients’ ages and BMI revealed a poor
predictive role, with only age being predictor of deep MI. AUCs with corresponding 95%
CI. optimal cut-off values and correspondent sensitivity and specificity computed on the
training set are summarized in Table 3. ROC curves are displayed in Figure 2.

Table 3. Predictive value of 18F-FDG PET and clinical parameters with respect to features of EC
aggressiveness on the training set.

Features of EC
Aggressiveness SUVmax SUVmean MTV TLG AGE BMI

Histological subtype
AUC
95% CI
Optimal cut–off
Sensitivity
Specificity

0.421
0.29–0.55
/
/
/

0.458
0.33–0.59
/
/
/

0.473
0.35–0.60
/
/
/

0.469
0.35–0.59
/
/
/

0.418
0.29–0.55
/
/
/

0.566
0.45–0.69
/
/
/

Myometrial invasion
AUC
95% CI
Optimal cut–off
Sensitivity
Specificity

0.712
0.60–0.81 *
14.850
74%
62%

0.676
0.56–0.79 *
8.556
72%
60%

0.681
0.57–0.79 *
10.980
58%
76%

0.711
0.60–0.81 *
96.125
64%
71%

0.749
0.64–0.85 *
66.449
70%
73%

0.564
0.44–0.69
/
/
/

EC risk group
AUC
95% CI
Optimal cut–off
Sensitivity
Specificity

0.671
0.55–0.79 *
14.188
75%
61%

0.671
0.55–0.79 *
9.694
63%
71%

0.648
0.52–0.77 *
5.133
78%
52%

0.652
0.53–0.77 *
96.125
56%
68%

0.602
0.48–0.72
/
/
/

0.482
0.35–0.61
/
/
/

LN involvement
AUC
95% CI
Optimal cut–off
Sensitivity
Specificity

0.577
0.40–0.74
/
/
/

0.611
0.42–0.78
/
/
/

0.815
0.70–0.91 *
10.980
90%
71%

0.794
0.64–0.93 *
251.823
60%
90%

0.523
0.29–0.75
/
/
/

0.579
0.38–0.76
/
/
/

p53 expression
AUC
95% CI
Optimal cut–off
Sensitivity
Specificity

0.734
0.52–0.93 *
16.286
69%
75%

0.830
0.67–0.96 *
9.536
81%
75%

0.691
0.41–0.96
/
/
/

0.723
0.43–0.99
/
/
/

0.533
0.31–0.74
/
/
/

0.455
0.23–0.68
/
/
/

AUC = area under the curve; CI = confidence interval; EC = endometrial cancer; LN = lymph node; * statistical
significance. SUV = standardized uptake value; MTV = metabolic tumour volume; TLG = total lesion glycolysis;
BMI = body mass index.
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Figure 2. ROC curves of 18F–FDG PET and clinical parameters as predictors of the different fea-
tures of EC aggressiveness. Solid lines represent the area under the curve (AUC) obtained for SU-
Vmax (light blue). SUVmean (orange). MTV (green). TLG (red) and age (purple) in predicting: (a) 
presence of deep myometrial invasion (> 50%); (b) risk group classification; (c) presence of lymph 
nodes involvement; (d) p53 expression. AUC values coupled with a statistically significant 95% 
confidence interval are marked with *. SUV = standardized uptake value; MTV = metabolic tu-
mour volume; TLG = total lesion glycolysis. 

A representative case of a patient with the respective PET parameters’ values and 
features of EC aggressiveness is reported in Figure 3. 
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Figure 2. ROC curves of 18F–FDG PET and clinical parameters as predictors of the different features
of EC aggressiveness. Solid lines represent the area under the curve (AUC) obtained for SUVmax
(light blue). SUVmean (orange). MTV (green). TLG (red) and age (purple) in predicting: (a) presence
of deep myometrial invasion (>50%); (b) risk group classification; (c) presence of lymph nodes
involvement; (d) p53 expression. AUC values coupled with a statistically significant 95% confidence
interval are marked with *. SUV = standardized uptake value; MTV = metabolic tumour volume;
TLG = total lesion glycolysis.

