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Simple Summary: Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein that is mainly studied
for its role as an epigenetic regulator of gene transcription. Gene mutations affecting the function or
expression level of this epigenetic regulator, particularly in the brain, have been associated with a
variety of human neurological and neurodevelopmental disorders. However, recent studies suggest
that MeCP2, while being an epigenetic reader, also plays a role in the development and/or progression
of several types of human cancer. This review provides a general overview of current research into
the proposed molecular pathways involving MeCP2 as an emerging oncogene in human cancers
and/or cancer cell lines, and highlights potential therapeutic targets in cancer biology.

Abstract: Epigenetic mechanisms are gene regulatory processes that control gene expression and
cellular identity. Epigenetic factors include the “writers”, “readers”, and “erasers” of epigenetic
modifications such as DNA methylation. Accordingly, the nuclear protein Methyl-CpG-Binding
Protein 2 (MeCP2) is a reader of DNA methylation with key roles in cellular identity and function.
Research studies have linked altered DNA methylation, deregulation of MeCP2 levels, or MECP2
gene mutations to different types of human disease. Due to the high expression level of MeCP2 in
the brain, many studies have focused on its role in neurological and neurodevelopmental disorders.
However, it is becoming increasingly apparent that MeCP2 also participates in the tumorigenesis
of different types of human cancer, with potential oncogenic properties. It is well documented that
aberrant epigenetic regulation such as altered DNA methylation may lead to cancer and the process
of tumorigenesis. However, direct involvement of MeCP2 with that of human cancer was not fully
investigated until lately. In recent years, a multitude of research studies from independent groups
have explored the molecular mechanisms involving MeCP2 in a vast array of human cancers that
focus on the oncogenic characteristics of MeCP2. Here, we provide an overview of the proposed role
of MeCP2 as an emerging oncogene in different types of human cancer.

Keywords: epigenetics; DNA methylation; MeCP2/MeCP2 isoforms; oncogene; tumor suppressor
gene; cancer biology

1. Introduction

In eukaryotes, the processes of cellular proliferation, differentiation, and function are
controlled by genetics and epigenetics. Epigenetics refers to the regulatory mechanisms that
control gene expression and distinct characteristics and morphology of the cells without
alteration of their corresponding gene sequences [1–4]. It is well known that genetic
mutation of certain genes and/or altered epigenetic mechanisms may cause abnormal
cell growth and proliferation. Such deregulation of cellular propagation may trigger the
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generation of cancerous cells. Indeed, cancer is a heterogeneous disease that is caused
by abnormal and uncontrolled cell growth in response to disturbed cellular homeostasis
and function. Generally, carcinogenesis is due to the inactivation of apoptotic pathways,
activation of oncogenes, and/or inactivation of tumor suppressor genes, resulting in
aberrant cell cycle progression and tumor growth [5]. Approximately 1,574,000 persons in
Canada have been diagnosed with cancer over a period of 25 years (reported as of 1 January
2018). In particular, breast, prostate, and colorectal cancers accounted for almost half of
these 25-year prevalent cancers. In males, prostate and colorectal cancers constituted about
half of the prevalent cancers during this time. Among females, breast and colorectal cancers
accounted for about half of the prevalent cancers in this report [6]. Overall, these statistics
highlight the importance of cancer research towards potential therapeutic strategies.

Cancer initiation and progression may have a genetic and/or epigenetic basis. As such,
mutation of certain genes, DNA sequences amplifications, altered DNA methylation, and
change in histone post-translational modifications (PTMs) that inhibit tumor suppressor
genes or activate oncogenes, are associated with cancer. Furthermore, epigenetic changes
can alter cell physiological systems, causing normal cells to transform into tumor cells
through deregulated gene activation or inhibition [7–9]. As a result, epigenetics are con-
sidered as one of the primary contributors to tumor-cell development [10]. Additionally,
the growing body of evidence on the role of epigenetics in carcinogenesis has prompted
research studies for potential epigenetic drugs for tumor cells.

2. Interplay between DNA Methylation and Cancer

There are different forms of epigenetic modifications that include chemical changes in
DNA molecules and histone PTMs with regulatory roles in gene expression [11,12]. DNA
methylation is involved in biological processes ranging from regulation of gene expression,
RNA splicing, genome stability, X chromosome inactivation, cellular metabolism, and
imprinting [13,14]. DNA methylation refers to the covalent modification of DNA molecules
at the fifth position of the cytosine pyrimidine ring, producing 5-methylcytosine (5mC,
5-methyly C, or CMe). This process is mediated by the action of DNA methylation “writers”,
a family of enzymes known as DNA methyltransferases (DNMTs) [15,16]. Specifically, DNA
methyltransferases transfer a methyl group donated by S-adenosyl-L-methionine (SAM)
to the cytosine residue of CpG dinucleotides [17]. In addition to 5mC, there is another
methylation in the structure of DNA, such as N6-adenine methylation (6mA), which has
recently been reported in Caenorhabditis elegans and mammals and is frequently associated
with gene transcriptional activation [18].

DNA methyltransferases are classified into three classes: DNMT1, DNMT2, and
DNMT3A/3B/3L [19]. DNMT1 is the maintenance DNA methyltransferase and pre-
serves the methylation pattern in the replication fork during DNA synthesis. Meanwhile,
DNMT3A/3B (de novo DNA methyltransferases) participate in de novo DNA methyla-
tion during development and gametogenesis [19,20]. In contrast, DNMT2 (also known as
TRDMT1) does not act as a DNA methyltransferase, yet its function is related to position-
ing methylation in aspartic acid-transfer RNA [19,20]. DNMT3L is reported to be unable
to methylate DNA molecules. The amino acid sequence of DNMT3L bears similarity to
DNMT3A and DNMT3B; however, it lacks the required C-terminal amino acid residues
that are responsible for DNMT enzymatic activities [21].

