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Simple Summary: Pancreatic cancer is a clinically heterogeneous disease, and treatment leads to
different outcomes for people with similar diagnoses. Identifying patients who may respond to
chemotherapy and thereby benefit from improved survival has important implications for treatment
protocols. In this study, plasma metabolite profiling was performed to identify potential biomarker
candidates that can predict the response of patients to different neoadjuvant chemotherapy regimens
for pancreatic cancer. The concentrations of several metabolites from LC–MS were significantly
different when comparing the response to chemotherapy. Several metabolites demonstrated a predic-
tive performance for the response to chemotherapy. These results show promise for larger studies
that would validate the findings, which could contribute to the development of more personalized
treatment protocols for pancreatic cancer patients.

Abstract: Pancreatic cancer (PC) is one of the deadliest cancers. Developing biomarkers for chemother-
apeutic response prediction is crucial for improving the dismal prognosis of advanced-PC patients
(pts). To evaluate the potential of plasma metabolites as predictors of the response to chemotherapy for
PC patients, we analyzed plasma metabolites using high-performance liquid chromatography–mass
spectrometry from 31 cachectic, advanced-PC subjects enrolled into the PANCAX-1 (NCT02400398)
prospective trial to receive a jejunal tube peptide-based diet for 12 weeks and who were planned
for palliative chemotherapy. Overall, there were statistically significant differences in the levels of
intermediates of multiple metabolic pathways in pts with a partial response (PR)/stable disease (SD)
vs. progressive disease (PD) to chemotherapy. When stratified by the chemotherapy regimen, PD
after 5-fluorouracil-based chemotherapy (e.g., FOLFIRINOX) was associated with decreased levels of
amino acids (AAs). For gemcitabine-based chemotherapy (e.g., gemcitabine/nab-paclitaxel), PD was
associated with increased levels of intermediates of glycolysis, the TCA cycle, nucleoside synthesis,
and bile acid metabolism. These results demonstrate the feasibility of plasma metabolomics in a
prospective cohort of advanced-PC patients for assessing the effect of enteral feeding as their primary
source of nutrition. Metabolic signatures unique to FOLFIRINOX or gemcitabine/nab-paclitaxel may
be predictive of a patient’s response and warrant further study.

Keywords: pancreatic cancer; chemotherapy; FOLFIRINOX; gemcitabine/nab-paclitaxel; plasma
metabolomics

Cancers 2023, 15, 3020. https://doi.org/10.3390/cancers15113020 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15113020
https://doi.org/10.3390/cancers15113020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-4835-3836
https://orcid.org/0000-0001-9050-148X
https://orcid.org/0000-0003-0818-6017
https://orcid.org/0000-0001-8747-5989
https://orcid.org/0000-0001-8713-1406
https://doi.org/10.3390/cancers15113020
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15113020?type=check_update&version=1


Cancers 2023, 15, 3020 2 of 13

1. Introduction

Pancreatic cancer (PC) is one of the deadliest cancers, with a rising incidence over the
past two decades [1]. The combined majority (nearly 80%) of patients diagnosed with PC
will have unresectable, locally advanced PC (LAPC) or metastatic PC (collectively termed
advanced PC or APC) [2,3]. The 5-year survival for all stages of PC approximates 11%, and
the prognosis is dismal for metastatic PC, where the 5-year survival approximates 3% [3].
The clinical course for PC is often compounded by progressive therapeutic resistance and
cachexia, wherein nearly 85% of patients with PC meet the classical definition of cancer
cachexia [4]. Systemic therapy combinations such as FOLFIRINOX (fluorouracil, leucovorin,
irinotecan, and oxaliplatin) and gemcitabine hydrochloride plus nanoparticle albumin-
bound paclitaxel (gemcitabine + abraxane) represent standard therapies that have been
shown to prolong the survival of patients with metastatic PC [2]. However, progression
to systemic therapies is often the rule, rather than exception, in metastatic PC, with a
clinical course that is often marked by therapeutic resistance to subsequent lines of therapy
following the failure of first-line chemotherapy [5]. As such, there is a high unmet need to
develop biomarkers that can predict a patient’s response to treatment or their prognosis
in APC.