A representative case of a patient with the respective PET parameters’ values and
features of EC aggressiveness is reported in Figure 3.
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Figure 3. 18F–FDG PET performed for EC staging. A 71–year–old patient with endometrial cancer 
(Stage: III C1; Grade: 3; histotype: non–endometrioid EC; MI: 85%; risk group: high–intermediate/ 
high; presence of LNs) who underwent 18F–FDG PET/CT for staging purpose. Red arrows indicate 
pathological uptake in correspondence of the primary tumour. green arrows indicate pathological 
uptake in correspondence of bilateral iliac–obturator lymph nodes and yellow arrows indicate 
pathological uptake in correspondence of lomboaortic and interaortocaval lymph nodes ((a): MIP; 
(b). (c) and (d): transaxial PET/CT images). PET parameters of the primary tumour were as follow: 
SUVmax = 17.43; SUVmean = 11.82; MTV = 28.60; TLG = 338.04. Histological analysis: the tumor is 
constituted by large cells with a high grade of nuclear atypia and numerous mitotic figures (e). The 
tumoral growth is mainly in papillary projections. Myometrial infiltration (f) has a tubulo–glandu-
lar architecture with micro–papillary structure into the lumen; the way of myometrial invasion is 
infiltrative/destructive. Lymph nodal metastasis (g) is nodular and constituted by serous atypical 
cells arranged in cords and small nests. 
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Figure 3. 18F–FDG PET performed for EC staging. A 71-year-old patient with endometrial
cancer (Stage: III C1; Grade: 3; histotype: non-endometrioid EC; MI: 85%; risk group: high–
intermediate/high; presence of LNs) who underwent 18F–FDG PET/CT for staging purpose. Red
arrows indicate pathological uptake in correspondence of the primary tumour. green arrows in-
dicate pathological uptake in correspondence of bilateral iliac–obturator lymph nodes and yellow
arrows indicate pathological uptake in correspondence of lomboaortic and interaortocaval lymph
nodes ((a): MIP; (b–d): transaxial PET/CT images). PET parameters of the primary tumour were as
follow: SUVmax = 17.43; SUVmean = 11.82; MTV = 28.60; TLG = 338.04. Histological analysis: the tumor
is constituted by large cells with a high grade of nuclear atypia and numerous mitotic figures (e). The
tumoral growth is mainly in papillary projections. Myometrial infiltration (f) has a tubulo–glandular
architecture with micro–papillary structure into the lumen; the way of myometrial invasion is infil-
trative/destructive. Lymph nodal metastasis (g) is nodular and constituted by serous atypical cells
arranged in cords and small nests.

Accuracy. sensitivity. specificity. NPV and PPV metrices derived by using the obtained
cut-offs to classify patients of the validation set are reported in Table 4. Precisely, the TLG
parameter provided the best accuracy in the prediction of deep MI and LN involvement
(61% and 72%. respectively), while SUVmax resulted in being the best predictor for the
EC risk group (accuracy = 71%). With respect to the p53 expression, obtained prediction
performances were scarce (accuracy = 45%).



Cancers 2023, 15, 325 11 of 17

Table 4. Predictive performances of 18F–FDG PET and clinical parameters. alone and combined in
Random Forest Classifiers. on the validation set.

Features of EC
Aggressiveness SUVmax SUVmean MTV TLG Age RFC

Myometrial invasion
th: 14.85 th: 8.56 th: 10.98 th: 96.13 th: 66.45 RFCMI

Accuracy 52% 52% 52% 61% 48% 87%
Sensitivity 67% 67% 42% 58% 42% 100%
Specificity 36% 36% 64% 64% 55% 73%
PPV 53% 53% 56% 64% 50% 80%
NPV 50% 50% 50% 58% 46% 100%