Based on the “G” and “C” contents of the human genome, CpG dinucleotides are not
as frequent throughout the genome as expected. On the other hand, CpG islands have a
higher frequency of CpG dinucleotides [22]. Almost half of human gene promoters contain
CpG islands [23]. Methylation of these CpG-rich sequences is involved in transcriptional
gene regulation. In mammals, promoter DNA methylation is typically linked to the sup-
pression of gene expression, while demethylation in the gene regions is believed to activate
gene expression. However, depending on the type of DNA methylation (i.e., 5mC versus
5-hydroxymethyl cytosine (5hmC)), the regulatory mechanism might be different. There
are different scenarios on how DNA methylation controls gene expression. It is possi-
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ble that methylated DNA directly recruits transcription factors that inhibit transcription
such as transcriptional inhibitors. Alternatively, methylated DNA may attract chromatin
remodeling complexes and recruit methyl-binding proteins (MBPs) [15]. Methylation of
CpG dinucleotides creates binding sites for methyl-CpG-binding domain (MBD) proteins
such as MBD1, MBD2, MBD3, MBD4, MeCP2, and Kaiso, which control gene expression
through protein–protein interactions and the recruitment of chromatin remodeling fac-
tors [16,24]. Among MBDs, MeCP2 is known for its role in the organization of the chromatin
structure, chromatin-loop formation, recruitment of corepressors (acting as a transcrip-
tional inhibitor), or activators (acting as a transcriptional activator) [11,25,26]. Interestingly,
the murine Mecp2/MeCP2 is also influenced by DNA methylation [27–31]. Furthermore,
MeCP2 plays regulatory roles in cellular metabolism, the mTOR pathway, and the control
of protein translation initiation which are important in cellular proliferation [14,32–34].
Independent research has suggested that MeCP2 is involved in cancer [35,36], a subject
that we will discuss here for different types of human cancer.

One characteristic of cancer cells is the extensive change in their DNA methylation
patterns. Typically, global change in DNA methylation happens during early development
with substantial changes during stem-cell differentiation [12,37–40]. In differentiated cells,
however, minimal change in DNA methylation occurs, which could still be influenced
by environmental factors. In fact, DNA methylation of differentiated cells is maintained
during DNA replication due to the high affinity of DNMTs for hemi-methylated DNA [41].
Interestingly, global change in the DNA methylation of cancer cells was among the first
epigenetic aberrations that were noted in human cancers [42]. The RB1 gene was the first
tumor-suppressor gene reported to be inhibited through DNA hypermethylation [43]. This
prompted researchers to study CpG islands as the promoter of tumor suppressor genes.
Evidence shows that DNA hypomethylation may relate to chromosome instability, while
DNA hypermethylation of tumor-suppressor genes inhibits their expression [44].

A primary piece of evidence on the role of aberrant DNA methylation in tumorigenesis
was presented by Herman and colleagues in 1994. They showed that hypermethylation of
the tumor suppressor gene VHL may lead to its transcriptional silencing in renal carcinomas.
Since then, extensive studies have shown that hypermethylation of the promoter region
of tumor suppressor genes is involved in their transcriptional silencing in human cancers.
Cancer-related DNA methylation is often considered as a primary step for neoplastic
transformation. This suggests that DNA methylation may act as an initial link between the
impact of the environment on cancer. This may be interpreted as a link between lifestyle
and cancer-related DNA methylation in initially asymptomatic individuals. Thus, DNA
methylation is assumed to be one of the several initiators of many human cancers [45]. In
addition to hypermethylation of promoters and other cis-regulatory elements of tumor
suppressor genes, there are other mechanisms such as reduced DNA methylation in the
cis-regulatory regions of oncogenes, inducing cellular proliferation and cancer. Of note,
chromosome instability, which results from genome-wide DNA hypomethylation, is also
involved in cancer development and tumorigenesis [45,46].

MeCP2 and DNA Methylation

MeCP2 was the first discovered member of the MBD family of proteins reported in
1992 by Adrian Bird and colleagues, when they aimed to study the factors that prevent
CpG islands from DNA methylation [47,48]. Different MeCP2 protein domains include the
N-terminal domain (NTD), methyl-CpG-binding domain (MBD), intervening domain (ID),
transcription repression domain (TRD) with nuclear localization sequence (NLS), NCoR
interaction domain (NID), and C-terminal domain (CTD) [49–51]. MECP2 is an X-linked
gene located on the Xq28 chromosome. Both the murine (Mecp2) and human (MECP2)
genes contain four exons, encoding for the two well-studied protein isoforms produced
by alternative splicing, namely MeCP2E1 (also identified as MeCP2B or MeCP2α) and
MeCP2E2 (also recognized as MeCP2A or MeCP2β). MeCP2E1 and MeCP2E2 isoforms
only differ in their N-termini, with additionally predicted coding and noncoding MECP2
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isoforms [52]. MeCP2E1 includes exons 1, 3, and 4, and it is the prevalent isoform in the
brain [29,53,54]. MeCP2E2 contains exons 2, 3, and 4, and is slightly shorter than MeCP2E1.
MeCP2E2 has 486 amino acids with an expected molecular weight of 53 kDa, although
it is commonly detected around 72–75 kDa [27,29,32,47,48,54]. Recently, the regulation
of MECP2 isoforms by metabolic drugs (metformin and simvastatin) was studied in a
medulloblastoma brain-tumor cell line [55]. Interestingly, simvastatin causes cell death and
apoptosis in different subgroups of medulloblastoma brain tumors [56]. In addition to the
MeCP2 function in transcriptional repression, the protein is also capable of transcriptional
activation [26]. Such diversity of MeCP2 function may result from its wide range of
interaction protein partners; some may be specific to one particular protein isoform [57].

3. An Overview of the Genetics of Cancer: Tumor Suppressor Genes and Oncogenes

At large, the genetic basis of cancer initiation and progression may implicate two
distinct groups of genes with opposite functions, known as tumor-suppressor genes and
oncogenes. In general, tumor-suppressor genes encode for protein factors that could act as
negative regulators of cell survival and proliferation [58]. In contrast, oncogenes encode for
protein factors that may be crucial for normal cell function [59]. Years after their original
discovery, both groups are proven to be determinants of tumor classification, prognosis,
response to cancer-related therapies, and indicators of clinical outcomes [60–64].

