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Simple Summary: As a solid tumor, melanoma is not only a tumor mass of monolithic tumor cells,
but it also contains supporting stroma, extracellular matrix (ECM), and soluble molecules forming the
widely recognized tumor microenvironment. The main components of the tumor microenvironment
include stromal cells (endothelial cells, fibroblasts, mesenchymal stem cells, and immune cells), ECM,
and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles). The tumor
microenvironment has been suggested to play a central role in tumor progression and treatment
resistance. Accumulated evidence indicates that tumor maintenance, progression, and treatment
resistance are determined by components of the microenvironment. Thus, targeting the components
of the tumor microenvironment may have a therapeutic impact on melanoma treatment. The main
topic of this paper deals with the main components of the tumor microenvironment and their impact
as therapeutic targets in melanoma treatment.

Abstract: The role of the tumor microenvironment in tumor growth and therapy has recently attracted
more attention in research and drug development. The ability of the microenvironment to trigger
tumor maintenance, progression, and resistance is the main cause for treatment failure and tumor
relapse. Accumulated evidence indicates that the maintenance and progression of tumor cells is
determined by components of the microenvironment, which include stromal cells (endothelial cells,
fibroblasts, mesenchymal stem cells, and immune cells), extracellular matrix (ECM), and soluble
molecules (chemokines, cytokines, growth factors, and extracellular vesicles). As a solid tumor,
melanoma is not only a tumor mass of monolithic tumor cells, but it also contains supporting stroma,
ECM, and soluble molecules. Melanoma cells are continuously in interaction with the components of
the microenvironment. In the present review, we focus on the role of the tumor microenvironment
components in the modulation of tumor progression and treatment resistance as well as the impact of
the tumor microenvironment as a therapeutic target in melanoma.
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1. Introduction

Melanoma is one of the most common skin cancers, and it is notorious for its het-
erogeneity and propensity to metastasize to distant organs [1,2]. Although the treat-
ment options of melanoma have improved in recent years, patients with advanced malig-
nant melanoma still have poor prognosis, as measured by progression-free and overall
survival [3].

Molecularly targeted therapies are characterized by their specificity to interfere with key
molecules of aberrant signaling pathways, particularly those of tumor growth and survival.
Over 60% of primary cutaneous melanomas and over 50% of metastatic melanomas harbor
the activating murine sarcoma viral oncogene homolog B (BRAF) mutation [4,5]. To that end,
the continuous activation of mitogen-activated protein kinase (MAPK)/extracellular signal-
regulated kinase (ERK) signaling by the BRAFV600E mutation is common and independent
from extracellular stimulation [6,7]. Melanoma is a tumor mass that contains supporting
stroma (fibroblasts, endothelial cells, and immune cells), the extracellular matrix (ECM),
and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles),
rather than a mass of monolithic tumor cells, as shown in Figure 1. As a result, melanoma
cells are continuously in active interaction with the components of the microenvironment.
The crosstalk within the tumor microenvironment is the main driver for the generation
of the malignant phenotypes in the form of genetic divergent subpopulations with intra-
and intertumoral heterogeneity. Here, we will give insight about the role of the tumor
microenvironment on melanoma progression and treatment resistance and the impact of the
tumor microenvironment as a therapeutic target for melanoma treatment.
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Figure 1. Schematic diagram of the microenvironment in solid tumors. The tumor microenvironment
is a complicated ecosystem of heterogeneous components including tumor cells, stromal cells, and
variable types of immune cells, soluble molecules, and extracellular matrix (ECM) components.
Stromal cells include endothelial cells, fibroblasts/cancer-associated fibroblasts (CAFs), cancer stem
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cells, as well as immune cells such as macrophages/tumor-associated macrophages (TAMs),
neutrophils/tumor-associated neutrophils (TANs), natural killer cells (NKs), and T cells and B
cells. Non-cellular components including ECM exist in a three-dimensional scaffold of extracellular
macromolecules, proteins, and polysaccharides that provides structural and biochemical support to
cells and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles).

2. Mechanisms of Melanoma Resistance

Although successful targeting of melanomas with the BRAFV600E mutation improves
overall survival, the long-term efficacy of available therapeutics, including BRAF inhibitors
(e.g., vemurafenib and dabrafenib alone or in combination with mitogen-activated protein
kinase (MEK) inhibitors (e.g., Trametinib and Selumetinib), are unable to cause complete
tumor regression [8,9]. In addition to their limitation in tumor regression, current treatment
regimens are mostly associated with the occurrence of subsequent mutations within genes
encoding key molecules of aberrant signaling pathways.

Melanoma cells with the active mutation BRAFV600E are infamous for their ability to
frequently enforce several aberrant molecular and cellular mechanisms conferring resis-
tance to targeted therapeutics. These molecular and cellular mechanisms are mediated by
higher mutation rates, alteration of membrane drug transporter mechanisms, enhancement
of DNA repair mechanisms, dysregulation of cell death machinery [10,11], and promotion
of autophagy [12].

Besides its ability to evade drug toxicity, melanoma can also develop adaptive tumor
cell plasticity via tumor-microenvironment-dependent modifications [13–15], in response to
treatment with BRAF/MEK inhibitors [10,11]. In addition, BRAF/MEK inhibitors-induced
reactivation of MAP kinase signaling by the enhancement of BRAFV600E amplification
or alternative splicing, RAS-mutation can also contribute to the development of tumor
plasticity [10,16]. The role of tumor plasticity in the development of tumor resistance to
anticancer agents has been reported in several studies [17–19].

