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Simple Summary: Unlike B cell malignancies, the progress on generating an adoptive T cell therapy
for relapsed/refractory acute myeloid leukemia (AML) remains insufficient. This review focuses on
the main challenges in the field and novel strategies to overcome them.

Abstract: Despite exhaustive studies, researchers have made little progress in the field of adoptive
cellular therapies for relapsed/refractory acute myeloid leukemia (AML), unlike the notable uptake
for B cell malignancies. Various single antigen-targeting chimeric antigen receptor (CAR) T cell Phase
I trials have been established worldwide and have recruited approximately 100 patients. The high
heterogeneity at the genetic and molecular levels within and between AML patients resembles a
black hole: a great gravitational field that sucks in everything. One must consider the fact that only
around 30% of patients show a response; there are, however, consequential off-tumor effects. It is
obvious that a new point of view is needed to achieve more promising results. This review first
introduces the unique therapeutic challenges of not only CAR T cells but also other adoptive cellular
therapies in AML. Next, recent single-cell sequencing data for AML to assess somatically acquired
alterations at the DNA, epigenetic, RNA, and protein levels are discussed to give a perspective on
cellular heterogeneity, intercellular hierarchies, and the cellular ecosystem. Finally, promising novel
strategies are summarized, including more sophisticated next-generation CAR T, TCR-T, and CAR
NK therapies; the approaches with which to tailor the microenvironment and target neoantigens; and
allogeneic approaches.

Keywords: acute myeloid leukemia; cellular therapies; chimeric antigen T cells; T cell receptor T
cells; CAR NK cells; RNAseq

1. Introduction

Since the early studies in the eighteenth century on the development of the first
vaccines, researchers have attempted to eliminate tumors by harnessing the immune
system. One strategy, adoptive cell therapy, uses T cells that can recognize tumor antigens
through tumor-specific receptors. Since the 1980s, chimeric antigen receptor T cells (CAR
T cells) have revolutionized the treatment algorithms of patients with lymphoma, acute
lymphoblastic leukemia, and multiple myeloma [1]. They have shown dramatic success in
the clinic, improving survival and quality of life for patients that would otherwise reach the
end of care with conventional therapies. Currently, six CAR T cell products are approved
by the United States Food and Drug Administration (FDA), and approvals are expanding
to Europe and many other countries around the world.

There are distinct considerations in acute myeloid leukemia (AML), the most common
acute leukemia in adults. AML is an aggressive blood cancer characterized by a collection
of immature cells of myeloid lineage that exhibit partial or complete arrest of maturation [2].
The heterogeneity and intrinsic variability of the tumor make patient responses hard to
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predict, and around 75% of patients ultimately relapse. Treatment resistance (10–40%)
and relapse remain the major consequences during disease follow-up, highlighting the
urgent need for novel therapeutic approaches [3]. Allogeneic hematopoietic stem cell
transplantation (allo-HSCT) is the only curative option, but many patients are not suitable
candidates [4].

Many in vitro and in vivo studies have shown that CAR T cells against surface pro-
teins, such as CD33, CD123, CLL-1, CD13, CD7, NKG2D ligand, CD38, CD70, and TIM3,
effectively eradicate AML cells [5]. However, the clinical trials are limited, with not very
promising response rates accompanied by high ‘on-target off-tumor’ toxicity due to the
frequent expression on healthy hematopoietic stem cells or progenitors, as well as other
tissues. The major clinical trials and case reports are shown in Table 1; ongoing trials were
summarized in a review by Marofi et al. [6]. The data in the CAR T field for AML so far
resemble a black hole with a bulky mass which is cumulatively increasing and condensing
day by day. This mass exerts an immense gravitational pull even light cannot escape; this
is similar to the situation with CAR T cells for AML, in that none of the strategies have
the power to cure. This review focuses on the main questions regarding the challenges
for adoptive immune therapies in the setting of relapsed/refractory AML and the novel
approaches to overcome them.

Table 1. CAR T cell clinical trials and case reports on AML (ALT: alanine aminotransferase; AST: as-
partate aminotransferase; CLL-1: C-type lectin-like molecule-1; CR: complete response; CRS: cytokine
release syndrome; Cy: cyclophosphamide; Flu: fludarabine; ICANS: immune effector cell-associated
neurotoxicity syndrome; MRD: minimal residual disease; PR: partial response; SD: stable disease).

Study Target CAR T
Cell/Lymphodepletion

Number of
Patients Response Safety Reference

Phase I/II CLL-1
0.35−1 × 106

kg/anti-CLL-1-CD8-
41BB/Cy+Flu

8

4/8 morphological
leukemia-free, MRD (−)

1 morphological
leukemia-free, MRD+,
1 CR with incomplete
hematologic recovery
MRD(+), 1 PR, 1 SD

CRS: 5 grade 1,
3 grade 2 [7]

Phase I CD123

Dose escalation 50 ×
106−200 ×

106/anti-CD123-IgG4-
CD28/Cy+Flu

6 4/6 CR
2 reduced blasts

CRS: 4 grade 1, 1 grade
2; 1 adenoviral

pneumonia requiring
intubation; and 1 grade

3 rash due to drug
hypersensitivity

[8]

Phase I CD33 CD33-4-1BB/0.3 ×
106/kg 3 0/3 response

2 CRS; 1 ICANS. A
grade 3 tumor lysis

syndrome-acute kidney
injury, grade 2

mucositis, grade 1
tachycardia for 1

patient; and a second
patient experienced
grade 2 intermittent

orthostatic hypotension,
grade 2 increased

bilirubin and grade 3
increased ALT and AST

[9]

Case report CD33 CD33-4-1BB/1.12 × 109 1 Disease progression at
week 9

Grade 4 chills and a
high fever,

pancytopenia
[10]
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Table 1. Cont.