3.1. A Brief History

Fifty years following Theodor Boveri’s hypothesis of numerical change in chromo-
somal content involved in tumorigenesis, a chromosomal abnormality was reported in
patients with chronic myelogenous leukemia [65,66]. During the 1970s, Alfred Knudson
hypothesized that there is a specific class of cancer-related genes that may act recessively
and require “two hits” for tumorigenesis [67]. This hypothesis led to the cloning of the
first tumor-suppressor gene [67–69]. By the late 1970s, the first proto-oncogene, c-scr, was
identified [70]. In the following years, the first oncogenic activation of H-RAS was de-
scribed [71]. Since then, an arsenal of molecular and cellular biology techniques ranging
from comparative genomic hybridization, functional analysis, site-directed mutagenesis,
and advanced genetic techniques, including the application of viral vectors, have been
employed in the identification of amplified/overexpressed or mutated cancer-related genes,
possible therapeutic strategies, and mechanisms of drugs’ actions in different types of
human cancer [72–76].

3.2. Tumor-Suppressor Genes and Oncogenes: Mechanism of Action

Tumor-suppressor genes and oncogenes may both undergo genetic mutations, but they
are functionally distinct regarding cancer initiation and/or progression. Tumor-suppressor
genes are recessive and may carry biallelic loss-of-function mutations to promote cancer
malignancy [77]. In this case, the transformation of normal cells to cancerous cells could be
associated with the elimination of one or more tumor suppressor genes. Typically, there is a
mutation in one allele of a tumor suppressor gene along with deletion in the other allele to
constitute a total loss of function for the tumor suppressor gene leading to the manifestation
of malignant phenotypes [67]. Alternatively, other mechanisms such as methylation of the
gene promoter may inhibit their expression [59]. Amongst the best-characterized tumor
suppressor genes are p53, p27, CHK2, ATM, and RB, with key roles in the eukaryotic cell
cycle. Additionally, BRCA1 and BRCA2 tumor suppressor genes contribute to cellular
function such as DNA damage repair [78]. On the other hand, gain-of-function mutation
of proto-oncogenes may lead to an elevated level of oncogenes that could act dominantly
with their single-copy mutation, being sufficient to promote carcinogenesis [79]. Oncogene
activation may happen through several different mechanisms including (i) chromosomal
translocation, (ii) gene amplification, and (iii) point mutation. Overall, oncogene activa-
tion could also involve changes in proto-oncogene structure or increased expression of
proto-oncogenes. As such, chromosomal rearrangements, i.e., chromosomal translocations
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associated with carcinogenesis, may occur via the formation of oncogenic fusion proteins or
activation of an oncogene in response to a new promotor element or enhancer sequence [80].
Moreover, increased gene copies, or gene amplification, can occur via redundant DNA
replication [81]. Furthermore, point mutations (alteration, insertion, or deletion of one
or more nucleotides) may potentially activate oncogenes by enhancing the function of
the oncoprotein [59]. Of note, HER2 gene amplification, RAS point mutations, and MYC
chromosomal translocation are associated with tumorigenesis in breast cancer, thyroid
cancer, and Burkitt’s lymphoma, respectively [82–84].

4. Connections between MeCP2 and Human Cancer

The involvement of MeCP2 in Rett Syndrome (RTT), a neurological disorder in fe-
males, has been well-documented [85–89]. Over 90% of RTT patients possess a mutation
in the MECP2 gene [87]. However, in recent years, many studies have linked MeCP2 to
different types of human cancer. It is reported that MeCP2 is overexpressed in many human
cancers, and, when knocked down, leads to reduced propagation of cancer cells [90,91].
Additionally, studies on the relationship between MeCP2 and clinicopathological parame-
ters of cancers have suggested that MeCP2 expression levels in cancer are often high and
are effective in regulating the development of tumors [92–97]. Unbiased genome-scale
screenings have indicated that the two alternatively spliced isoforms of MECP2 when over-
expressed/amplified, activate the MAPK and PI3K/RAS-induced growth factor pathways
as MeCP2 acts as a substitution for activated RAS [90]. Fitting with the emerging role
of MeCP2 in the pathology of different types of human cancer in recent years, extensive
research has been conducted to better understand the mechanisms by which MeCP2 acts
as an oncogene in different types of cancer. In the following sections, we will discuss
the reported evidence on how MeCP2 contributes to the development of various types of
human cancer.

4.1. MeCP2 and Breast Cancer

Breast cancer has the highest frequency of diagnosis and constitutes about 25% of all
cancer cases in females (based on Global Cancer Statistics 2020) [98,99]. Studies on the role
of epigenetics in the progression of breast cancer have established a link between MeCP2
and breast cancer [100]. Specifically, a high MeCP2 expression level in breast cancer is
associated with its recruitment to hypermethylated sequences at the regulatory regions
of tumor-suppressor genes [35]. Some of the molecular pathways involving MeCP2 in
breast-cancer progression are summarized in Figure 1. In a previous study, Billard and
colleagues [101] showed that both MBD2 and MeCP2 expression levels are linked to the
proliferation of normal breast tissue as well as benign and neoplastic breast tumors. The
authors reported that MBD2 and MeCP2 expression levels were different in breast cancer
versus normal samples, indicating their possible role in breast cancer [101]. In another
study on breast cancer tissue specimens, Müller and colleagues reported an association
between MeCP2 and estrogen receptor (ER), with higher MeCP2 levels in estrogen receptor
(OR)-positive breast cancer samples compared to OR-negative ones [96]. In another study,
Sharma and colleagues explored the role of MeCP2 in modulating ER transcriptional
silencing in OR-negative breast cancer cells. Sharma and colleagues further reported that
increased DNA methylation, reduced histone acetylation, along with H3K9 methylation,
MeCP2 binding, and recruitment of other factors such as MBD1, MBD2, DNMT1, DNMT3B,
and HDAC1 lead to estrogen receptor silencing. Furthermore, the authors demonstrated
that DNMT inhibition with 5-aza-2′-deoxycytidine (5-aza) and HDAC inhibitor Trichostatin
A (TSA) may result in ER re-expression. Treatment of MDA-MB-231 breast cancer cells
with TSA or 5-aza leads to re-expression of ER. In such a case, there was a synergistic
effect when treating these cells with a combination of both 5-aza and TSA. This led to the
dissociation of a repressor complex containing MeCP2, DNMTs, and HDAC1 from the
ER promoter, resulting in ER re-expression. The authors reported similar results in MDA-
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MB-468 cells, showing that in these cells DNMT1, HDAC1, and MeCP2 silence estrogen
receptor 1 (ESR1) [102].