Tumor cell plasticity is driven by selective epigenetic and molecular changes that
allow transitions within a wide range of cellular phenotypes [20–24]. These reported
changes have been shown to drive tumor cell diversity and promote reversible phenotypic
spectrums as well. The processes of melanoma plasticity are mediated via microenvi-
ronmental components, stochastic genetic and epigenetic alterations, treatment-imposed
selective-pressure-dependent mechanisms mediating tumor progression, and treatment
resistance [23,24]. To that end, dedifferentiated melanoma cells are infamous for their
aggressive characteristics, which lead to metastasis and resistance to anticancer agents.

The phenotypic alterations of melanoma cells range from a differentiated and pro-
liferative cell state to dedifferentiated mesenchymal-like phenotypes with intermediate
states [25,26]. Cutaneous malignant melanomas are heterogeneous in nature and comprise
several genetically divergent subpopulations with distinct transcriptomic signatures that de-
termine their behaviors [27,28]. Accordingly, melanomas carry different genetic alterations
that have different clinical features and disease outcomes. Microphthalmia transcription
factor (MITF) is a member of the most important transcriptomic family of melanoma. MITF
has been shown to be the master regulator of not only normal melanocytes but also ma-
lignant melanomas [29,30]. Based on the expression levels of MITF, two melanoma cell
populations have been identified. One of these populations is a fast-replicating population
that exhibits high MITF expression associated with low invasive potential; the other pop-
ulation exhibits high MITF expression associated with a slow proliferation rate and high
invasive potential [29,31].

The most dynamic trend of MITF in melanoma is the transition to a mesenchymal
phenotype and to enhance autophagy in response to a variety of tumor microenvironmental
stresses. These microenvironmental stresses include nutrient and oxygen deprivation,
inflammation, immune defense, or therapies. Tumor microenvironmental stresses can
promote melanoma cell survival and the generation of adaptive phenotypes with ability to
evade drug toxicity [32–34].
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Autophagy drives lysosome-dependent degradation of cytoplasmic components in
response to starvation [35,36]. Autophagy is characterized by the ability to influence diverse
aspects of homeostasis with inhibition of malignant transformation [12,36]. Apart from its
inhibitory role in tumor initiation, autophagy can also mediate survival mechanisms based
on its ability to stimulate tumor growth and to confer drug resistance [12,36].

Although the molecular mechanisms of autophagy are orchestrated by Atg gene
products in the cytoplasm [12,36,37], the regulation of the autophagy process is mediated
by the MITF family that encodes four distinct genes: MITF, TFEB, TFE3, and TFEC [38].
Three of the MITF family genes, MITF, TFEB, and TFE3, have been identified as regulators of
lysosomal function and metabolism [39,40]. Lysosomal and autophagy genes, particularly
those possessing one or more 10 base pair motifs (GTCACGTGAC), are targets for the
MITF family as transcription factors [41]. As a result, the expression and regulation of their
cognate genes are continuously under the control of MITF family members.

While differentiated melanoma cells exhibit high levels of MITF and SOX10, dediffer-
entiated melanoma cells show low expression of MITF and high expression of mesenchymal
markers [42,43]. Dedifferentiated melanoma cells also exhibit low expression of prolifera-
tive and invasive factors [25,44], ECM [45], and resistance markers [44,46]. Accordingly,
the most common marker of differentiated melanoma cells is the receptor tyrosine kinase
(RTK) AXL [47,48].

Dedifferentiation is a hallmark of cancer progression and is responsible for the de-
velopment of cross resistance to both targeted and immune therapies in melanoma [49].
The differentiation plasticity of melanoma can be attributed to the embryonic history of
melanocytes [50]. Melanocytes are derived from the neural crest, a transient, migratory,
and multi-potent population of cells that can differentiate into diverse cell types [51].

Dedifferentiated melanoma cells are characterized by their low expression of prolif-
erative and invasive factors [25,44], ECM [45], and resistance markers [44,46]. The most
common marker of differentiated melanoma cells is the receptor tyrosine kinase (RTK)
AXL [47,48].

In melanoma cells, the development of acquired resistance is attributed to the down-
regulation of MITF [52]. In addition to its role in the development of tumor resistance,
MITF acts as a master regulator of melanocyte differentiation through the upregulation of
receptor tyrosine kinases (RTKs) including the AXL, EGFR, and PDGFRβ [53,54].

The AXL protein is characterized by an extracellular structure consisting of two
fibronectin type 3-like repeats and two immunoglobulin-like repeats along with its in-
tracellular tyrosine kinase domain. All members of the TYRO3, AXL, and MER (TAM)
tyrosine kinase receptor family are involved in the regulation of cell proliferation, epithelial–
mesenchymal transition (EMT), migration, and regulation of immune responses [55]. Ad-
ditionally, AXL plays an important role in the regulation of downstream signaling via
PI3K/AKT, MAPK/ERK, and STAT3 pathways [12,56,57]. Figure 2 outlines the functional
role of AXL in the regulation of different cellular processes.