Metabolomics enable the quantitative detection of multiple small-molecule metabo-
lites in cells, tissues, and biofluids in combination with advanced bioinformatics ap-
proaches [6,7]. The high-throughput analytical techniques of nuclear magnetic resonance
(NMR) spectroscopy and mass spectrometry (MS) combined with multivariate statistical
analyses provide information on a large number of metabolites, including those that have
altered levels between healthy subjects and patients with various diseases, including can-
cer [8]. A major advantage in the application of metabolomics comes from an improved
ability to detect thousands of metabolites in parallel, which could help us to monitor the
dynamic picture of disease progression [9,10]. In the past few years, ultra-performance liq-
uid chromatography coupled to time-of-flight mass spectrometry (LC–MS) has become one
of the most advanced and useful tools. So far, metabolomics-based approaches have been
used in a large variety of applications, including early disease detection, drug response
analyses, toxicity and nutritional studies, and basic systems biology [9,11]. Compared
with other biomarker discovery approaches for cancer, metabolomics provide a strong link
between the genotype and phenotype, and may provide more insight into oncogenesis.
Importantly, once established, tests based on metabolic profiles are relatively inexpensive,
are rapid, and can be automated [12].

A growing number of metabolomics studies are contributing toward an improved
understanding of PC. Previous studies have examined the metabolites using pancreatic
tumor tissues and normal adjacent tissues [13–15], urine [16–18], serum [19–24], and
plasma [25–28], and have identified a metabolic signature in pancreatic cancer. These
results demonstrated that the metabolites involved in the metabolism of lipids, glucose,
amino acids, choline, DNA synthesis, small organic acids, and muscle protein breakdown
can discriminate pancreatic cancer from healthy controls and chronic pancreatitis [29–31].
These findings may allow earlier and more precise diagnostics, prognostics, and the predic-
tion of new therapeutic targets, enabling a potential application in personalized therapy
for pancreatic cancer. However, these studies have almost entirely focused on the early
detection of pancreatic cancer, with only a few studies aimed at biomarker discovery for
predicting the response to chemotherapy in pancreatic cancer patients.

In this study, we conducted plasma metabolomics on prospectively collected blood
samples from a cohort of patients with APC enrolled into a single-arm clinical trial of
enteral feeding and standard chemotherapy. The goal was to determine the feasibility of
measuring potential biomarkers that could predict the response to chemotherapy. Our
results show promise for future studies that could provide more insight into optimizing
chemotherapy for PC patients using metabolic biomarkers.
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2. Materials and Methods
2.1. Study Populations

The PanCax-1 was a single-arm, single-institution prospective trial (NCT02400398)
that enrolled 36 pts with APC meeting consensus criteria for cachexia [32,33]. The original
study design, eligibility criteria, and primary analysis results have been previously pub-
lished [32,33]. Briefly, 31 patients with unresectable LAPC or metastatic PC planned for
standard-of-care chemotherapy were enrolled and underwent jejunal feeding tube place-
ment to receive enteral feeding (Peptamen 1.5) over 12 weeks (three 28-day cycles). The
primary outcome was weight stability at 12 weeks (cycle 3), which was defined as a weight
change of less than 0.1 kg/baseline body mass index (BMI) unit. As part of preplanned
exploratory analyses, blood samples were collected during the 12-week enteral feeding
period, processed to plasma, and stored at −80 degrees Celsius. Plasma metabolomics were
conducted under an institutional review board (IRB)-approved protocol (STUDY00000250).

2.2. Study Design

This was a retrospective analysis on prospectively collected blood samples from
31 subjects enrolled into the PanCax-1 prospective trial (NCT02400398). As part of study
correlatives, blood samples were collected at a baseline or time 0 and after 6 weeks and
12 weeks of enteral feeding (three 28-day cycles) in cachectic patients with APC planned
for standard chemotherapy. Patients were stratified by stable disease (SD), partial response
(PR), or progressive disease (PD) as the best overall response to a standard chemotherapy
regimen. The standard chemotherapy regimens included FOLFIRINOX (fluorouracil,
leucovorin, irinotecan, and oxaliplatin), FOLFIRI (fluorouracil, leucovorin, and irinotecan),
gemcitabine, and gemcitabine and abraxane. One patient received gemcitabine + abraxane
+ peg-hyaluronidase under a clinical trial. For focused metabolite analyses, the samples
were stratified into pretreatment and FOLFIRINOX-, FOLFIRI-, or gemcitabine + abraxane-
treated samples.