Study Target CAR T
Cell/Lymphodepletion

Number of
Patients Response Safety Reference

Phase I CD38 NA 6

66.7% of patients (4/6)
CR (including 1 with

CR and 3 with CR with
incomplete count

recovery (CRi)) and full
donor chimerism)

Five patients presented
mild CRS (Grade I–II),

and only one
experienced grade III
hepatotoxicity with

elevated serum
transaminase and

bilirubin levels

[11]

Phase I LeY Anti-LeY-CD28/Flu-Cy 4

In the patient with
active leukemia, a

temporary reduction in
peripheral blood blast

cells was observed. One
other patient achieved a
cytogenetic remission,

while the other two
patients had SD

One patient (patient 2)
had a transient grade 2

neutropenia
[12]

2. Challenges in Adoptive T Cell Therapy for Acute Myeloid Leukemia
2.1. AML Is Highly Heterogenous

Normal hematopoietic stem cells give rise to mature cells of the myeloid, lymphoid,
and erythroid/megakaryocyte lineages. Single-cell RNA sequencing (scRNA-seq) analyses
have shown that normal hematopoietic stem cell (HSC) commitment proceeds through a
series of increasingly lineage-committed progenitor states [13]. AML consists of leukemia
stem cells (LSCs) and differentiated cells. LSCs sustain the disease and display self-renewal,
quiescence, and therapy resistance. Differentiated AML cells that lack stem cell characteris-
tics affect tumor biology through pathologic effects on the tumor microenvironment [14].

AML is a highly heterogeneous disease between patients due to the presence of specific
chromosomal abnormalities, gene mutations, or gene fusions. Seventeen genetic subtypes
have been discovered so far in ELN risk stratification, but the number of molecular entities
may increase over time [15]. Not all gene expression subtypes correlate well with the
underlying disease-driven gene fusions or mutations, in contrast to acute lymphoblastic
leukemia (ALL), which is characterized by distinct gene expression subtypes [16]. The
recurrent somatic mutations are categorized by their biological roles, such as signaling and
kinase pathway genes. The mutation in FLT3 (which encodes a receptor tyrosine kinase)
and KRAS/NRAS (which encode a small GTPase) lead to uncontrolled cell growth and
proliferation, whereas the mutation in JAK2 (which encodes tyrosine kinase) promotes
leukemogenesis. There are epigenetic modifiers that encode a DNA methyltransferase
enzyme (DNMT3A), isocitrate dehydrogenase enzymes (IDH1/2), and a DNA demethylase
(TET2). The mutation in ASXL1 (a polycomb repressive complex of proteins implicated in
chromatin) can lead to the alteration of DNA methylation patterns, dysregulation of gene
expression, and altered hematopoietic differentiation. The dysregulation of transcription
factors (e.g., CEBPA, RUNX1, MLL, EVI1, etc.); RNA splicing factors (e.g., SRSF2, which
encodes a serine and arginine-rich splicing factor, U2AF1, SF3B1, ZRSR2, etc.); tumor
suppressors (TP53); nucleophosmin (NPM1); and cohesin complex genes (e.g., RAD21,
STAG2, SMC1A, SM3, etc.) can lead to impaired differentiation and uncontrolled cell
growth [17]. The initiating leukemogenic NPM1, TET2, and SMC1A mutations emerge
in self-renewing cells that Jan et al. identified as highly purified HSCs, namely ‘pre-
leukemic HSCs’ [18]. The same mutations may lead to a highly variable preleukemic
burden in different patients [19]. In a study conducted by Stengel and colleagues, 37% of
572 AML cases had fusion events, and 41% of these fusions were detected in cases with TP53
alterations or complex karyotypes [20]. A subset of germline mutations has also been shown
in myeloid neoplasms: mutations in GATA 1 gene for Down syndrome patients; DNA
damage repair for Fanconi anemia; telomere maintenance genes (DKC1, TERC, TIF2) for
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dyskeratosis congenita; RUNX1, ANKFRD26, and ETV6 for platelet disorders; ANKRD26
for abnormal thrombopoiesis; and DDX41 for familial myelodysplastic syndrome and
AML [21,22]. Epigenetic modifications such as histone modifications, DNA methylation,
and post-transcriptional regulation of mRNAs by noncoding RNAs have additional roles
in the pathogenic heterogeneity [22].

Furthermore, a crucial problem in patients with relapse or treatment resistance is
intratumoral heterogeneity, formed with different subclones of leukemia cells, with distinct
genetic and epigenetic features coexisting within a single patient [23,24]. Highly hetero-
geneous LSCs have variable drug sensitivity. Some LSCs acquire quiescence, which plays
a major role in drug resistance profiles [25,26]. Recent advances in genomic, transcrip-
tomic, epigenomic, and proteomic data have helped to elucidate the biological differences
between pre-treatment AML cells and their equivalents in relapse. During disease pro-
gression in t(8;21) positive AML patients, heterogenous cell populations show their own
clonal characteristics and obtain cloned components [27]. In a single-cell analysis, Li et al.
found that proliferating stem/progenitor-like cells were reprogrammed to a quiescent
stem-like expression pattern in primary refractory AML by upregulation of CD52 and
LGALS1 expression [28]. Stratmann and colleagues used mass-spectrometry-based in-
depth proteomics to show that at relapse, energy metabolism is reprogrammed by the
enrichment of mitochondrial ribosomal proteins and subunits of respiratory chain com-
plexes as well as higher levels of granzymes and lower levels of the anti-inflammatory
protein CR1/CD35 [29].