The elevated expression of AXL has been shown in many cancer types including
melanoma, lung, breast, and pancreatic cancers [58,59]. Thus, as a tyrosine kinase re-
ceptor, AXL functionally plays an essential role in different oncogenic processes in addi-
tion to its suppressive activity, which leads to the destruction of cell death machinery in
melanoma [59,60].

The role of AXL in melanoma migration and invasion has been demonstrated. The
stratification of melanomas into distinct subsets by a gene-signature-dependent study
revealed that AXL expression is correlated positively or negatively with identified gene
signatures [22,61]. The set of genes that were positively associated with AXL expression
were genes associated with extracellular matrix interactions and remodeling, indicating
a possible role for AXL in melanoma invasion [62]. The reduction in melanoma invasion
and migration following inhibition of AXL by its specific siRNAs or pharmacological
inhibition confirms a significant role for AXL in the modulation of tumor progression
and migration [63,64]. In addition to its role in melanoma invasion and migration, AXL
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has been shown to promote both intrinsic and acquired resistance to chemotherapeutic,
immunotherapeutic, and molecularly targeted therapies both in solid and hematologic
malignancies [54,65]). In malignant melanoma, the high level of AXL is mostly associated
with the mesenchymal cell state, leading to enhanced resistance to targeted therapy, such
as MAPK inhibitors in the case of malignant melanoma [66,67] and endothelial growth
factor receptor (EGFR) inhibitors in case of lung cancer. Elevated expression of AXL also
reduces tumor sensitivity to both chemotherapy and poly ADP ribose polymerase (PARP)
inhibition [59,68,69], and confers resistance to cisplatin in melanoma cells [60] and in
ovarian cancer cells [70].
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Figure 2. Outline of AXL-mediated downstream signaling pathways. The majority of reported AXL
activation by GAS6 results from the homodimerization of the AXL receptor or heterodimerization
of AXL with TYRO3. AXL-stimulated MAPK and PI3K/AKT signaling results in cell survival and
proliferation. Likewise, AXL-stimulated HIF-1α-EMT triggers therapy resistance. AXL-stimulated
Snail/Slug/Twist-EMT, NCK2/ILK, ELMO/DOCK1/RAC, und NEDD9/CRKII/PEAK1 trigger
tumor invasion and migration.

BRAF inhibitors-induced activation of CAFs has been shown to trigger both tumor pro-
gression and treatment resistance in melanoma cells [71]. Apart from the limited therapeutic
success of BRAF/MEK inhibitors in melanoma patients, most patients exhibited treatment
failure along with the development of acquired resistance [72]. The observed treatment
failure in melanoma patients was found to result from BRAF/MEK-inhibitor-induced
activation of the SEMA6A/RhoA/YAP axis as consequence of the crosstalk between tumor
and stromal cells [72].

BRAF-inhibitor-induced TGF-β release in melanoma cells has been demonstrated to
promote the activation of CAFs [73]. Activated CAFs can trigger melanoma progression
and resistance to BRAF/MEK inhibitors via the release of soluble molecules including
neuregulin 1 and hepatocyte growth factor (HGF) [73,74] as well as fibronectin [75,76].

Fibroblast-derived neuregulin 1 has been shown to trigger activation of ErbB3-receptor-
dependent signaling pathways to promote tumor progression and treatment resistance
in melanoma patients [74]. Likewise, fibroblast-derived HGF has been shown to en-
hance epithelial–mesenchymal transition (EMT) and to confer resistance to anticancer
agents [75,77]. The contribution of HGF to the promotion of EMT is mediated by the in-
duction of EMT-associated transcription factors, such as Snail1 [78] and Zeb1 [78,79]. The
anti-apoptotic activity of Snail1 has been shown to be involved in the development of
resistance to immune and targeted therapies [80,81]. CAF-derived fibronectin interacts
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with and activates cell surface integrin receptors that, in turn, serve to recruit a series of
cellular proteins leading to the enhancement and promotion of many cellular functions
leading to tumor migration and invasiveness [82–84]. The induction of tumor invasive-
ness by fibronectin is mediated by FAK-induced regulation of MMP-9 via ERK and PI3K
pathway-dependent activation. [85]. Therefore, CAF-released fibronectin is expected to
play an important role in the promotion of migration and invasiveness of many tumor
types, including melanomas [12,82].

Figure 3 demonstrates the mechanisms whereby BRAF inhibitors induce TGF-β release
in melanoma cells and the biological consequences of TGF-β on the conversion of fibroblasts
into CAFs and the promotion of CAFs to release their specific factors and mediators to
trigger the suppression of the adaptive immune system, ECM remodeling, melanoma
progression, and treatment resistance.
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Figure 3. Schematic diagram of tumor-induced activation of fibroblasts and their biological conse-
quences. (a) Conversion of normal fibroblasts into cancer-associated fibroblasts (CAFs) by melanoma-
cell-released transforming growth factor-β (TGF-β). (b) CAF-released factors include TGF-β, platelet-
derived growth factor (PDGF), fibroblast growth factor (FGF), HGF, bone morphogenetic proteins
(BMP), vascular endothelial growth factor (VEGF), tumor necrosis factor α (TNFα), interferon γ

(IFNγ), CXC-motif-chemokine 12 (CXCL12), interleukin 6 (IL-6), connective tissue growth factor
β (CTGFβ), endothelial growth factor (EGF), growth arrest-specific 6 protein (GAS6), galectin-1,
secreted frizzled-related protein-1 (SFRP1), sonic hedgehog protein (SHH), neuregulin 1, and fi-
bronectin. These CAF-secreted factors are involved in the modulation of melanoma progression,
metastasis, and treatment resistance.