2.3. Metabolic Analysis (dMRM; Dynamic Multiple-Reaction Monitoring)

Plasma metabolites were extracted by adding 4 volumes of a 50:50 methanol:ethanol
extraction buffer. The samples were vortexed, cleared by centrifugation at 21,000× g for
10 min at 4 ◦C, and the metabolite-containing supernatant was dried with a Thermo Fisher
(Waltham, MA, USA) Savant SPD1010-115 SpeedVac benchtop centrifugal concentrator.
The metabolite extract was resuspended in a 20% methanol and 80% water buffer for
the analysis. The extractions were analyzed with an Agilent 6470A triple quadrupole
mass spectrometer operating in negative mode, connected to an Agilent 1290 ultra high-
performance liquid chromatography (UHPLC) system (Agilent Technologies, Santa Clara,
CA, USA). The mobile phases consisted of HPLC- or LCMS-grade reagents. Buffer A was
water with 3% methanol, 10 mM tributylamine (TBA), and 15 mM acetic acid. Buffers B
and D were isopropanol and acetonitrile, respectively. Finally, Buffer C was methanol with
10 mM TBA and 15 mM acetic acid. The analytical column used was an Agilent ZORBAX
RRHD Extend-C18 1.8 µm 2.1 × 150 mm coupled with a ZORBAX Extend Fast Guard
column for UHPLC Extend-C18, 1.8 µm, 2.1 mm × 5 mm. The MassHunter Metabolomics
dMRM Database and Method was used to scan for up to 219 polar metabolites within each
sample (Agilent Technologies, Santa Clara CA, USA). The resulting chromatograms were
visualized using Agilent MassHunter Quantitative Analysis for QQQ. The final peaks were
manually checked for consistent and proper integration.

Metabolites were extracted from plasma and analyzed with a dedicated triple quadrupole
LC–MS (Agilent Technologies, Santa Clara, CA, USA) where up to 219 polar metabolites
within each sample were measured by the relative area under the curve (AUC).

2.4. Statistical Analysis

The metabolic profiles of plasma from pancreatic cancer patients with a partial re-
sponse (PR)/stable disease (SD) or progressive disease (PD) to chemotherapy drugs were
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studied using a combination of LC–MS and multivariate analysis methods. The predic-
tive performance was evaluated in terms of sensitivity, specificity, and accuracy based on
the random forest prediction model and the leave-one-out cross-validation. A Student’s
t-test was performed between responder (SD/PR) and non-responder (PD) samples. A
p-value < 0.05 was considered significant. A partial least-squares discriminant analysis
(PLS-DA) was employed to present the discrimination performance of metabolites between
SD/PR and PD samples, and the variable importance in the project (VIP) was calculated as
well. Potential metabolic biomarkers were selected with the criteria of VIP > 1 and p < 0.05.
A random forest (RF) prediction model was constructed with the potential biomarkers.
The predictive performance for the potential biomarkers was evaluated by the sensitivity,
specificity, accuracy, and area under the receiver-operating characteristic (ROC) based on
the leave-one-out cross-validation (CV). Metaboanalyst v5.0 was used to generate a PLS-
DA score plot and ROC curves. Descriptive statistics were employed when indicated and
expressed as the mean or median and frequencies as percentages. All statistical analyses
were performed using GraphPad Prism 7 (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Patients and Clinical Characteristics

The original PanCax-1 trial (NCT02400398) consisted of 31 patients with APC between
April 2015 and March 2019. In this single-institution, single-arm prospective trial, 31 cachec-
tic patients with APC underwent jejunal tube placement to receive 12 weeks of enteral
nutrition and were planned for standard chemotherapy [32,33]. As part of preplanned
exploratory analyses, blood samples were prospectively collected across three 28-day cycles
of enteral feeding. The median age was 67.1 years with 19/31 (61.3%) females. There
were 61 blood samples collected from 31 patients with APC that were available for plasma
metabolomics. A total of 22/32 (68.8%) patients received first-line chemotherapy, the ma-
jority of whom (18/22 (81.8%)) received gemcitabine-based chemotherapy. A total of 9/33
(27.3%) patients received 5-fluorouracil (5-FU)-based chemotherapy. There were 2/32 with
partial responses (PRs, 6.3%) and 10/32 with stable disease (SD, 31.3%) as the best response
to chemotherapy. The median overall survival (OS) for the cohort was 6.53 months; for no
treatment, it was 4.58 months; for gemcitabine-based chemotherapy, it was 8.83 months;
and for 5-FU-based chemotherapy, it was 5.48 months (Table 1). Kaplan–Meier plots of the
cohort are shown in Supplementary Figure S1.