There are different mechanisms of MeCP2 involvement in breast cancer [103]. Jiang
and colleagues reported that in breast-cancer cells, MeCP2 can inhibit the epithelial-to-
mesenchymal transition (EMT) and their migration. The authors demonstrated that MeCP2
overexpression induces epithelial markers, while MeCP2 knockdown increases mesenchy-
mal markers [104]. The tumor suppressor kallikrein-related peptidase 6 (KLK6), is inacti-
vated in metastatic breast-cancer cells, and studies have underscored the role of MeCP2 in
silencing the KLK6 gene in metastatic breast cancer. It is suggested that the tumor-specific
loss of KLK6 expression is due to increased DNA methylation at the KLK6 promoter.
This was associated with MeCP2 binding to the hypermethylated KLK6 promoter, histone
deacetylation, and repressive chromatin formation that silenced KLK6 [105].
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MECP2 3′-UTR. However, linc-ROR acts as a competitive endogenous RNA for miR-194-3p [108]. MeCP2, 
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mucinous adenocarcinoma tissues, specifically at the colorectal cancer invasion sites. Song and 
colleagues reported that DLD-1 cells had high MeCP2 expression levels in different colorectal 
cancer cell lines. The authors showed that lentivirus-mediated knockdown of MeCP2 inhibits 
the G0/G1 cell-cycle progression, inhibiting the migration ability of these cells [97]. Luo and 
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Figure 1. Schematic representation of suspected roles of and molecular pathways involving MeCP2
in breast cancer. DNA hypermethylation, histone hypoacetylation, H3K9 methylation, and binding of
MeCP2, and other proteins shown in this Figure that will contribute to ER silencing [103]. Binding of
MeCP2 to the hypermethylated of CpG sites in the proximal region of the KLK6 promoter silences the
KLK6 gene [105]. Binding of MeCP2 to the promoter region of RPLL1 and RPL5 reduces the expression
levels of their respective proteins and disrupts their inhibitory activity in ubiquitination-mediated
p53 degradation alongside the binding to MDM2 [35]. MeCP2 acetylation levels are regulated by
the interaction between SIRT1, ATRX, and HDAC1 in breast cancer [106]. Recruitment of MeCP2 to
the methylated regions of CLDN6, along with deacetylation of histones H3 and H4, results in the
invasion and migration capacity of breast-cancer cells [107]. MeCP2 inhibition by miR-194-3p may be
achieved via binding to the MECP2 3′-UTR. However, linc-ROR acts as a competitive endogenous
RNA for miR-194-3p [108]. MeCP2, in relation to MeCP2-mediated regulation of tumor-suppressor
genes, is found in association with the PIP5K, RASSF1A, ENPP4, and RARB2 gene promoters [109].
Illustration is generated using BioRender.com.
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There are reports of other types of mechanisms for MeCP2 involvement in breast
cancer. In this scenario, MeCP2 was found to bind to promoters of the ribosomal protein
L11 (RPL11) and the ribosomal protein L5 (RPL5) genes, reducing the expression level of
their corresponding proteins. Typically, expression of RPL11 and RPL5 leads to suppressed
breast-cancer cell proliferation via inhibition of ubiquitination-mediated p53 degradation
and inhibition of its binding to MDM2. The researchers observed that MeCP2 induced
breast-cancer cell proliferation while reducing apoptosis via ubiquitination-mediated P53
degradation by suppressing RPL5 and RPL11 expression [35]. Pandey and colleagues
studied the role of SIRT1 in regulating MeCP2 function. They showed that SIRT1 is involved
in MeCP2 interaction with ATRX and HDAC1 through regulation by controlling MeCP2
acetylation levels. Among the lysine residues in MeCP2, lysine 171 and its acetylation
are involved in MeCP2 protein interactions with ATRX and HDAC1. In support of this
mechanism, studies in MeCP2-K171Q mutant cells have shown a significant decrease in its
binding to ATRX and HDAC1 as compared to cells with wild-type MeCP2. This indicates a
role for MeCP2 PTMs in the regulation of its function [106]. Liu and colleagues suggested
another mechanism of the MeCP2 role in breast-cancer metastasis involving claudin-6
(CLDN6), a member of the claudin transmembrane protein family. CLDN6 inhibits breast-
cancer metastasis and cell invasion and has low expression levels in breast cancer. Studies
have shown that CLDN6 gene methylation is associated with MeCP2 binding, along with
histone H3 and H4 deacetylation, leading to reduced CLDN6 expression, resulting in
increased invasion and breast-cell migration [107].

Zhou and colleagues proposed another mechanism of action for MeCP2 in breast
cancer, involving the microRNA miR-194-3p. They showed that miR-194-3p inhibits MeCP2
expression by binding to the 3′-UTR of the MECP2 gene. However, in breast cancer, linc-
ROR, which has a high expression level in breast cancer tissues and plasma, can act as
a competitive endogenous RNA (ceRNA) for miR-194-3p. This interaction hinders the
inhibitory effect of this microRNA on MECP2 once bound to miR-194-3p, and, instead, in-
creases cell proliferation, migration, and invasion, while decreasing cellular drug sensitivity
to rapamycin [108].