3. Tumor Microenvironment

In contrast to normal tissues, tumors are characterized by their unique microenviron-
ments that determine their fate and behavior during their evolution [86,87]. The unique
characteristics of tumor microenvironments are attributed to rapid tumor proliferation and
metabolism compared to normal tissues [86]. Concordantly, the tumor microenvironment
is more acidic and exhibits high levels of reactive oxygen species (ROS) and glutathione
(GSH), higher hypoxic status, overexpressed enzymes, and high levels of ATP. Accord-
ingly, the tumor microenvironment has emerged as an important therapeutic target during
tumor treatment.

As mentioned above, solid tumors are tumor masses containing a wide range of non-
cancer stromal cells rather than a mass of monolithic tumor cells. The non-stromal cell
tumor microenvironment contains a wide range of stromal cells, which can be transformed
into cancer-associated stromal cells by tumor-derived growth factors, including platelet-
derived growth factor (PDGF) and TGF-β [88,89]. Thus, upon their activation, cancer-
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associated stromal cells can play an essential role in the modulation of tumor progression
and treatment resistance through their released secretory factors.

The most important cell type among tumor-associated stromal cells is the cancer-
associated fibroblasts (CAFs). CAFs are characterized by their released secretory molecules,
which include cytokines, chemokines, and growth factors, which can promote the deposi-
tion and remodeling of the ECM [90,91]. CAF-derived cytokines, chemokines, and growth
factors are essential in driving cellular processes that lead to tumor growth, angiogenesis,
inflammation, and drug resistance [92,93]. Thus, increase in CAF number in the tumor
stroma is mostly associated with poor prognosis and increased risk of metastasis [94,95].

Under normal physiological conditions, the maintenance of the structure and home-
ostasis of the skin is highly controlled by the crosstalk between normal melanocytes and
the surrounding microenvironment, including ECM, keratinocytes, fibroblasts, endothelial
cells, and immune cells [96]. The intercellular communications between melanocytes and
microenvironment components are mediated mainly through paracrine interactions and/or
cell–cell contact via cell adhesion molecules [97,98].

Recent evidence indicates that the most important stromal cell type in connective tissue
is the fibroblast [99]. Fibroblasts play an important role in the regulation of many physio-
logical and pathological processes that are involved in the regulation of ECM turnover and
homeostasis [100,101], epidermal regeneration [102,103], wound healing [103], and tumor
progression and treatment resistance [71,90]. The transformation of fibroblasts into CAFs
results from the crosstalk of normal fibroblasts with tumor cells via tumor-cell-released
TGF-β which leads to the differentiation of fibroblasts into CAFs as shown in Figure 3. In
contrast to normal fibroblasts, CAFs are the main player in the microenvironment of solid
tumors, based on their released factors that can drive tumor progression, metastasis, and
treatment resistance [104,105].

Activated CAFs secrete more cytokines and chemokines than their resting counter-
parts and thereby trigger tumor progression and treatment resistance. The most common
CAF-released factors are TGF-β, PDGF, FGF, HGF, vascular endothelial growth factor
(VEGF), tumor necrosis factor α (TNFα), interferon-γ (IFNγ), CXCL12, IL-6, connective
tissue growth factor (CTGFβ), EGF, growth arrest-specific protein 6 (GAS6), galectin-1,
secreted frizzled-related protein 1 (SFRP1), sonic hedgehog protein (SHH), bone morpho-
genetic protein (BMP), fibroblast-specific protein-1 (FSP-1/S100A4), fibroblast-activating
protein (FAP), platelet-derived growth factor receptor-alpha/beta (PDGFR α/β), tenascin
C, desmin, collagen 11-α1 (COL11A1), vimentin, periostin, and fibronectin [106–108]. All
these chemokines and growth factors are involved in the modulation of tumor progression,
metastasis, resistance, and recurrence.

In addition to its role in the regulation of fibrosis, TGF-β is the major CAF-released
factor [109,110]. TGF-β is mainly involved in modulation of the crosstalk between CAFs
and cancer cells [111,112]. Therefore, inhibition of TGF-β signaling is mostly associated
with tumor growth and metastasis [113].

Although chemotherapy-based treatment can target rapidly proliferating cells, the
elimination of CAFs by chemotherapy is a rare occurrence [114,115]. The contribution
of CAFs in the development of tumor resistance is common and occurs mostly after
treatment has been initiated [116,117]. Many in vitro experiments indicate that anticancer-
agent-induced DNA damage is correlated with an increase in cancer cell invasion and
survival [118]. DNA-damage-associated tumor invasion and survival seems to be the
consequence of stromal-derived paracrine signaling via cytokines and exosome-dependent
mechanisms [107].

The interaction between malignant melanoma cells and dermal fibroblasts is responsi-
ble for the generation of CAFs that, in turn, mediates melanoma progression, metastasis,
and treatment resistance [119,120].