2.2. There Is No Ideal Surface Antigen to Target

CAR T cells can bind to cell surface molecules without requiring any antigen process-
ing or HLA expression [30]. The choice of which surface antigen to target is the critical step
in manufacturing. The most important feature of an ideal target is the unique and high
expression profile on tumor cells, above the detection and activation threshold for CAR T
cells, as well as tolerable or no expression on healthy tissues to prevent toxicity. CD19 is
now a widely accepted B lineage target of lymphoma and leukemia that is expressed in all
tumor cells and absent in normal HSCs as well as all normal tissues [31]. Despite many
discoveries related to the immunopathology of AML, a single AML-specific target has still
remained elusive. Various surface proteins have been reported as potential targets, such as
CD123, CLL-1, CD33, CD44, CD96, CD47, CD23, TIM3, CD7, and FLT3 [32–35]. However,
the considerable risk of on-target/off-tumor activity needs to be addressed. Most of the
surface antigens on AML blasts are co-expressed by other healthy tissues, mature myeloid
cells, and HSCs, raising concerns about prolonged myelosuppression (Table 2). In some
Phase I trials, substantial toxicities and deaths have already been reported [10,36].

CD33 is a common transmembrane protein of the sialic acid-binding immunoglobulin-
like lectin (SIGLEC) family found on normal progenitor cells, myeloid cells, monocytes,
tissue-resident macrophages and more than 90% of leukemic blasts [37]. Severe pancytope-
nia and cytokine release syndrome (CRS) were reported to be the main adverse effects after
administration in a Phase 1 trial [10]. CD44V6 CAR T has shown promising preclinical
results; however, monocytopenia was observed due to the shared expression of CD44v6 in
circulating monocytes [38]. CD123, which is the IL-3 receptor subunit, is overexpressed on
LSCs, AML blasts, and early hematopoietic cells such as the hematopoietic stem/progenitor
cells that induce myeloablation [39]. A recent established target, folate receptor 1 (FOLR1),
overexpressed in AML, was shown to have no impact on normal HSPCs in C/G positive
pediatric acute megakaryoblastic leukemia, but it is expressed in various healthy tissues
(kidney, intestine, lung, retina, placenta, and choroid plexus) and severe lung toxicity has
already been demonstrated in studies with a T cell bispecific antibody against FOLR1 in
nonhuman primates [40].
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Table 2. Characteristics of various AML target molecules (ADP: adenosine diphosphate; CLL-1:
C-type lectin-like molecule-1; CTL: cytotoxic T cell; DC: dendritic cell; HSC: hematopoietic stem cell;
LSC: leukemic stem cell; NK: natural killer; TNF: tumor necrosis factor).

Target Antigen Function Expression on Normal Cells Expression on HSCs Expression on LSCs

CLL-1 Glycoprotein, Transmembrane receptor Myeloid, lung, epithelial cells - +

CD 33 SIGLEC family protein,
Transmembrane receptor

Progenitor, myeloid,
Kupffer cells + +

CD 7
Ig superfamily/Glycoprotein, B and T

cell lymphoid development,
Transmembrane protein

T, NK cells, and myeloid
progenitor - +

FLT3 Type III cytokine receptor, Tyrosine
kinase receptor Neurons, testis + +

CD 38 Glycoprotein, Cyclic ADP
ribose hydroxylase B, T, NK cells - +

CD 123 Type I cytokine receptor of IL-3, IL3
receptor subunit

Myeloid progenitors, DC, and
basophils + +

CD 44v6 Glycoprotein,
Transmembrane receptor Keratinocytes - +

LeY Glycosphingolipid, Blood group Ag Intestinal epithelial cells + +

NKG2D C-type lectin-like receptor protein,
Activator receptor NK, NKT, Tαδ, Th, and CTL - +

CD 70 Glycoprotein from the TNF family,
Transmembrane receptor T and B cells - +

CD 96
Member of immunoglobulin

superfamily, adhesion of activated T
and NK cells

T cells and NK cells - +

2.3. Interactions in the Tumor Microenvironment

LSCs reside in a specialized niche that promotes their survival and chemoresistance,
through which they can alter their microenvironment [41]. LSCs secrete pro-angiogenic
VEGF and interleukins to stimulate angiogenesis to provide additional nutrients, oxygen,
and growth factors and to promote proliferation [42,43]. AML blasts support a low-arginine
microenvironment [44]. AML LSCs induce the expression of a growth-arresting protein,
GAS6, in BM stromal cells [45]. AML cells promote the expression of immunomodulatory
factors that impair cytotoxic T lymphocyte (CTL) activation in the tumor microenviron-
ment [46]; these factors include programmed death receptor (PD-1), transforming growth
factor β (TGF β), arginase II, prostaglandin E2 (PGE2), cytotoxic T lymphocyte-associated
protein 4 (CTLA-4), lymphocyte activation gene 3 (LAG3), and T cell immunoglobulin and
mucin-containing-3 (TIM3) on T cells [47]. Furthermore, leukemia cells modulate the NK
cell receptor repertoire that inhibits NK cell activity [48].

The interactions are reciprocal: the niche cells also foster LSC growth. In vitro 3D
bone marrow microenvironment models have elucidated these interactions [49]. The AML
microenvironment contains various cell types, including myeloid-derived suppressor cells
(MDSCs), regulatory T cells (Tregs), macrophages, and dendritic cells, that suppress T cell
activity. The high expression of Indoleamine 2,3-dioxygenase (IDO) has been reported
to promote Treg conversion and enhance the immunosuppressive ability [50]. Treg cells
were shown to express abnormally high levels of CD39, and the increase in CD73 has been
associated with poor prognosis (E1). The decrease in CXCL12 expression in BM stromal
cells triggers the proliferation of AML cells [51]. Osteoblasts in the BM produce WNT
ligands to promote leukemia cell survival [52]. AML blasts induce monocytes to secrete
pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), IL1β, and IL6, and
the anti-inflammatory cytokine IL10 [53].