Table 1. Patients and clinical characteristics.

Characteristic N (%) or Mean

Total patients 31

Age 67.1 years old

Gender

Male 12 (38.7)

Female 19 (61.3)

Race/ethnicity *

Non-Hispanic White 19 (61.3)

African American 2 (6.4)

Asian/Pacific Islander 7 (22.6)

Hispanic/Latino 7 (22.6)

Other 2 (6.4)

Not reported 1 (3.2)
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Table 1. Cont.

Characteristic N (%) or Mean

Line of treatment

First 22 (71.0)

Second 8 (25.8)

Third 1 (3.2)

CTX regimen

None 4 (12.9)

Gemcitabine-based 19 (61.3)

Gemcitabine + abraxane 17 (54.8)

Gemcitabine + abraxane + peg-hyaluronidase 1 (3.2)

Gemcitabine 1 (3.2)

5-fluorouracil-based 8 (25.8)

FOLFIRINOX 2 (6.4)

FOLFRI 4 (12.9)

5-FU + Oniyvde + anti-Ilα 2 (6.4)

Best response to CTX

N/A 4 (12.9)

PR 2 (6.4)

SD 10 (35.3)

PD 15 (48.4)

Median OS 6.53 months

None 4.75 months

Gemcitabine-based 8.83 months

5-fluorouracil-based 5.48 months
* Each subject may identify with more than one ethnicity.

3.2. Plasma Metabolomic Profiles from APC Patients with Different Overall Response to Standard
Chemotherapy Regimen

In order to visualize the classification performance of the metabolic profiling, a partial
least-squares discriminant analysis (PLS-DA) score plot is depicted (Figure 1). Although the
principal component analysis (PCA) score plot based on the metabolomics data revealed a
poor separation (Supplementary Figure S2), the PLS-DA showed a clear separation between
PR/SD and PD in the pretreatment patients and the patients with FOLFIRINOX or FOLFIRI
(Figure 1A,B). The score plot of PLS-DA in the patients who received gemcitabine + abrax-
ane showed a slight overlap between PR/SD and PD (Figure 1C). Furthermore, a heatmap
showed the different trends in metabolic fluctuates throughout various chemo treatments
and responses to chemotherapy (Supplementary Figure S3). These results indicate that
plasma metabolic profiles might reflect the chemotherapy regimen as well as the overall
response to chemo treatments.
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Figure 1. Partial least-squares discriminant analysis (PLS-DA) score plots of metabolomics data
from the pretreatment patients (A), patients treated with FOLFIRINOX or FOLFIRI (B), and patients
treated with gemcitabine + abraxane (C). Samples from responders (SD + PR) are represented by
green circles and samples from non-responders (PD) are depicted as red circles.

3.3. The Discovery and Identification of Metabolic Biomarkers

We employed a multivariate analysis approach and Student’s t-test to identify the
set of metabolites that had the highest independent ability to predict the response to
chemotherapy treatment. The potential biomarkers were selected with the criteria of
p < 0.05 and VIP > 1. The bar graphs for significantly altered metabolites (p < 0.05) and the
top 20 VIP scores are shown in Figure 2. Additionally, classical volcano plots with log2
(fold-change) on the X-axis against -log10 (p-value) from the t-test on the Y-axis are shown
in Supplementary Figure S4. Supplementary Tables S1–S3 display the fold-change, p-value,
and VIP score for all the metabolites detected in the plasma samples.

In the pretreatment patients, eight biomarkers reached statistical significance and the
concentrations of taurocholic acid, inosine 5-triphosphate, inosine, and deoxyguanosine
5-triphosphate were consistently increased at baseline in the subjects who experienced PD
as the best response compared to those with SD + PR, while concentrations of L-asparagine,
uric acid, phenylpyruvic acid, and L-cystine were decreased in those with PD compared to
SD + PR at baseline (Figure 2A).