The transformation of resting fibroblasts into CAF-like phenotypes by anticancer
agents has been reported [121,122]. The contribution of CAF-like phenotypes in the pro-
motion of stemness properties in tumor cells derived from either breast [123] or colorectal
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cancers [124,125] has also been reported. CAFs can induce stemness properties of can-
cer cells via the activation of hypoxia-inducible factor (HIF-1α) and sonic hedgehog-GLI
signaling [126,127]. Additionally, CAF-mediated TGF-β signaling has been suggested
to synergize with HIF-1α signaling to enhance the expression of GLI2 that subsequently
triggers stemness properties in target tumor cells [127,128].

Like many chemotherapeutics, radiation therapy triggers tumor cell death via DNA-
damage-dependent mechanisms. The exposure of tumor mass to radiation therapy does not
trigger DNA damage in tumor cells nor in stromal cells within the tumor microenvironment.
Therefore, irradiated fibroblasts can overcome apoptotic signals and undergo cellular
senescence to exhibit a highly activated CAF phenotype [129]. Exposure of activated CAFs
to radiation has been shown to trigger CXCL12 overexpression, leading to epithelial-to-
mesenchymal transition (EMT) and invasion of tumor cells in vitro and in vivo [130].

Senescence is cell cycle arrest that can be activated by oncogenic signaling. There-
fore, senescence can limit tumor progression and can alter the outcome of anticancer
therapies. Senescent cells are characterized by stable cell cycle arrest associated with the
secretion of several factors termed senescence-associated secretory phenotype (SASP) [131].
Like in other solid tumors, cellular senescence is common in melanoma and has been
observed in melanoma patients, particularly during and/or after the treatment course
has been initiated [132,133]. Senescence is a mechanism through which many tumor cells
overcome the action of anti-cancer agents to survive, grow, and metastasize [134,135].
Cellular senescence is an autonomous tumor suppressor mechanism associated mainly
with the stabilization of cell cycle arrest [136]. Senescent cells with the SASP phenotype
secrete high levels of inflammatory cytokines, immune modulators, growth factors, and
proteases [69,137,138]. Accordingly, SASP triggers significant changes in tumor cells and
their microenvironment, enabling the tumor to evade drug toxicity and ultimately grow
and relocate to distant organs [139]. Many reports have shown that SASP-dependent mech-
anisms allow senescent cells to drive a range of different cellular processes [140,141] The
formation of SASP is dynamic and spatially regulated [142,143]. Changing of the ingredi-
ents of SASP composition can therefore determine the beneficial and detrimental aspects of
the senescence program, tipping the balance to either an immunosuppressive/pro-fibrotic
environment or pro-inflammatory/fibrolytic state [144]. SASP has the potential to trigger
tumor growth through the changing of the tumor microenvironment composition and can
influence treatment outcomes. In vivo elimination of senescent cells via senolysis signifi-
cantly impacts the treatment of aging [145,146]. In contrast to the treatment of aging, the
activation of senescence has attracted more attention of researchers and the pharmaceutical
industry. Senolytic therapy represents a group of mechanistically diverse drugs that can
eliminate the establishment of senescence, which is expected to inhibit tumor development
and progression. Senescence occurrence can be caused by either intensive DNA damage,
telomere shortening, or oncogene activation [147]. Oncogene-induced senescence is one of
the common features of melanocytic nevi that is essential to prevent oncogenesis and ma-
lignant transformation of benign lesions [148,149]. Melanocytic nevi are precursors for the
development of malignant melanomas [150]. Thus, the stabilization of oncogene-induced
senescence or the elimination of senescent melanocytes represents a promising approach to
the prevention of tumorigenesis.

Microenvironment targeting of checkpoint proteins by programmed death-1 (PD-
1) and cytotoxic T lymphocytes-associated antigen-4 (CTLA-4) inhibitors brought more
attention to the crosstalk between the immune cell and tumor microenvironment; however,
the regulation of immune cell–tumor crosstalk, so far, is not well described [151,152].

As one of the abundant components of the tumor microenvironment, CAFs have
been reported to mediate a tumor immune landscape by the secretion of various soluble
molecules including cytokines, growth factors, chemokines, exosomes, and other effector
molecules [90,153]. Thus, CAF-released factors are necessary to promote an immunosuppres-
sive tumor microenvironment enabling cancer cells to evade immune surveillance [154,155],
a mechanism whereby CAFs limit the efficacy of the immune therapy.
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The mechanisms by which CAF-released factors trigger tumor angiogenesis, ECM re-
modeling, suppression of adaptive immunity, melanoma progression, metastasis, treatment
resistance, and stemness properties are outlined in Figure 4.
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Figure 4. The mechanisms by which CAF-released factors trigger tumor angiogenesis, ECM remod-
eling, suppression of adaptive immunity, melanoma progression, metastasis, treatment resistance,
and stemness properties. The induction of tumor angiogenesis is mediated by CAF-released VEGF.
The suppression of adaptive immunity in the tumor immune microenvironment is attributed to
the inhibition of tumor-associated macrophages (TAMs) by CAF-released IL-6, 8, 10, CCL2, TGF-β,
macrophage colony stimulated factor (M-CSF), monocyte chemoattractant protein-1 (MCP-1), stro-
mal cell-derived factor 1 (SDF-1), as well as the inhibition of tumor-associated neutrophiles (TANs)
by CAF-released IL-6 and SDF-1α and the inhibition of natural killer cells (NKs) by CAF-released
prostaglandin E2 (PGE2), indolamin-2,3-dioxygenase (IDO), and TGF-β. The remodeling of the
ECM is mediated by CAF-released fibronectin, collagen1, TGFβR2, and matrix metalloproteinase-2
(MMP2). The induction of melanoma proliferation, metastasis, and stemness properties is medi-
ated by CAF-released tenascin C, periostin, vimentin, dismin, chemokine (C-X-C motif) ligand 10
(CXCL10), TGF-β, and HGF.