Assessment by scRNA-seq, the cellular indexing of transcriptomes and epitopes by
sequencing (CITE-seq), or single-cell assay for transposase-accessible chromatin (ATAC)
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sequencing has paved the way for the study of cellular heterogeneity and intercellular
hierarchies and for the obtaining of insights into the cellular ecosystem of malignant and
normal cells. Galen et al. showed that primitive AML cells had dysregulated transcriptional
programs with the co-expression of stemness and myeloid priming genes and that differen-
tiated monocyte-like AML cells suppressed T cell activity in vitro by immunomodulatory
genes [54]. Furthermore, recent advances in syngeneic models with a fully functional im-
mune system provided an opportunity to evaluate the important aspects of cancer disease
progression and the interactions between tumor microenvironments [55,56].

3. Promising Strategies to Overcome Challenges
3.1. Safer Targets with Less ‘On-Target Off-Tumor’ Effect

Some potential targets appear more reliable in terms of off-tumor toxicity, especially
on normal hematopoietic cells, but none of them has proven to be an ideal target in AML. C-
type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein overexpressed
in over 90% of AML patients on AML blasts, LSCs, and differentiated myeloid cells that are
absent in normal CD34+CD38- hematopoietic stem cells. Tashiro and colleagues reported
that CLL-1 CAR T cells can eliminate mature normal myeloid cells but spare healthy HSCs
in vitro [57]. The CAR T cells targeting CLL-1 were optimized and demonstrated efficient
cytotoxicity in vitro and in vivo [58]. One step ahead of this, CLL-1 CAR T cells were
transduced with a second vector encoding soluble IL 15, a cytokine that promotes the
survival and proliferation of memory T cells. The expansion and the maintenance of a
less differentiated phenotype was detected. In xenograft models of AML, the addition
of IL15 induced the production of tumor necrosis factor-alpha (TNFα), likely through
the activation of the JAK-STAT pathway. The production of TNF-a contributed to the
development of cytokine release syndrome (CRS), and this was controlled with the related
antibody blockage [58]. In fact, the TNFα pathway resembles a double-edged sword
in immune regulation. The suitable modifications in TNFα signaling may enable the
enhancement of CAR activity [59].

CD70, a ligand for CD27 identified as a type II transmembrane glycoprotein, was
reported to be expressed on AML bulk cells and leukemic stem cells but not on nor-
mal hematopoietic stem cells. It showed a promising anti-tumor effect without toxicity
on healthy HSCs [60]. Later, Leick and colleagues designed a panel of CD8 hinge and
transmembrane-modified CD70 CAR T cells that were less prone to cleavage and had
enhanced binding avidity, leading to more potent activity and expansion [61]. CD7 is a
transmembrane glycoprotein that plays a co-stimulatory role in B and T cell lymphogen-
esis expressed by T cells, NK cells, myeloid progenitors and leukemic cells but not by
healthy myeloid cells [62]. The obstacle of shared expression on T cells, which causes T
cell fratricide, can be overcome by removing the CD7 gene by CRISPR/Cas9, as shown
by our group [63]. Interleukin receptor accessory protein (IL-1RAP) is another promising
target on the surface of the LSCs of AML, myelodysplastic syndrome, and chronic myeloid
leukemia (CML) but not on healthy HSCs, and it was shown to be effective in vitro and
in vivo [64]. PRAME is an intracellular cancer and testis antigen highly expressed in acute
myeloid leukemia blasts and normal reproductive tissues. A T cell receptor (TCR) mimic
antibody, Pr20, that recognizes the peptide–HLA complex can target intracellular PRAME.
Kirkey and colleagues generated PRAMEmTCR CAR T cells that were cytotoxic to HLA-A2
restricted AML cells in vitro and in vivo without an impact on normal hematopoiesis [65].
Jetani et al. suggested that Siglec-6 could be a convenient target, sparing HSC or hematopoi-
etic progenitor cells [66].

The efforts to discover efficient targets for immunotherapeutic strategies accelerated
following technical progress in proteomic and transcriptomic assays. These assays helped
in the understanding of cellular behavior on the protein level instead of immunophenotyp-
ing malignant cells. Hoffman et al. described the mass-spectrometry-based phenotyping of
HL60 and NB4 cell lines [67]. Perna et al. performed surface-specific proteomic and tran-
scriptomic studies in AML patients and normal tissues to indicate a potential therapeutic
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target. However, none of the surface proteins showed a similar expression profile to that of
CD19. These studies suggested a combinatorial targeting strategy, which was discussed
further in other sections [35]. Kohnke and colleagues aimed to discover de novo targets
using cell-surface capture technology to detect the surfaceome, a set of proteins expressed
on the surface of primary AML patient samples, including surface receptor, transporters,
and adhesion molecules, among others. They identified three promising targets: CD148,
ITGA4, and Integrin beta-7. Among these, Integrin beta-7 was the most favorable due
to low or absent expression in healthy hematopoietic tissues [68]. In a recent scRNA-sec
approach, two antigen targets—CSF1R and CD86—revealed potential targets for CAR T
cell therapy with broad expression on AML blasts, accompanied by minimal toxicities
toward relevant healthy cells and tissues [69].

3.2. Limiting the ‘On Target-Off Tumor’ Effect

Unacceptably severe or prolonged toxicities, especially cytopenias and infections, can
occur more frequently than in clinical trials with CD19 CAR T cells in lymphomas due to
older and therapy-resistant patient populations. It is crucial to maintain anti-cancer immune
surveillance and clinical efficacy while avoiding toxicity. Safety or suicide genes are widely
used to alleviate the toxicity from CAR T cells [58,70,71]. Alternatively, the administration
of cross-reactive CAR T cells can be a bridge to allogeneic stem cell transplants. Tasian et al.
showed three different approaches (anti-CD123 messenger RNA electroporated CAR T cells,
administration of alemtuzumab, and administration of rituximab to CD20-coexpressing
CART123) to eliminate CD123 CAR T cells without effecting the anti-tumor activity in
murine models [72].