EC risk group
th: 14.19 th: 9.69 th: 5.13 th: 96.13 RFCRG

Accuracy 71% 67% 54% 62% / 79%
Sensitivity 75% 50% 67% 58% / 92%
Specificity 67% 83% 42% 67% / 67%
PPV 69% 75% 53% 64% / 73%
NPV 73% 62% 56% 62% / 89%

LN involvement
th: 10.98 th: 251.82 RFCLN

Accuracy / / 61% 72% / 83%
Sensitivity / / 50% 25% / 25%
Specificity / / 64% 86% / 100%
PPV / / 29% 33% / 100%
NPV / / 82% 80% / 82%

p53 expression
th: 16.29 th: 9.54 RFCp53

Accuracy 45% 45% / / / 73%
Sensitivity 20% 40% / / / 100%
Specificity 67% 50% / / / 50%
PPV 33% 40% / / / 63%
NPV 50% 50% / / / 100%

For each PET parameter. Cut-offs were derived from ROC curves using the train set, and used as thresholds (th)
to classify patients from the validation set; RFC: Random Forest Classifier; MI: myometrial invasion; RG: risk
group; LN: lymph node.

3.3. Machine Learning

For each feature of EC aggressiveness, an RFC (RFCMI. RFCRG. RFCLN. and RFCp53)
was implemented using the training set.

Based on the AUC findings measured on the training set (see Table 3), parameters
with statistically significant 95% CI were selected. Precisely, SUVmax. SUVmean. MTV,
TLG, and age were used as input in the RFCMI; SUVmax. SUVmean. MTV and TLG were
used as input in the RFCRG; MTV and TLG were used as input in the RFCLN; SUVmax,
SUVmean were used as input in the RFCp53. For each model, bootstrap was used, with
a smaller set of the training observation used to build the RF trees. To overcome class
imbalance in the prediction of EC risk groups and presence of LN involvement, the “class
weight” parameter was used to assign a higher weight to the minority class. Optimized
hyperparameters were identified for each model and described in Table 5.
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Table 5. Hyperparameters selected for the implementation of the four Random Forest Classifier
(RFC) algorithms.

Hyperparameters Myometrial
Invasion

EC Risk
Group

Lymph Node
Involvement

p53
Expression

n_estimators 24 22 2 5
max_depth None None None None

min_samples_split 5 2 2 2
min_samples_leaf 2 4 1 1

max_features auto auto auto Auto
bootstrap True True True True

class_weight 1:1 1:2 1:1.5 1:1
Hyperparameters are defined according to the Scikit–learn library [39].

Predictions’ accuracy, sensitivity, specificity, NPV, and PPV obtained by the models
when tested on the validation set are shown in Table 4. Precisely, MI was predicted with
an accuracy of 87% using all PET parameters and age. Risk group was predicted with an
accuracy of 79% using all PET parameters. LN involvement was predicted with an accuracy
of 83% using MTV and TLG. Finally, p53 expression was predicted with an accuracy of 73%
using SUVmax and SUVmean.

4. Discussion

The present study demonstrates the valuable role of ML–based classification using
conventional 18F–FDG PET parameters and clinical data in predicting features of tumour
aggressiveness in EC patients investigated for staging purposes.

Our results showed that SUVmax and SUVmean are able to differentiate and predict
deep MI, EC risk group, and p53 expression. Moreover, the metabolic PET parameters
MTV and TLG proved to be efficient in predicting deep MI, EC risk group, and LN involve-
ment. Contrarily, none of the imaging parameters demonstrated discriminative ability nor
predictive value with respect to the histological subtype. The discriminative ability and
predictive power of PET parameters were also compared to those of conventional clinical
data known for their association with EC risk, namely patients’ age and BMI. Interestingly,
both data showed very poor prognostic value, with only age being predictive of deep MI.