4.2. MeCP2 and Colorectal Cancer

Research studies have proposed a role for MeCP2 in the pathogenesis of colorectal
cancer (CRC). Given the shared role of the MeCP2 mutations in causing the neurological
disorder RTT and its association with colon cancer, there are some concerns in patients
with RTT and their risk of developing colon cancer [110]. The MeCP2 level is high in
adenocarcinoma and mucinous adenocarcinoma tissues, specifically at the colorectal cancer
invasion sites. Song and colleagues reported that DLD-1 cells had high MeCP2 expression
levels in different colorectal cancer cell lines. The authors showed that lentivirus-mediated
knockdown of MeCP2 inhibits the G0/G1 cell-cycle progression, inhibiting the migration
ability of these cells [97]. Luo and colleagues studied the relation of MeCP2 with that
of CRC stemness and metastasis. They reported that in colorectal cancer, MeCP2 has a
high expression level that is correlated with poor patient prognosis. On the other hand,
MeCP2 depletion (KO/KD) inhibited invasion and migration (in vitro) as well as metastasis
(in vivo). The research group also showed that MeCP2 interacts with SPI1, being recruited
at the ZEB1 promoter, resulting in increased expression of the corresponding protein. Fol-
lowing elevated ZEB1 expression, they detected induced MMP14, CD133, and SOX2 and
stemness maintenance that promoted CRC metastasis [91]. Wang and colleagues proposed
another mechanism to link MeCP2 with CRC metastasis. This group showed that MeCP2
regulates Kruppel-like factor 4 (KLF4) expression through binding to methyltransferase-like
14 (METTL14) and changing RNA N6-methyladenosine (m6A) methylation. More detailed
studies showed that the interaction of these two proteins decreases m6A methylation. Given
that KLF4 stability as a tumor suppressor depends on the interaction of m6A methylation
reader protein IGF2BP2 with two unique m6A methylation sites in the KLF4 transcript.
This leads to reduced m6A methylation that causes KLF4 transcript instability, reduced
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expression level, and, eventually, induces CRC metastasis [111]. Darwanto and team further
reported that E-cadherin expression in colorectal cancer is regulated by promoter methyla-
tion and linked to MeCP2 expression [112]. Additionally, Chen and colleagues reported
that miR-137 is one of the inhibitors of CRC development which is affected by epigenetic
regulation mediated by MeCP2 and is associated with miR-137 silencing [113]. Different
molecular mechanisms of MeCP2 involvement in CRC progression are summarized in
Figure 2.
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Figure 2. Schematic representing the suspected roles of and molecular pathways involving MeCP2 in
colorectal-cancer progression. MeCP2 leads SPI1 to the ZEB1 promoter to increase ZEB1 expression.
Increased ZEB1 expression leads to upregulation of MMP14, SOX2, and CD133 [91]. MeCP2-mediated
regulation of KLF4 is achieved through the binding of MeCP2 to METTL14. Complexing of MeCP2
and METTL14 results in decreased m6A methylation, and destabilization of KLF4 transcripts and CRC
metastasis [111]. MeCP2, in conjunction with DNA methylation at the promoter region, regulated
the expression of E-cadherin in CRC [112]. MeCP2-mediated epigenetic silencing of miR-137 is also
shown [113]. Illustration is generated using BioRender.com.

4.3. MeCP2 and Pancreatic Cancer

The association of MeCP2 with pancreatic-cancer pathogenesis has also been investi-
gated. Independent groups have studied the underlying molecular mechanisms of MeCP2
involvement in pancreatic-cancer progression, which we have summarized in Figure 3.
Xie and colleagues reported that in patients with pancreatic cancer, the MeCP2-positive
expression rate is lower in cancer tissues compared to the adjacent normal cells. Their
studies also indicated that patients who are positive for MeCP2 have longer survival com-
pared to those patients that do not express MeCP2. These findings imply that MeCP2
detection may be beneficial in the prognosis of pancreatic-cancer patients [114]. Wang
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and colleagues reported a link between MeCP2 and EMT in pancreatic ductal adenocar-
cinoma (PDAC). MeCP2, which is highly expressed in pancreatic cancer, was shown to
increase mesenchymal markers that include vimentin, snail, and N-cadherin. Contrastingly,
MeCP2 expression decreased specific epithelial markers such as E-cadherin and ZO-1
and induced EMT. These changes are suggested to be the result of a positive-feedback
regulatory network, where MeCP2 binds to the Furin promoter through Smad3 interaction,
increasing its expression. Here, Furin acts as an activator of TGF-β1, inducing Smad2/3
phosphorylation [115].
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Figure 3. Schematic representing the suggested roles of and molecular pathways involving MeCP2 in
pancreatic cancer. MeCP2 increases mesenchymal markers including snail, N-cadherin, and vimentin.
MeCP2 simultaneously decreases epithelial markers including E-cadherin and ZO-1 to induce EMT.
The increase and decrease of mesenchymal and epithelial markers, respectively, are achieved through
the binding of MeCP2 to the Furin promoter and subsequent activation of TGF-β1 by Furin and Smad
phosphorylation [115]. MeCP2 recruitment to the methylated CpG islands of LIN28A hinders the
ability of LIN28A to increase the expression of NANOG, c-Myc, OCT4, SOX2, and LIN28B [116].
MeCP2 binding to methylated CpG sites at the IL-6 gene may result in its silencing [117]. Illustration
is generated using BioRender.com.

Xu and colleagues proposed that LIN28A, an effective factor in cancer malignancies,
has a high level of expression in PANC1 cells. LIN28A enhances the characteristics of stem
cells in pancreatic-cancer cells by inducing SOX2, OCT4, LIN28B, c-Myc, and NANOG. The
authors showed that MeCP2 acts as a regulator of LIN28A and binds to methylated-CpG
islands to inhibit LIN28A expression in pancreatic-cancer cells [116]. Other studies involved
MeCP2 in the repression of interleukin-6 (IL-6), a key cytokine involved in a variety of
biological activities in pancreatic cancer. However, the mechanism of IL-6 repression by
MeCP2 has yet to be fully explored. In this regard, Dandrea and colleagues showed that
MeCP2 may bind to methylated CpG located from positions −666 to −426 of IL-6 and be
associated with H3meK9 at this locus. In this way, both MeCP2 and H3meK9 are involved
in the silencing of IL-6 in pancreatic-adenocarcinoma cell lines [117].
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4.4. MeCP2 and Gastric Cancer

It has been shown that MeCP2 deregulation impacts physiological processes related to
the development of gastric cancer (GC), as summarized in Figure 4. Examining tissues from
patients with diagnosed gastric cancer has shown that MeCP2 expression is significantly
higher in GC samples compared to para-cancerous tissues. MeCP2 expression levels were
significantly correlated with tumor, node, and metastasis (TNM) stages, histological types,
and status of lymph node metastasis. These results indicated that MeCP2 may regulate GC
development [92]. Zhao and colleagues reported that MeCP2 binds to methylated CpG
islands of FOXF1 and MYOD1 promoters, inhibiting the protein levels. Studies have shown
that MeCP2 activates Wnt5a/β-Catenin signaling, promotes GC cell growth, promotes
G1/S cell-cycle progression via FOXF1 inhibition, inhibition of caspase-3 signaling, and
apoptosis by MYOD1 inhibition [93]. In another study, researchers found that MeCP2
inhibited FBXW7 expression in GC cells by binding to methylated CpG sites in the FBXW7
promoter, playing important roles in blocking cell migration and invasion. Reduced FBXW7
expression activated the Notch1/c-Myc/mTOR signaling pathways, and promoted GC
cells migration and invasion [118].