In patients treated with FOLFIRINOX or FOLFIRI, 13 biomarkers were significantly
different between responders (SD + PR) and non-responders (PD). The concentrations of
2-deoxyguanosine 5-monophosphate, 2-phosphoglyceric acid, adenosine 5-diphosphate, L-
arginine, L-asparagine, L-leucine, L-methionine, L-serine, L-tryptophan, L-tyrosine,
N-acetylglutamic acid, N-carbamoyl-DL-aspartic acid, and pyridoxal hydrochloride were
decreased in those experiencing PD compared to SD + PR as the best response (Figure 2B).

In patients treated with gemcitabine + abraxane, 11 biomarkers were significantly dif-
ferent between responders (SD + PR) and non-responders (PD), wherein the concentrations
of 2-methyl-1-butanol, hypoxanthine, lactic acid, L-glutamic acid, pyruvic acid, taurocholic
acid, and xanthine were consistently increased in those with PD compared to those with
SD + PR as the best response, while concentrations of L-isoleucine, o-hydroxy hippuric
acid, and salicylic acid were decreased for those experiencing PD compared to SD + PR as
the best response (Figure 2C).
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Figure 2. Identification of potential metabolic biomarkers. Upper: metabolites with significantly
different levels between responders (SD + PR, blue) and non-responders (PD, red). Y-axis is the ratio
of metabolite concentrations from PD to SD + PR. Values are means ± SEM, * p < 0.05, ** p < 0.01 and
**** p < 0.0001. Lower: top 20 VIP scores and heatmap from PLS-DA of metabolites for responders
(SD + PR) vs. non-responders (PD). Red and blue in the heatmap (right) indicate increased and
decreased levels, respectively. The name of metabolites that significantly changed in the upper
panel are highlighted with red. (A) Pretreatment patients (SD + PR, n = 3; PD, n = 3), (B) patients
treated with FOLFIRINOX or FOLFIRI (SD + PR, n = 4; PD, n = 9), and (C) patients treated with
gemcitabine + abraxane (SD + PR, n = 20; PD, n = 13).

3.4. Biomarkers for the Prediction of a Response to Chemotherapy

Next, we evaluated the predictive performance of metabolites individually using
the biomarker analysis module of Metaboanalyst v5.0 https://www.metaboanalyst.ca
(accessed on 23 May 2023). A random-forest-based multivariate receiver-operating charac-
teristic (ROC) analysis using t-statistics for metabolite ranking resulted in the panels illus-
trated in Figures 3 and 4. In patients treated with FOLFIRINOX or FOLFIRI, L-asparagine,
L-leucine, N-acetylglutamic acid, L-tyrosine, cellobiose, and L-arginine provided an AUC
of 0.972, 0.944, 0.917, 0.889, 0.889, and 0.861, respectively, in responders (SD + PR) vs.
non-responders (PD) (Figure 3). In patients treated with gemcitabine + abraxane, inosine,
salicylic acid, taurocholic acid, 2-methyl-1-butanol, o-hydroxy hippuric acid, and xanthine
provided an AUC of 0.865, 0.838, 0.827, 0.773, 0.769, and 0.758, respectively, in responders
(SD + PR) vs. non-responders (PD) (Figure 4).

https://www.metaboanalyst.ca
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Figure 3. Receiver-operating characteristic (ROC) curve for responders (SD + PR) vs. non-responders
(PD) in patients treated with FOLFIRINOX or FOLFIRI. L-asparagine, L-leucine, N-acetylglutamic
acid, L-tyrosine, cellobiose, and L-arginine provided an AUC of 0.972, 0.944, 0.917, 0.889, 0.889, and
0.861, respectively. The higher the AUC, the better the model is at distinguishing between responders
and non-responders.
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Figure 4. ROC curve for responders (SD + PR) vs. non-responders (PD) in patients treated with gem-
citabine + abraxane. Inosine, salicylic acid, taurocholic acid, 2-methyl-1-butanol, o-hydroxy hippuric
acid, and xanthine provided an AUC of 0.865, 0.838, 0.827, 0.773, 0.769, and 0.758, respectively.
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4. Discussion