4. Tumor Microenvironment as Therapeutic Target in Melanoma Treatment

Apart from its adverse effects, chemotherapeutic agents remain the best option for
cancer therapy to date. Depending on the tumor stage and patient tolerability, chemother-
apy can be given alone or in combination with surgery or radiotherapy [156,157]. The
discovery of active mutations, which are involved in tumor initiation and development,
such as epidermal growth factor receptor (EGFR), p53, c-Kit and BRAF [158,159], compelled
researchers to extensively study the reliability of such mutations as selective therapeutic
targets [160–162]. Although the successful targeting of these mutations improves overall
survival of melanoma patients, acquired tumor resistance develops and increases continu-
ously [163,164]. Consequently, tumor relapse and low life quality of patients are common.

During tumor development, cancer cells and the components of the tumor microen-
vironment are continually adapting to the environmental conditions to promote tumor
growth, progression, and treatment resistance [165].

Tumor microenvironment components play a significant role in cancer progression,
maintenance, and resistance to anticancer agents [128,166]. The crosstalk between tumor
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cells and their microenvironment is essential for acquiring and maintaining tumor cell
characteristics, such as sustaining proliferative signaling, resisting cell death, inducing an-
giogenesis, activating invasion, metastasis, triggering tumor-promoting inflammation, and
avoiding immune destruction [167–169]. This dependence on the tumor microenvironment
offers an opportunity for the development of therapeutic approaches by targeting the com-
ponents of the tumor microenvironment or their dependent signaling pathways. Based on
the increased understanding of the crucial roles of the tumor microenvironment on tumor
development and therapeutic resistance, many efforts have been made to target tumor
microenvironment components for therapeutic benefit in cancer patients [170]. Importantly,
targeting the components of the tumor microenvironment has a significant therapeutic
advantage over the direct targeting of cancer cells, as cancer cells are infamous for their
genomic instability that is a main cause for the development of drug resistance [132,171].
In contrast, the non-tumor cells of the tumor microenvironment are genetically more stable
in nature and more susceptible [172].

4.1. Cancer-Associated Fibroblasts as Therapeutic Target

Over the recent decade, accumulating evidence revealed that CAFs, the major compo-
nent of stroma in malignancies, play an essential role in tumor proliferation, progression,
and treatment resistance [170,173]. Thus, CAFs are suggested to be a potential therapeutic
target for the treatment of different tumor types including melanoma. Many drugs target-
ing CAFs have been developed and tested in preclinical and/or clinical studies. The most
identified targets of CAFs are the fibroblast activation protein (FAP), vitamin D receptor
(VDR), and platelet-derived growth factor receptor (PDGRF) [174–176].

FAP is a serine protease with dual enzymatic activities and is overexpressed in CAFs
and in many other tumor types [177]. The G-protein-coupled receptor 77 (GPR77) is a
potential FAP surface target and is specifically expressed in CAFs [174–176]. In addition
to its important role in tumor development, the overexpression of FAP on CAFs is mostly
associated with poor prognosis [178,179].

Accumulating evidence suggests that vitamin D does not only suppress cancer cells
but also contributes to the modulation of tumor stromal cell genes and triggers tumor
angiogenesis, progression, and metastasis [180,181]. These observations suggest that the
vitamin D receptor is a promising target for the treatment of tumors such as melanoma.
Figure 5 demonstrates the impact of CAF as a therapeutic target for melanoma treatment.
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Figure 5. Proposed strategies for melanoma treatment by targeting cancer-associated fibroblasts
(CAFs) in tumor microenvironment. (A) Inactivation of tumor-promoting function of CAFs by
targeting crucial signaling pathways by the specific inhibitors of hedgehog, FGFR, and CXC4R.
(B) Depletion of CAFs by targeting CAF-specific markers, such as FAP. (C) Normalization of tumor-
suppressive state with small molecules such as ATRA or VDR ligands. FAP: fibroblast activation
protein; CAR: chimeric antigen receptor; ATRA: all-trans retinoic acid; VDR: vitamin D receptor;
FGFR: fibroblast growth factor receptor.



Cancers 2023, 15, 3147 11 of 24

Several studies suggested that an important role exists for PDGF in the regulation
of the recruitment and phenotypic character of the tumor stroma [114,182]. PDGF-BB has
been shown to trigger the formation of growth-promoting stroma in melanoma [114,182].
Inhibition of vascular endothelial growth factor-A (VEGF-A) production promotes tumor
cells to secrete PDGF-AA to attract stromal fibroblasts, which can be stimulated to produce
VEGF-A and induce angiogenesis [183,184]. To that end, PDGRF is essential in promoting
tumor growth by both direct growth stimulatory effects and promotion of angiogenesis
and pericyte recruitment [185,186], and it is therefore a promising therapeutic target for
tumor treatment.