Another study explored the relation between MeCP2 and human cancer regarding the
role of microRNAs in controlling MeCP2. In this context, scientists have shown that dis-
rupting the regulatory role of microRNA on MeCP2 is involved in different types of human
cancer. For instance, Zhang and colleagues showed that the expression of microRNA-1324
in GC decreased when MeCP2 expression was high. The authors showed that MeCP2 may
be a target of microRNA-1324 by inhibiting MECP2 expression by direct binding. More
detailed studies showed that reduced microRNA-1324 expression has the opposite func-
tion with GC proliferation and invasiveness, in association with MeCP2 inhibition [119].
Zhao and co-authors also reported that miR-638 is involved in the regulation of MeCP2
in GC. This team of researchers showed that miR-638 repressed GC cell division, colony
creation, G1/S cell-cycle transition, and tumor progression by binding to MECP2 3′-UTR,
leading to induced apoptosis. Further studies showed that MeCP2 binds to the promoter of
G-protein-coupled receptor kinase-interacting protein 1 (GIT1), increases GIT1 protein ex-
pression, and activates the MEK1/2-ERK1/2 signaling pathway to promote gastric-cancer
cell proliferation [120]. It is also shown that MeCP2 acts as a target of miR-212. Wada and
colleagues reported that miR-212 can reduce MeCP2 expression levels by binding to the
MECP2 3′-UTR region. However, miR-212 expression has decreased in GC cell lines and
primary GCs, resulting in an increased MeCP2 level that is correlated with GC carcinogene-
sis [121]. Other studies described the relation of MeCP2 with multidrug resistance (MDR).
These studies suggested that demethylation of miR-19a/b, which is highly expressed in GC,
is also involved in the MDR of gastric cancer via binding to the MECP2 3′-UTR. Such inter-
actions inhibited MECP2 expression, reducing the inhibitory effect of MeCP2 on miR-19a/b
and, eventually, inducing MDR in gastric cancer. These results also indicated that there
is an opposite relationship between miR-19a/b expression with that of MeCP2 in gastric
cancer [122]. Qin and co-authors studied MeCP2 involvement in 5-FU-resistant GC cells,
reporting that MeCP2, which is upregulated in 5-FU-resistant GC cells, increases NOX4
by binding to the NOX4 promoter sequences. NOX4 is a highly expressed NOX isoform
in cancer cells, mediating drug resistance via PKM2. By upregulating the NOX4/PKM2
pathway, MeCP2 contributes to 5-FU resistance in GC cells [123]. Furthermore, Tong and
colleagues studied the link between MeCP2 and miR-22 in GC. This microRNA inhibits
MTHFD2 and MTHFR, both of which are effective enzymes in the synthesis of SAM. This
microRNA is also involved in reducing DNA methylation and increasing the expression of
PTEN, p16, p21, and RASSF1A in the inhibition of cellular proliferation. The results of this
group showed that in GC, MeCP2 inhibits miR-22 expression in GC cells by binding to its
upstream methylated enhancer, causing tumor suppressor deregulation [124]. Tong and
colleagues also reported that MeCP2 binds to the methylated-CpG island of the miR-338
promoter, inhibiting miR-338-3p and miR-338-5p, and promoting GC cell proliferation [125].
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Figure 4. Schematic representing the suggested roles of and molecular pathways that link MeCP2 to
gastric-cancer progression. MeCP2-mediated activation of Wnt5a/β-Catenin signaling via FOXF1
inhibition promotes cell proliferation, while MeCP2-mediated inhibition of the caspase-3 signaling
via MYOD1inhibition promotes apoptosis [93]. Inhibition of MeCP2 may be achieved by miR-638.
Binding of MeCP2 to the promoter region of GIT1 increases GIT1 expression. GIT1 activates the
MEK1/2-ERK1/2 signaling pathway and promoted cell proliferation [120]. Expression levels of
MeCP2 are reduced by the binding of miR-212 to the MECP2 3′UTR region [121]. Upregulation of
MeCP2 results in increased expression of NOX4 via binding of MeCP2 to the NOX4 promoter region
and upregulation of the NOX4/PKM2 pathway in 5-FU resistance [123]. Inhibition of MTHFD2
and MTHFR, and increased level of PTEN, p16, p21, and RASSF1A, by the action of miR-22, results
in decreased cell proliferation. However, MeCP2-mediated inhibition of miR-22 deregulates tumor
suppression through the action of miR-22 in gastric-cancer cells [124]. Gastric-cancer cell proliferation
is due to MeCP2-mediated inhibition of miR-338-3p and miR-338-5p [125]. Illustration is generated
using BioRender.com.