Many cell engineering approaches have attempted to improve safety when designing
CARs, such as with the logic gating of T cell recognition and SnyNotch receptors [73].
Mutation in the anti-CD123 CAR antigen binding domain reduced the antigen binding
affinity, as reported by Archangeli et al. [74]. Mild adverse events were demonstrated in the
interim analysis of a phase 1 trial of rapidly switchable universal CAR T (UniCAR) targeting
CD123 [75,76]. Benmebarek and colleagues generated controllable CAR platform-synthetic
agonist receptor (SAR) T cells that were only activated in the presence of their CD33
or CD123 scFv construct in vitro and in AML xenograft models [77]. Dimerizing agent–
regulated immunoreceptor complex (DARIC) is a split receptor design that modulates CAR
T cell activation by rapamycin to dimerize units. This approach aims to aid hematopoietic
recovery and mitigate toxicity. Cooper and colleagues developed a lentiviral DARIC
construct that targets a C2 splice isoform with the membrane proximal domain of CD33,
and a Phase I study using this strategy is now open for enrollment [78]. We have recently
demonstrated the potential benefits of DOX-inducible CAR T therapy, allowing the control
of CAR T using an external trigger. It is an effective and sensitive way to turn CAR T activity
ON or OFF in order to prevent unwanted side effects and reduce prolonged toxicities [79].
Potentially, the most feasible approach is to knock out the targeted antigen in normal
marrow cells. CD33 deletion in primary HSPCs maintained their full function in terms
of engraftment and differentiation, and it efficiently reduced off-tumor targeting while
preserving on-tumor efficacy [80,81].

3.3. Combinatorial Antigen Targeting for Heterogeneity

Combinations of CARs against different AML targets might be a promising solution
due to the lack of a leukemia-specific target antigen [73]. Previously, promising results
were reported with dual or tri-specific CAR T cells against B cell malignancies and solid
tumor models to overcome the heterogeneity and antigen escape [82,83]. Indeed, the phe-
nomenon of ‘antigen escape’ as a reason for the failure of CAR T cells for AML has not been
clearly demonstrated in the previous pre-clinical reports [84,85]. Nonetheless, regardless of
antigen expression levels, dual-targeting CAR T cells were associated with increased T cell
activation and proliferation. This effect might be due to increased interaction with the target
cell, favoring immune synapse formation and subsequent T cell recruitment [10,86]. How
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to combine suitable pairs of antigens to enhance therapeutic efficacy without increasing
off-tumor toxicity is a piece of the puzzle that has yet to be solved. Perna et al. suggested
four possible combinatorial pairings (CD33+ADGRE, CLEC12A+CCR1, CD33+CD70, and
LILRB+CLEC12A) to target AML with an algorithm integrating proteomics and transcrip-
tomics [35].

The combinatorial antigen-targeting strategy has already been applied in AML. Bi-
cistronic CD123 and CD33 CAR T cells showed significant anti-tumor activity in artificially
created cell lines (CD33+CD123-, CD33-CD123+) and in vivo [87]. In a phase I trial, CLL-1
and CD33 bicistronic CAR T cells reported remarkable results [88]. Similarly, 10 of 11
pediatric R/R AML patients infused with CLL-1 or CLL-1-CD33 dual CAR T cells had a
response (5 reached CR/MRD-) without dose-limiting toxicities [89]. Atilla et al. reported
that dual targeting with either a CD33 CAR or a CD123 CAR and a CLL-1 CAR increased
anti-tumor activity most profoundly when the target antigen expression on the tumor cells
was low. Since the expression of each target antigen is highly variable, we chose to modify
T cells with two separate vectors targeting CLL-1 and CD33/CD123 to obtain a mixed
product rather than a bicistronic or tandem CAR design in which the molar ratio of each
target is fixed [84]. A universal CAR T cell platform (on/off switching mechanism) suc-
cessfully targeted CD33 and CD123-positive AML blasts in vitro and in vivo [90]. Haubner
et al. presented a novel combinatorial ADGRE-2-targeting CAR and a CLEC12A-targeting
chimeric costimulatory receptor (CCR) (IF-BETTER gate) that triggered high anti-leukemic
activity in vitro and in vivo while sparing vital normal hematopoietic cells [91].

3.4. Neoantigens

Neoantigens are limited to malignant clones that arise from somatic mutation [92,93].
Because recurrent gene alterations can be shared by AML patients, neoantigens trigger
potent anti-leukemic responses [94]. Distinct from other cancers, AML presents with low
mutational burden; so, recognizing the neoantigens arising from mutations is rare [95,96].
Neoantigens from driver gene mutations appear to be ideal targets for immunotherapy
since immune evasion is unlikely [93].

The major difficulty in identifying neoantigens was resolved following MS HLA-
ligand profiling with whole-exon sequencing and RNA-sequencing techniques [97]. An
adequate number of T cells may not be present in AML patients following chemotherapy,
or the response may be scarce due to illness-related immunodeficiency [98]. Therefore,
the preferred source of neoantigen-specific T cells is usually healthy donors; cells can be
isolated using MHC multimers or tetramers carrying the same neoepitopes [99]. Several
studies tested the efficacy of neoantigens: CD 8 T cell clones induced by a nonameric neo-
peptide (REEMEVHEL) derived from CBFβ-SMMHC fusion protein and in an HLA-A 40:1
restricted manner [98] showed cytotoxicity in in vitro and in vivo models. A neoepitope
from NPM1c (CLAVEEVSL) was identified from HLA-A02:01+ AML patients, and the
healthy CD8 T cells showed lysis when transduced with the same TCR [100]. CD 8+ T cells
from an FLT-ITD-positive patient (HLA-A 01:01-restricted) showed an anti-tumor response
to a neoepitope (YVDFREYEYY) encoded by the ITD protein region [101].