Oncogenic driver mutations, i.e., KRAS, have been shown to reprogram multiple
metabolic pathways in pancreatic ductal adenocarcinoma (PDAC) to support growth and
proliferation [34]. Unsurprisingly, targeting the metabolic dependences of PDAC has been
a focus for the development of novel therapeutic approaches in an otherwise lethal dis-
ease [34]. In this post hoc analysis of the prospective PanCax-1 trial (NCT02400398), we
evaluated the feasibility of measuring plasma metabolites in a cohort of cachectic sub-
jects with unresectable LAPC or metastatic PC receiving enteral nutrition and cytotoxic
chemotherapy. We were successfully able to conduct plasma metabolomics in this popu-
lation and evaluate the relationship between metabolites involved in multiple metabolic
pathways, including glycolysis, glutaminolysis, the tricarboxylic acid (TCA) cycle, fatty acid
synthesis, and nucleoside/nucleotide synthesis to responders (PR/SD) and non-responders
(PD) to chemotherapy.

In pretreatment (baseline) blood samples, we firstly observed increased levels of
taurocholic acid and nucleosides (inosine, inosine 5-triphosphate, and deoxyguanosine
5-triphosphate) in non-responders, while decreased levels of non-essential amino acids
(NEAAs; L-asparagine and the oxidized derivative of L-cysteine, L-cystine), uric acid, and
phenylpyruvic acid (byproduct of phenylalanine metabolism, an essential amino acid) were
associated with PD (Figure 2). Taurocholic acid, a bile acid, has been shown to be elevated
nearly 300-fold compared to controls in patients with a biliary obstruction [35]. Biliary
obstructions are common in pancreatic cancer subjects, with preclinical evidence to support
the idea that bile acids accelerate pancreatic carcinogenesis [36]. Nucleotide synthesis is
crucial for supporting PDAC growth and is among the key metabolic pathways altered by
KRAS mutations [37]. Our results, suggestive of increased taurocholic acid and nucleoside
levels at the pretreatment baseline as a poor prognostic indicator of a patient’s response to
chemotherapy, are, therefore, consistent with these data. We also observed increased levels
of taurocholic acid and the nucleosides xanthine and hypoxanthine in non-responders to
gemcitabine-based chemotherapy as well (Figure 2C).

The reprogramming of amino acid metabolism has also been shown to be a hallmark
of PDAC progression [38]. Interestingly, we showed that decreases in essential amino acids
(EAAs; L-leucine, L-methionine, and L-tryptophan) and NEAAs (L-arginine, L-asparagine,
L-serine, and L-tyrosine) in subjects treated with FOLFIRINOX or FOLFIRI was associated
with a response of PD to chemotherapy (Figure 2B). We observed a similar association to
PD in those with decreased pretreatment levels of NEAAs (Figure 2A). This is opposite to
recent efforts to deprive amino acids as a therapeutic strategy, and to studies showing that
higher levels of amino acids promote pancreatic tumor growth [38,39]. It is possible that in
our cohort of cachectic subjects with APC, lower amino acid levels may be reflective of the
hypercatabolic state associated with cancer cachexia [40], which may have compounded
the evaluation of amino acid levels as a predictor of chemotherapy response.

We observed that decreased levels of the intermediates of glycolysis (2-phosphoglyceric
acid), glutamine metabolism (N-acetylglutamic acid), and nucleic acid biosynthesis
(2-deoxyguanosine 5-monophosphate, adenosine 5-diphosphate, and N-carbamoyl-D
L-aspartic acid) were associated with PD after 5-FU-based chemotherapy (Figure 2B).
In contrast, increased levels of the intermediates of glycolysis (pyruvate and lactic acid),
the TCA cycle (L-glutamate), nucleoside synthesis (xanthine and hypoxanthine), and bile
acid metabolism (taurocholic acid) were associated with PD, while decreases in the EAA
L-isoleucine was associated with PR/SD after gemcitabine-based chemotherapy (Figure 2C).
The findings seen in the subjects treated with gemcitabine-based chemotherapy were consis-
tent with recent literature demonstrating that metabolic reprogramming to support glucose
and glutamine metabolism signaling, as well as nucleotide and amino acid synthesis,
promotes PDAC survival and progression [37,38,41,42].