4.5. MeCP2 and Hepatocellular Carcinoma (HCC)

Research studies in hepatocellular carcinoma cell lines and patient tissues have sug-
gested another role for MeCP2 in cancer. Our current knowledge about the molecular
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pathways that link MeCP2 and hepatocellular carcinoma (HCC) is summarized in Figure 5.
In a study about transforming growth factor (TGF) β1 (TGF-β1) signaling in liver can-
cer, Sohn and colleagues proposed that tristetraprolin (TTP) promoter hypermethylation
contributes to TGF-β1 deregulation in the malignant progression of hepatocellular carci-
noma [126]. TTP is suggested to act as a tumor suppressor, while TGF-β1 regulates cell
growth and differentiation, as well as the migration and apoptosis of hematopoietic and
epithelial cells. In cancer biology, TGF-β1 is considered to both promote tumor-growth pro-
gression and suppression that are associated with deregulated TGF-β1 signaling. As such,
deregulated TGF-β1 signaling permits cancer cell angiogenesis, invasion, and metastasis.
The deregulated TGF-β1 pathway in hepatocellular carcinoma cells involves methylation
of one out of 90 CpG sites in the TTP promoter. De novo methylation of a CpG dinucleotide
that is located 500 bp upstream of the TTP transcription start site and TGF-β1 responsive
element is critical for TGF-β1-induced epigenetic regulation of TTP. Thus, methylation in
this promoter region inhibits TGF-β1-mediated TTP induction that inhibits the antiprolif-
erative effect of TGF-β1. Researchers suggest that the methyl group added to this single
CpG site within the TTP promoter can recruit repressor factors that promote DNA–protein
interactions and can inactivate TTP. Transcriptional repressors, such as MeCP2, may also
recruit HDAC complexes to help in repressing TTP expression [126].

Zhao and co-authors showed that MeCP2 levels are high in human HCC tissue. They
found that MeCP2 inhibition by siRNA can reduce the proliferation of HepG2 cells. They
also showed that MeCP2 promotes cell proliferation by activating the ERK1/2 signaling
pathway while inhibiting p38 activity [127]. Wu and colleagues found that MeCP2 is overex-
pressed in the SMMC-7721 cell line as well as human HCC tissues and that in SMMC-7721
cells, MeCP2 silencing inhibits cell proliferation. They discovered that Melittin inhibited
MeCP2, Shh, and GLI1, while it induced PTCH1, possibly resulting from induced demethy-
lation of the PTCH1 promoter. They reported that Melittin inhibits cell proliferation in
SMMC7721 cells by downregulating MeCP2 via Shh signaling [128]. Wang and colleagues
proposed a different mechanism for the MeCP2 role in HCC development. They discovered
that MeCP2 and CREB1 increased the expression of HOXD3 in HCC cells by binding to its
hypermethylated promoter. By binding to the heparin-binding epidermal growth factor
(HB-EGF) promoter, HOXD3 induced HB-EGF, leading to increased HCC cells invasion
and migration [129]. These researchers also reported that miR-1324 is a negative regulator
of MeCP2 in the sorafenib resistance of HCC. However, in these cells, the presence of
circFOXM1, which releases MeCP2 from miR-1324 inhibition, increased its expression level
and thus causes sorafenib resistance [130].

4.6. MeCP2 and Prostate Cancer

Prostate cancer is known as a form of cancer that may progress androgen dependently
or androgen independently. Bernard and colleagues discovered that MeCP2 has a function
in androgen-dependent and/or -independent proliferation in prostate cancer. This group
demonstrated that raising MeCP2 expression permits androgen-dependent cells to grow
androgen independently and in androgen-depleted conditions. They found that MeCP2
promotes androgen-independent proliferation in prostate cancer cells via maintaining
c-Myc levels [131]. Several groups have also investigated the molecular pathways that link
MeCP2 to prostate-cancer progression, as summarized in Figure 6. Specifically, KAI1, a
metastasis suppressor gene, plays an important role in the metastasis of prostate cancer.
Lee and colleagues found that changes in CpG-site methylations during the malignant
progression of prostate cancer may be involved in KAI1 reduction in prostate cancer. The
researchers discovered that in prostate-cancer cells with low levels of KAI1, methyl-CpG-
binding proteins including MBD2 and MeCP2 are recruited to the promoter sequences and
reduce the corresponding protein levels [132]. Pulukuri and team also demonstrated that
promoter hypermethylation of the TIMP-2 gene affects its level in prostate cancer. The
authors also revealed that MeCP2 binding to the promoter of TIMP-2-silenced metastatic
prostate cell lines interferes with the transcriptional activity of the TIMP-2 promoter [133].
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Additionally, GADD45, which is reduced in prostate cancer, plays a key role in inhibiting
the cell cycle, cell proliferation, and inducing apoptosis in cancer cells. Ramachandran
and co-authors identified MeCP2 as a transcriptional repressor of GADD45 and demon-
strated that decreased GADD45 was caused by atypical methylation of four sets of CpG
dinucleotides located upstream of the proximal promoter. More in depth studies have
found that MeCP2 binding to the methylated 5′ CpG sequences upstream of the GADD45
promoter in Du145 cells provokes transcriptional silencing of GADD45. The authors also
reported that increasing GADD45 expression, either through MeCP2 downregulation or
treatment with DNMT inhibitors, could reduce resistance to docetaxel chemotherapy [134].
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Figure 5. Schematic representing the suspected roles of and molecular pathways involving MeCP2 in
hepatocellular carcinoma (HCC). Hypermethylation of the TTP promoter, and subsequent repression
of TTP expression, is involved in the downregulation of TGF-β1 signaling in the progression of
HCC via the recruitment of HDAC complexes by MeCP2 [126]. Activation of the ERK1/2 signaling
pathway and inhibition of p38 activity by MeCP2 promotes cell proliferation in HCC [127]. Binding
of MeCP2 and CREB1 to the hypermethylated HOXD3 promoter increases the expression of HOXD3.
Binding of HOXD3 to the HB-EGF promoter results in increased HB-EGF activation and increased
cell invasion and migration of HCC cells [129]. Negative regulation of MeCP2 in sorafenib resistance
by miR-1324 is alleviated in the presence of circFOXM1, leading to increased expression levels of
MeCP2 [130]. Illustration is generated using BioRender.com.
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Figure 6. Schematic representing the suspected roles of and molecular pathways involving MeCP2
in prostate-cancer progression. The suppression of the KAI1 metastasis suppressor gene due to
alterations in methylation patterns at the KAI1 CpG-methylation sites within the promoter region
allows for the binding of MeCP2 and subsequent reduction of KAI1 in prostate cancer cells [132].
Hypermethylation of the TIMP-2 promoter facilitates the binding of MeCP2 to affect TIMP-2 ex-
pression at the invasive and metastatic stages of prostate-cancer progression [133]. Transcriptional
repression of GADD45α by the binding of MeCP2 to four aberrantly methylated CpG sites upstream
of the proximal promoter region results in the silencing of GADD45α. Downregulation of MeCP2
or administration of DNMT inhibitors to increase expression of GADD45α may result in increased
sensitivity to docetaxel chemotherapy [134]. Inhibition of TRIM24 may be achieved by the binding of
miR-137 to the TRIM24 3′-UTR promoter region. However, inhibition of miR-137 by MeCP2 reduces
miR-137 expression via increased miR-137 promoter methylation [135]. Illustration is generated
using BioRender.com.