3.5. T Cell Receptor (TCR) T Cells for Treatment of AML

T cell receptor (TCR) engineered T cells act through their modified TCRs and the
tumor-associated antigens (TAAs) presented by human leukocyte antigen (HLA) molecules
on the surfaces of leukemic cells. The target protein can be expressed intracellularly or on
the cell surface. TCR-T cells have less stringent antigen requirements for T cell activation
than CAR T cells [102]. TCR-T cell immunotherapy in AML still has barriers that need to
be addressed. The major drawbacks are that TAAs might be expressed by non-malignant
cells causing on-target, off-tumor toxicities, dose-related toxicity, limited persistence, and
the chance of immune escape [103,104]. The dose optimization of TCR-T cells, combining
the treatment with exogenous cytokines (e.g., IL-21, IL-7 and IL-15), or adding genetically
engineered signaling during cell expansion and demethylating agents such as decitabine
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might overcome the disadvantages of TCR-T cell application [105]. One other limitation
of TCR transfer is the mispairing of endogenous and exogenous TCR components that
impair the function; this limitation might be prevented by swapping the constant regions of
mouse and human TCRs or codon-optimized cysteine-modified TCRs in which TCR-α and
-β are linked by a T2A sequence [106–108]. Another approach uses TCR-like CAR T cells
that contain scFv and CAR signaling mechanisms that recognize peptides in the context of
MHC class I molecules [109].

TCR-T cells against WT1, PRAME, and HA-1 demonstrated anti-leukemic effects
in vitro and in a clinical setting in AML [110–113]. The responses from the clinical trials
are variable due to different patient populations, administration of doses, and targets. In
the first-in-human trial of TCR-T reacting with WT1 in the context of HLA-A*24:02, only
two patients out of eight showed transient decreases in blast counts in bone marrow. The
patients had minimal toxicities, including fever, edema, arthritis, and skin reactions [111].
Preferable adverse events were observed in ten patients treated with autologous WT-1-
specific TCR-T cells that persisted through 12 months in another trial [114]. More clinical
trials on TCR-T cells for AML are detailed in Table 3.

Table 3. Clinical Studies of TCR-T cells against AML (CML: chronic myeloid leukemia; CRS: cy-
tokine release syndrome; MDS: myelodysplastic syndrome; TCR-T: T cell receptor T cell; WT-1:
Wilms’ tumor-1).

Study TCR-T Therapy Study Phase/Number
of Patients Study Outcomes Adverse Events

NCT02550535 Autologous WT1
TCR-T cells

Phase I/II, 10 patients (6
AML, 3 MDS and 1
TKI-resistant CML)

All 6 AML patients were alive at last
follow up (median 12 months; range:
7–12.8 months). The 3 patients with

MDS had a median survival of
3 months (range: 2.1–3.96 months).
Two died from progressive disease

and one from other causes. Two
patients had disease progression.

1 CRS

UMIN00001159 Autologous WT1
siTCR-T cells Unknown Two patients showed transient

decrease in blast counts. None

NCT01640301 Allogeneic WT1
TCR-T cells Phase I/II, 12 patients

With a median follow-up of
44 months (range: 21–57 months)
following infusion, all 12 patients
did not have evidence of disease.

None

NCT03503958 Autologous PRAME
TCR-T cells Phase I Not posted Not posted

NCT01621724 Autologous WT1
TCR-T cells Phase I/II, 7 patients Not posted Not posted

In order to promote graft-versus-leukemia (GVL) reactivity after HLA-matched allo-
geneic stem cell transplantation, Chapuis et al. isolated WT-1 TCR (TCRC4) from HLA-A2+

normal donor repertoires (WT-1 TCR CAR T cells) following allogeneic hematopoietic
stem cell transplantation (allo-HSCT), inserted TCRC4 into Epstein–Barr virus-specific
donor CD8+ T cells to minimize graft-versus-host disease and infused them prophylacti-
cally post-allo-HSCT. This strategy achieved 100% relapse-free survival at a median of 44
months [110]. In a similar approach, donor-derived EBV and/or CMV-specific T cells were
redirected by HA-1H TCR to treat HA-1H-positive HLA-A* 02:01-positive patients with
high-risk leukemia after allo-HSCT. However, the overall feasibility and efficacy was too
low to warrant further clinical development [115].

3.6. CAR NK Cells

NK cells are lymphoid cells involved in the innate immune response; they are pro-
grammed to kill virus-infected and malignant cells without causing significant graft-versus-
host disease, CRS, or neurotoxicity [116]. AML has been an attractive target for NK cell
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therapy as an allogeneic product [117]. Despite several manipulations for the longer
persistence of NK cells, the response to NK cell infusions varies without long-term remis-
sions [117]. NK cells differentiated into cytokine-induced memory-like NK cells following
stimulation with IL-12, IL-15, and IL-18 and showed a distinct transcriptional and surface
proteomic profile as well as enhanced functionality [118]. Cytokine-induced memory-like
(CIML) NK cells were generated by in vitro pre-activation with IL-12, IL-15, and IL-18
and showed promising responses in a Phase I trial in relapsed/refractory AML [119].
Dong et al. reported potent antileukemic activity in vitro and in vivo with peripheral
blood-derived CIML NK cells with TCR-like CAR specifically for NPM1c+ HLA-A*0201+

AML [120]. Genome editing of NK cells to upregulate the cytotoxicity by knocking out the
suppression-associated markers ADAM17 (involved in cleavage of CD19) and PD-1 is the
next step [121].