Our study is limited due to understanding that plasma metabolites are rather dy-
namic and can fluctuate due to multiple factors. Additionally, these patients met clinical
definitions of cancer cachexia as required for enrollment into the PanCax-1 trial [11]. It
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is likely that cachexia and chemotherapy treatment impacted the metabolism in these
subjects, and this needs to be considered when interpreting our findings [43,44]. We are,
however, among the first groups to evaluate metabolomic profiles in cachectic patients with
APC who received enteral feeding over 12 weeks. Thus, we have a uniquely homogenous
cohort in that all subjects were enterally fed as their primary source of nutrition, which is
ideal for evaluating metabolomic signatures that can be influenced by diet. To this end,
our study is hypothesis-generating in that we have identified multiple metabolic markers
in the pretreatment, 5-FU-based, and gemcitabine-based chemotherapy settings that are
potentially predictive of the outcome of chemotherapy. Several of these unique to the
FOLFIRINOX/FOLFIRI or gemcitabine + abraxane treatments demonstrated a fairly robust
predictive performance based on the multivariate ROC analyses (Figures 3 and 4) and
warrant further study. Our findings are also informative for a more focused evaluation into
specific metabolic pathways identified as mechanisms for further biomarkers and potential
therapeutic development.

For example, the role of essential and non-essential amino acids in promoting PDAC
progression and as a mechanism to synergize with standard chemotherapy is being ac-
tively explored. One ongoing trial is exploring the utility of amino acid restriction with
chemotherapy to evaluate its feasibility and identify metabolic biomarkers to predict the
therapeutic response (NCT05078775). As such, amino acids in PDAC subjects remain an
attractive group of metabolic markers that should be focused on in future studies of plasma
metabolomics. To help focus future areas of investigation, the purpose of Figures 3 and 4
was to filter among the top-ranked metabolites in our cohort that were most predictive
of the therapeutic response to specific chemotherapy regimens. As a result, we hope to
have identified potential novel and undescribed metabolites and related pathways that
may be further explored in preclinical or clinical settings for therapeutic and biomarker
development. Other bioenergetic pathway metabolites, including those from glycolysis,
glutamine, and nucleic acid metabolism, involve pathways that have long been associated
with PDAC carcinogenesis and PDAC progression (as described earlier) and thus warrant
a dedicated investigation into their role as biomarkers or as therapeutic targets in PDAC
as well.

5. Conclusions

The PanCax-1 trial was a prospective, single-institution, single-arm study enrolling
cachectic patients with APC to receive 12 weeks of enteral feeding and chemotherapy. In
preplanned exploratory analyses, blood samples were collected for plasma metabolite-
based biomarker evaluation. We are the first to demonstrate the feasibility of plasma
metabolomics in a prospective cohort of APC patients on enteral feeding as their primary
source of nutrition. Metabolic signatures unique to 5-FU-based chemotherapy (FOLFIRI-
NOX or FOLFIRI) and gemcitabine + nab-paclitaxel may be predictive of a patient’s re-
sponse and warrant further study. Several individual metabolic markers demonstrated
a predictive performance for a patient’s response (or lack of) to chemotherapy in multi-
variate ROC analyses. We also uncovered several novel metabolites indicative of bile acid
metabolism, nucleic acid biosynthesis, and glycolytic and glutamine metabolism pathways
that are worthy of a focused investigation for further biomarkers and potential therapeutic
development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15113020/s1, Table S1: Changes of metabolite levels
between responders (SD + PR) and non-responders (PD) among pretreatmant patients; Table S2:
Changes of metabolite levels between responders (SD + PR) and non-responders (PD) among patients
treated with FOLFIRINOX or FOLFIRI; Table S3: Changes of metabolite levels between responders
(SD + PR) and non-responders (PD) among patients treated with gemcitabine + abraxane; Figure S1:
Kaplan-Meier plots of the cohort; Figure S2: PCA score plots of plasma metabolomics data from
the patients; Figure S3: Heatmap for plasma metabolites from patients; Figure S4: Volcano plots for
plasma metabolites from patients.

https://www.mdpi.com/article/10.3390/cancers15113020/s1
https://www.mdpi.com/article/10.3390/cancers15113020/s1
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