Bicalutamide is an effective hormone-therapy agent for prostate cancer. Nonetheless,
prostate-cancer cells develop resistance to bicalutamide over time. Guan and colleagues
reported the role of MeCP2 in bicalutamide resistance of prostate-cancer cells. They dis-
covered that by binding to the 3′-UTR promoter region, miR-137 could inhibit TRIM24
expression, encoding for an oncogenic transcriptional activator and proliferation regulator
in cancer cells. However, miR-137 was significantly downregulated in a bicalutamide-
resistant prostate-cancer cell line. Studies have shown that MeCP2 and DNMTs inhibit
miR-137 expression by increasing active methylation of the miR-137 promoter. Meanwhile,
reduced miR-137 expression is associated with increased levels of TRIM24 expression that
causes bicalutamide-resistant expression in prostate-cancer cells [135].

Research studies have shown that the role of MeCP2 in cancer may go beyond the
boundaries of epigenetics. Investigation into the mechanisms by which cancer cells are
protected against stress implicates MeCP2 in the transactivation of putative pro-survival
genes in prostate cancer. In their study, Leoh and team suggested that protein interactions
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between MeCP2 and lens epithelium-derived growth factor p75 (LEDGF/p75) transcrip-
tionally activate heat-shock protein 27 (Hsp27) in vitro. LEDGF/p75 is considered as a
stress-response protein with a protective function against cellular damage and cell death
induced by oxidative stress. LEDGF/p75 is suggested to be involved in the transcriptional
activation of protective genes encoding proteins including HSP27, peroxiredoxin 6 (PRDX6)
αβ-crystallin, and vascular endothelial growth factor C (VEGF-C). Leoh and colleagues
proposed that Hsp27 is a target gene of both LEDGF/p75 and MeCP2. The researchers
suggested that MeCP2-induced activation of the pro-survival gene Hsp27 in prostate cancer
promotes resistance to both oxidative stress-induced and chemotherapy-induced cell death,
a phenomenon supporting prostatic tumorigenesis.

4.7. MeCP2 and Glioma

Sharma and colleagues proposed the involvement of MeCP2 in glioma by showing
that MeCP2 overexpression can inhibit proliferation, migration, invasion, and adhesion
while inhibiting malignant behavior in glioma cells by inhibiting pERK and BDNF and
inducing GFAP [136]. In another study, Bian and co-authors reported that the MeCP2
regulatory role at the miR-200c promoter through interaction with SUV39H1, which causes
transcriptional repression of the miR-200c and induces the EMT process in glioma [137].

4.8. MeCP2 and Oral Squamous-Cell Carcinoma

Zhang and colleagues reported that the expression level of miR-106a, which functions
as a tumor suppressor, is reduced in the tissues and cell lines of oral squamous-cell car-
cinoma (OSCC). This group showed that in OSCC, miR-106a causes suppression of the
Wnt/β-catenin signaling pathway and induces apoptosis by targeting MeCP2 [138].

4.9. MeCP2 and Renal Cell Cancer

Liu and colleagues proposed a role for MeCP2 in renal-cell cancer (RCC). They reported
that the expression of MeCP2, which reduces the proliferative, migratory, and invasive
abilities of RCC cells, is downregulated in RCC cell lines and tissues. Studies also showed
that miR-454, which has a high expression level in RCC, inhibits MECP2 transcripts by
direct targeting, and, eventually, causes RCC progression [139].

4.10. MeCP2 and Lung Cancer

As mentioned earlier, the hypermethylation of the promotor regions of tumor-suppressor
genes, and their subsequent downregulation through transcriptional silencing, is a common
theme in tumorigenesis. In this regard, a study about aberrant 5′ CpG methylation due
to overexpression of DNMTs described the role of protomer hypermethylation in the poor
prognosis of lung cancer and suggests a possible link to MeCP2 [140]. Using surgically
resected tissues of patients diagnosed with non-small-cell lung cancer, Lin and colleagues
suggested that CpG hypermethylation of FHIT, p16INK4a, and RARβ tumor-suppressor gene
promoters is associated with the overexpression of DNMT1, DNMT3A, and DNMT3B. The
researchers showed transcriptional silencing of tumor-suppressor genes (FHIT, p16INK4a, and
RARβ) due to direct interactions between DNMT1 and MeCP2. It was thus hypothesized that
the recruitment of DNMTs to promoters occurs via DNMTs-MeCP2 complexes that function
in hypermethylated regions of the tumor-suppressor genes in tumors [140].

Han and colleagues showed a link between long intergenic noncoding RNA 00518
(LINC00518) and MeCP2 in lung adenocarcinoma (LUAD) tumors. They showed that
LINC00518, which is highly expressed in LUAD and is associated with poor survival,
increases MeCP2 expression by inhibiting miR-185-3p. Such altered expressions promote
cell proliferation, and subsequent tumor growth, by regulating the LUAD cell cycle [141].

5. Conclusions

Overall, the aforementioned research studies suggest the oncogenic properties of
MeCP2 as a link between DNA methylation and different types of human cancer. Indepen-
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dent groups have shown that MeCP2 is increasingly presented as an emerging oncogene
with involvement in several different types of human cancer. Further, these studies under-
score the diversity in molecular mechanisms, in which MeCP2 could contribute to human
cancer and tumorigenesis. This observed diversity may be attributed to the tissue-specific
context of genes that interact with MeCP2 or in DNMTs–MeCP2 complexes. Additionally,
this diversity may coincide with the major molecular pathways that are involved in each
type of human cancer. Thus, the research presented by independent groups suggest that
the main role of MeCP2 in cancer may be tissue- and pathway-specific. These studies offer
important information towards future therapeutic strategies that are yet to be explored
based on the suggested mechanisms of MeCP2-associated cancer progression.
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