The first CAR NK cell therapy was administered for B cell relapsed/refractory lym-
phoma and CLL. Umbilical-derived, HLA-mismatched, anti-CAR 19 CAR NK cell therapy
has been studied in relapsed/refractory lymphoma and CLL and has shown promising
results, with 73% of the patients in complete remission [122]. CAR NK cell therapy is fa-
vorable in terms of the minimal risk of toxicity and the potential ‘off-the-shelf’ application.
The successful application of CD33-targeted CAR-modified NK cells by transduction of
blood-derived primary NK cells showed promising cytotoxicity with unimpeded prolifera-
tion in vitro and in vivo without observable side effects [123]. The transgenic expression
of secretory IL-15 promoted anti-AML activity and enhanced the persistence of CAR NK
cells in vitro, but it was associated with systemic toxicities in vivo with anti-CD123 CAR
NK [124]. Off-the-shelf cord-derived FLT3 CAR NK cells expressing soluble IL-15 en-
hanced cytotoxicity and IFN-γ secretion in vitro and improved survival in vivo without
HSC toxicity [125]. In a first-in-human Phase I trial, 10 relapsed/refractory AML patients
received anti-CD33 CAR NK cells; six of them achieved minimal residual disease-negative
CR at day 28 without major toxicities [126]. Other phase I trials on CAR NK cells targeting
relapsed/refractory AML are still ongoing (NCT05092451, NCT02892695, NCT02944162).

3.7. Manipulations in Manufacturing

AML is a highly aggressive disease affecting older populations. In a relapsed/refractory
setting, patients receive many lines of immunosuppressive therapies prior to apheresis,
which affects T cell function, and the timeline of manufacturing raises serious concerns in
practice. Optimal CAR construct design will preserve the naïve and central memory phe-
notype as well as the persistence of T cells. It has been shown that naïve and early memory
T cells have been enriched by decitabine administered with CD123 CAR T cells [127].

The administration of off-the-shelf ready-to-use products (allogeneic CAR T cells)
generated from healthy donors will provide a valuable solution since the CAR T cell
products are pre-manufactured without the need for customized manufacturing for a
specific patient. Two major issues of allogeneic production—graft-versus-host disease
and alloreactivity—can be overcome by various strategies [128]. While the AML off-the-
shelf CAR T cell therapies are being developed, these approaches are still in the early
stages of developments, in comparison with B cell malignancies. Two patients from a
CD38-targeted CAR T cell trial received a donor-derived CAR construct [11]. TCRαβ
negative T cells manufactured from healthy donors by TALEN gene editing targeting
CD123 (allogeneic, UCART123) eliminated AML in vitro and in vivo with modest toxicity
to normal hematopoietic stem/progenitor cells [129]. A phase I clinical trial was halted
following the death of the first patient because of severe CRS and capillary leak syndrome
with unrelated donor-derived allogeneic anti-CD123 CAR Ts. This trial resumed following
the revision of the eligibility criteria and dose modifications [130].

DNA transposon systems are sophisticated systems for stable genetic modification that
can deliver large genetic cargos and can be used to reduce cost [131]. Clinical-grade CAR
T cell products using Sleeping Beauty and piggyBac for multiple myeloma and leukemia
are under investigation [132–134]. Gurney and colleagues applied a non-viral approach
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to primary CAR NK cell production combining the TcBuster DNA transposon system
targeting a C-type lectin-like molecule-1 (CLL-1/C-Type Lectin Domain Family 12 Member
A, CLEC12) with a GMP-grade Epstein–Barr virus-transformed lymphoblastoid feeder
cell (EBC-LCL) for expansion. This approach knocked out a negative regulator of NK cell
stimulation, cytokine-inducible SH-2-containing protein (CISH), using CRISPR/Cas9 to
enhance the functionality of CLL-1 CAR NK cells without requiring IL-15 stimulation [135].

3.8. Strategies to Overcome the Negative Effects of Microenvironment

There are several approaches described to modulate an immunosuppressive microen-
vironment. Immune evasion such as that with upregulating immune checkpoint proteins
has proven to be a way which can dampen the anti-tumor response and limit the efficacy
of CAR T cell therapy. Although immune checkpoint blockade in AML has not proven
beneficial, [136–138] there may still be additional effects in combining CAR T cells and
immune checkpoint blockage (PD-1, CTLA-4, etc.) that will improve T cell persistence
and anti-tumor efficacy [47]. One promising approach is to use a gene editing approach
to eliminate the expression of immune checkpoint proteins (PD-1, CTLA-4, etc.), thereby
making them less susceptible to the tumor microenvironment.

Targeting immunosuppressive cells such as Tregs (with anti-CD25 antibodies) and
MDSCs (anti-Gr-1 antibodies) in the tumor microenvironment may enhance anti-tumor
immunity. CD33 is also present in MDSC; so, targeting CD33 will mediate anti-tumor
activity through direct cytotoxicity of CD33+ blasts and also through inhibition of CD33+
MDSCs [139]. In an AML murine model, the depletion of Tregs increased the proliferation
and activity of adoptively transferred tumor reactive cytotoxic T cells [140]. Lymphode-
pleting chemotherapy prior to CAR T cell infusion suppresses Tregs and augments the
expansion of adoptively transferred CAR T cells [141]. This was previously shown in CD19
CAR T cell models through the downregulation of indoleamine 2,3-dioxygenase (IDO),
a protein able to deplete tryptophan and other metabolites that inhibit CAR T cell func-
tion [142]. Therapies targeted towards the adenosinergic pathways (antibodies targeting
CD73 and CD39) have proven anti-tumor efficacy in mice models [143]. A combinatorial
approach targeting CD73 and IDO could potentially enhance the AML CAR T therapy;
in this regard, our group is integrating universal off-the-shelf CLL-1 CAR T cells and
several nanocarriers to deliver CD73 short hairpin (shRNA) and miRNA-135 as promising
strategies for targeting CD73 and IDO, respectively. Combining CD73- and IDO-targeted
therapy with the CAR T cell approach could potentially enhance the anti-tumor immune
response by blocking two separate pathways of immune suppression.