4.2. Tumor-Associated Macrophages as Therapeutic Target

Tumor-associated macrophages (TAMs) have also emerged as therapeutic targets in
melanoma treatment. TAMs belong to stromal cells and are abundant in the tumor microen-
vironment [187,188]. TAMs are mostly associated with poor clinical outcomes in cancer
patients [189,190]. Accordingly, colony-stimulating factor 1 receptor (CSF1R) signaling
has gained more attention as a therapeutic target. CSF1/CSF1R has been reported to play
a central role in the proliferation, differentiation, and function of macrophages [191,192].
Therefore, inhibition of CSF1R signaling is expected to block the function of TAMs. Con-
sequently, several inhibitors (PLX3397, JNJ-40346527, PLX7486, and ARRY-382) and neu-
tralizing antibodies (RG7155, IMC-CS4, and FPA008) have been developed and tested for
their clinical relevance as CSF1R inhibitor-based therapies [191,193]. Many preclinical and
clinical investigations have demonstrated that inhibition of CSF1R results in the depletion
of TAMs and microglia [194].

4.3. Tumor-Associated Neutrophils

Tumor-associated neutrophils (TANs) are also therapeutic targets in melanoma treat-
ment. TANs originate from myeloid precursors and are the most abundant population of
leukocytes as well as the first responders of innate immunity [174,195]. TANs are one of
the most important stromal cells in the tumor microenvironment and play active roles in
tumor progression and metastatic dissemination [196,197] TANs mediate their pro-tumor
roles by stimulating ECM and inflammation in the tumor microenvironment [198]. TANs
are characterized by their ability to release granules containing various proteases, such
as matrix metalloprotease 9 (MMP-9) [199,200] and neutrophil elastase [201,202]. Conse-
quently, TANs can remodel ECM and promote tumor invasion [190,203]. In addition to
the production of proinflammatory cytokines/chemokines, TANs also produce immuno-
suppressive factors, including arginase 1 and TGF-β [204]. These immunosuppressive
factors are mainly involved in the suppression of adaptive immunity [205] as well as in the
release of HGF to promote tumor progression [206]. Thus, targeting TANs is expected to
be a potential therapeutic strategy for tumor treatment [207]. One of the most promising
targets is the chemokine receptor 2 (CXCR2), which is known to be a critical regulator for
neutrophil mobilization [208]. Preventing the interaction between CXCR2 and its ligand
(CXCL8) by small molecular inhibitors or antibodies has been shown to exert anti-tumor
activities and improves the treatment efficacy of chemotherapy [208,209]. Several clinical
trials such as SX-682 have been suggested as potent inhibitors of CXCR1/2. SX-682 has
been tested for its clinical relevance in several studies [210]. SX-682 can block tumor cells by
attracting myeloid-derived suppressor cells (MDSCs), which increases therapeutic efficacy
when combined with immunotherapies [210].

5. Tumor-Promoting Chronic Inflammation as Therapeutic Target for Melanoma Treatment

Inflammation is a consequence of the innate immune response reacting to disturbed
tissue homeostasis. Chronic inflammation is one of the common hallmarks of cancer and
plays an essential role in the enhancement of tumor development and progression [211,212].
Thus, targeting inflammation is expected to be a promising approach for cancer therapy.
Data obtained from a large population study revealed that aspirin is an anti-inflammatory
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drug found to significantly reduce cancer risk [213,214]. Both macrophages and tumor
cells are characterized by their potency to produce proinflammatory cytokines and in-
flammatory mediators and thereby sustain tumor cell proliferation and survival [215,216],
immune evasion [217], angiogenesis [218,219], ECM remodeling [220,221], metastasis [222],
chemoresistance [218,223], as well as radio-resistance [224]. To that end, targeting the
key mediators of proinflammatory pathways and/or the main regulators (e.g., NF-κB
and STAT3) of inflammatory cytokines (e.g., IL-1, TNF, and IL-6) is expected to inhibit
cancer-promoting inflammation. Unfortunately, few antibodies/inhibitors exhibited anti-
tumor activities in preclinical studies; thus, only a few candidates are under investiga-
tion in early-stage clinical trials [96,225]. Therefore, the main challenge of targeting in-
flammation is how to develop selective anti-inflammatory approaches without impairing
anti-tumor immunity.

Other components of the tumor microenvironment can function as targets for melanoma
treatment. These include B lymphocytes, regulatory T cells (Treg), adipocytes, mesenchy-
mal stem cells, and exosomes [226,227]. These tumor microenvironment components have
been shown to influence tumor progression and therapeutic responses [228]. Tregs are
characterized by the expression of the transcription factor fork head box protein p3 (Foxp3)
that is involved in the suppression of anticancer immunity [229–231]. Consequently, the
protective immunosurveillance of tumors can be impaired, resulting in the loss of effective
antitumor immune responses. Functionally, the tumor microenvironment can trigger the
suppression of Tregs by the upregulation of immune checkpoint proteins. Thus, targeting
immune checkpoint molecules (e.g., CTLA-4, TIGIT, PD-1, and GITR) on Tregs may have a
therapeutic impact on the treatment of melanoma.

The role of inhibitory receptors in the regulation of both innate and adaptive immu-
nity in chronic viral infections and cancer has been studied [232,233]. Chronic antigen
stimulation mainly results in the modulation of T cell dysfunction and the upregulation of
inhibitory receptors such as programmed cell death-1 (PD-1) and T cell immunoreceptor
with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain
(TIGIT) [234,235]. In addition to the expression of the ligands of the inhibitory receptors
by tumor cells, the tumor microenvironment contains the required antigen-presenting
cells (APCs) [236,237]. TIGIT has been reported to play a critical role in the reduction
of both adaptive and innate immunity against tumors [234,235]. The clinical relevance
of monoclonal antibodies targeting the inhibitory receptors has been reported in several
studies [238].