The results reported in the present study corroborate some previously published find-
ings. The available literature reported that SUVmax of primary tumour was significantly
higher in high risk patients compared to low risk ones, with sensitivities and specificities in
differentiating EC risk groups of 74% and 46%, respectively (supported by the 75% and
61%, respectively, found in the present study) [44]. Similarly. the obtained results agree
with some investigations evaluating the relationship between SUV parameters and deep
MI [45,46]. According to metabolic parameters, some groups suggested that MTV and
TLG might be promising markers for LN involvement [47]; the present work corroborates
this hypothesis, as MTV and TLG were the only parameters capable of discriminating
and predicting LN metastases. Contrarily, the finding that 18F–FDG PET might serve as
a predictive tool for p53 overexpression is novel and of particular interest, this alteration
being recognized as a relevant prognostic factor in EC [48]. In fact. the molecular character-
ization of EC has been fully integrated in the clinical routine for the risk classification of EC
patients, as recommended by ESGO/ESTRO/ESP guidelines. This assessment was found
to increase the accuracy of the risk classification solely based on the key clinical histological
parameters (such as histological subtype, grade, and MI) [25].

One of the major strengths of the present work compared to previous published
data is that it relies on the availability of a validation cohort and the possibility of testing
acquired knowledge and measured cut-offs. This approach is indeed quite uncommon
in conventional statistics; nevertheless, it provided preliminary indication on the actual
power of investigated data in patients’ stratification, thus evaluating predictions with the
corresponding reference–value and obtaining information on their accuracy, sensitivity,
specificity, NPV, and PPV on a validation set. At the same time, this strategy allowed
assessment of whether the application of machine learning models in this specific clinical
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setting might offer additional advantages. ML models are still underrepresented in the
field of molecular imaging. According to the little available data, the role of ML models
on EC patients has been recently investigated, mainly on MRI images [49–52], with only
anecdotal reports assessing 18F–FDG PET scans [53]; of note, in all of these works, ML
models were employed to analyze radiomics features. To the best of our knowledge, the
present work is the first one assessing the potential of ML models as a valuable tool to
analyze conventional PET semiquantitative imaging data (even combined with clinical
data) in the primary staging of EC patients. This is particularly significant for both a
better physicians’ interpretability of the models’ outcomes and translation into the clinical
practice, as the investigated PET parameters are easily assessable on conventional imaging
workstations and clinical software.

Some limitations of the present study should, however, be highlighted. Firstly, of
the 123 patients included in the study, histological confirmation of the features of EC
aggressiveness were not available for all subjects; therefore, the generation of different,
smaller sub-populations was necessary for performing the analysis with proper reference
standards. Moreover, class imbalances were present, especially in the evaluation of LN
involvement. However, to the best of our knowledge, no previous study investigated
the efficacy of 18F–FDG PET–based ML analysis for predicting deep MI in EC risk group,
LN involvement, and p53 expression using conventional PET parameters extracted from
primary EC; thus, further investigations on larger, less unbalanced cohorts are needed to
confirm results. Likewise, analyses and ML models implementation were investigated on
a monocentric cohort, and validation with external cohorts derived from other Centers is
nevertheless required to confirm models’ reproducibility and robustness.

5. Conclusions

The present work reports one of the first analyses evaluating the role of machine
learning-based classification using 18F–FDG PET–derived parameters in predicting features
of EC aggressiveness, which are currently assessable only after surgery despite being useful
for the most correct treatment in affected patients. Specifically, a signature integrating
the most conventional PET parameters (SUVmax, SUVmean, TLG, and MTV) and clinical
data (age, BMI) was built aiming at supporting clinicians in the most interpretable and
clinically transferable way. From the obtained findings, the described approach showed
ability in preoperatively characterizing several features of EC aggressiveness, including EC
histological subtype, presence of deep myometrial invasion (MI), presence of lymph–nodal
involvement (LN), p53 expression (wild–type vs. pathological), and overall risk group
classification. This demonstrates how advanced PET image analysis based on conventional
quantitative parameters and machine learning can support the non-invasive. preoperative
stratification and treatment management of EC patients.
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Discovery 690 (GE Healthcare); 5= Gemini–GXL (Philips Medical Systems); SUV: standardized up-
take value; MTV: metabolic tumour volume; TLG: total lesion glycolysis. 
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