3.9. Allogeneic Hematopoietic Stem Cell Transplantation with CAR T Cells

When and how to combine allo-HSCT with adoptive immunotherapy in AML is still
being debated. The mechanisms of resistance to T cell-mediated anti-tumor effects after
allo-HSCT are well defined in sophisticated murine models of allo-HSCT [56]. Combining
a novel myeloablative irradiation-based conditioning regimen with regulatory and con-
ventional T cell immunotherapy in haploidentical transplantation was shown to eradicate
AML [144]. The published studies on how and when to combine CAR T cells in the setting
of allo-HSCT have shown conflicting results. Pan et al. reported that allo-HSCT following
CD19 CAR T treatment improved event-free survival and reduced relapse risk [145,146],
while other studies failed to demonstrate a benefit [147]. Summers et al. reported the
clearest leukemia-free survival in patients who had early loss of functionality of CAR T
cells (due to CD19 CAR T loss of B cell aplasia) [148]. Data on the evidence of the ben-
efit of allo-HSCT following CAR T cell therapy in AML patients are scarce. Zhang et al.
demonstrated that among six patients who received allo-HSCT following anti-CLL1 CAR T
cell treatment, four of them achieved CR [7]. One other approach took advantage of the
myelosuppression effect of CD123 CAR T cells and administered donor-derived CD123
CAR T cells as a part of a conditioning regimen for haplo-HSCT [149].
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4. Summary and Conclusions

The tremendous advances in understanding the molecular and cellular mechanisms
of AML have made it possible to manipulate the immune system and BM niches. Treating
AML with CAR T cells is still in an immature stage. Experience with allogeneic stem cell
transplantation, which is the most effective immune cellular therapy for AML, is guiding
other directed therapies. One of the major challenges in developing CAR T cell therapy for
AML is the lack of a suitable antigen that is expressed uniquely on AML cells. Identifying
and isolating target antigens that are homogeneously and stably expressed in all leukemic
blasts and leukemic stem cells with limited on-target off-tumor toxicity, investigating
complex interactions in the AML microenvironment, and seeking a suitable cell source will
all improve the fine-tuning of CARs.

Sophisticated methods for ex vivo manufacturing are now changing the in vivo dynam-
ics and the character of the final product (Figure 1). In AML, personalization should be taken
a step further in directed cellular therapies with platforms that will standardize the optimal
CAR design for the target antigen or antigens in line with patient-specific immunopheno-
typing findings, the selection of a compatible carrier cell, and the cellular subtype.

Cancers 2023, 15, x FOR PEER REVIEW 12 of 19 
 

 

allo-HSCT following CAR T cell therapy in AML patients are scarce. Zhang et al. demon-
strated that among six patients who received allo-HSCT following anti-CLL1 CAR T cell 
treatment, four of them achieved CR [7]. One other approach took advantage of the mye-
losuppression effect of CD123 CAR T cells and administered donor-derived CD123 CAR 
T cells as a part of a conditioning regimen for haplo-HSCT [149]. 

4. Summary and Conclusions 
The tremendous advances in understanding the molecular and cellular mechanisms 

of AML have made it possible to manipulate the immune system and BM niches. Treating 
AML with CAR T cells is still in an immature stage. Experience with allogeneic stem cell 
transplantation, which is the most effective immune cellular therapy for AML, is guiding 
other directed therapies. One of the major challenges in developing CAR T cell therapy 
for AML is the lack of a suitable antigen that is expressed uniquely on AML cells. Identi-
fying and isolating target antigens that are homogeneously and stably expressed in all 
leukemic blasts and leukemic stem cells with limited on-target off-tumor toxicity, investi-
gating complex interactions in the AML microenvironment, and seeking a suitable cell 
source will all improve the fine-tuning of CARs. 

Sophisticated methods for ex vivo manufacturing are now changing the in vivo dy-
namics and the character of the final product (Figure 1). In AML, personalization should be 
taken a step further in directed cellular therapies with platforms that will standardize the 
optimal CAR design for the target antigen or antigens in line with patient-specific immuno-
phenotyping findings, the selection of a compatible carrier cell, and the cellular subtype. 

 
Figure 1. Summary of overcoming challenges for CAR T cell therapy in AML: (a) modulating tumor 
microenvironment with checkpoint inhibitors, blockage of IDO, Arginase II, and Adenosine; (b) lim-
iting ‘on-target off-tumor’ effect by selecting more specific targets (such as CLL-1, CD70, etc.), 

Figure 1. Summary of overcoming challenges for CAR T cell therapy in AML: (a) modulating
tumor microenvironment with checkpoint inhibitors, blockage of IDO, Arginase II, and Adeno-
sine; (b) limiting ‘on-target off-tumor’ effect by selecting more specific targets (such as CLL-1,
CD70, etc.), knocking out targets in HSPC, application of SynNotch Systems, suicide genes, and
DARIC; (c) combinatorial targeting, CAR NK cells/TCR-T cells; (d) manipulations in manufacturing
such as enhancing the central memory population by decitabine, allogeneic CAR T cells, or various
DNA transposon systems to carry genetic cargos. DARIC: dimerizing agent–regulated immunore-
ceptor complex; HSPC: hematopoietic stem and progenitor cells; IDO: indoleamine 2,3-dioxygenase
(IDO); KO: knock-out; MHC-I: major histocompatibility complex-I; PD-1: programmed cell death-1;
TCR: T cell receptor).
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