T lymphocyte-associated antigen 4 (CTLA-4) is one of the first identified inhibitors
of immune checkpoint on Tregs. Targeting CTLA-4 by anti-CTLA-4 antibodies has been
shown to block the tumor suppressive function of Tregs and ultimately to release the
cytotoxicity function of effector cells.

Programmed cell death 1 (PD-1) signaling is known to be hijacked by cancer cells to
escape immune surveillance [239–241]. The intrinsic expression of PD-1 has been reported
to contribute to the development of tumor monoresistance [242,243]. In melanoma cells,
the activation of PD-1 by its ligand PD-L1 has been shown to trigger the activation of
downstream mammalian targets of rapamycin signaling leading to tumor growth [244].
Thus, targeting the PD-1/PD-L1 axis has shown enormous success in a variety of hu-
man cancers [245,246]. Due to its durable tumor regression and prolonged stabilization
of disease in patients with advanced cancers, antibody-mediated blockade of PD-L1 is
clinically relevant.

In the last two decades, the treatment of a variety of malignancies based on immune
checkpoint modulation has been promising compared to available therapeutic modalities.
However, checkpoint modulation has been reported to be less therapeutically effective in
cancers with an immunosuppressive microenvironment [247,248]. Although the advent of
immunomodulatory agents has led to improved responses in tumor patients, as evidenced
by achieving long-lasting tumor remission [249,250], many exhibit brief or no response
to available immunomodulatory agents [251,252]. Thus, the development of alternate
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therapeutic strategies is of great interest. In recent years, the modulation of the tumor
microenvironment, in the context of the local metabolites, has been suggested as a promising
strategy in cancer immunotherapy [253]. For example, live tumor-targeting bacteria have
emerged as a treatment for solid tumors, compared with immunotherapy and targeted
therapy [254]. Likewise, the clinical investigation of live engineered bacteria for metabolic
modulation has been reported [255].

Oncolytic viruses have also been suggested as a promising alternative therapy for
cancer treatment, particularly for refractory cancers with a 5-year survival rate of 5%, such
glioblastoma [256]. While viral-mediated oncolysis has been hypothesized to spread to all
cancer cells within the tumor, this has not been shown in clinical studies so far. Clinical
data revealed that the development of an antiviral immune response and limited antitumor
immunity limit the efficiency of virotherapy when utilized as a monotherapy [257,258].
Apart from the abovementioned limitations of virotherapy, the mechanisms of viral infec-
tion, replication, and tumor necrosis have the potential to destruct the immunosuppressive
tumor microenvironment and ultimately enhance T cell reactivity against cancer neo-
antigens [259].

The advantage of oncolytic virotherapy over checkpoint-protein-based immune ther-
apy is attributed to the ability of oncolytic virotherapy to circumvent the immune evasion
mechanisms of the tumor [260,261]. Oncolytic virotherapy can also improve the treatment
outcome of tumor patients by the stimulation of host immune system and/or direct lysis of
tumor cells.

6. Conclusions

The impact of the tumor microenvironment in melanoma development and therapy
has gained more attention in academic research and the pharmaceutical industry. The
functional characterization of tumor microenvironment components elucidates the tumor
microenvironment as a promising therapeutic target for melanoma treatment. Of note, tar-
geting the individual components of the tumor microenvironment alone may be insufficient
for executing broad and sustainable therapeutic efficacy in melanoma patients. Likewise,
many clinical trials targeting the tumor microenvironment have not shown promising
efficacy in melanoma patients. Immune-checkpoint-blockade-based therapeutics, however,
have shown promise for treatment success in patients with melanoma metastasis. The
reported success of immunotherapy in cancer patients is attributed to deciphering the
fundamental mechanisms of T cell activation and inhibition. Thus, understanding the
fundamental components underlying the tumor microenvironment, such as fibroblasts and
macrophages, may facilitate the discovery and development of novel drugs targeting the
tumor microenvironment. Importantly, the high heterogeneity of the tumor microenviron-
ment has allowed the research and drug industry to develop reliable biomarkers to guide
tumor-microenvironment-targeted therapies. As a whole, the establishment of combinatory
therapy with the aim of maximizing treatment efficacy benefits more patients.
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175. Bejarano, L.; Jordāo, M.J.C.; Joyce, J.A. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov. 2021, 11, 933–959.
[CrossRef] [PubMed]

176. Zhou, L.; Yang, K.; Andl, T.; Wickett, R.R.; Zhang, Y. Perspective of Targeting Cancer-Associated Fibroblasts in Melanoma. J.
Cancer 2015, 6, 717–726. [CrossRef] [PubMed]

177. Hamson, E.J.; Keane, F.M.; Tholen, S.; Schilling, O.; Gorrell, M.D. Understanding fibroblast activation protein (FAP): Substrates,
activities, expression and targeting for cancer therapy. Proteomics Clin. Appl. 2014, 8, 454–463. [CrossRef] [PubMed]

178. Zboralski, D.; Hoehne, A.; Bredenbeck, A.; Schumann, A.; Nguyen, M.; Schneider, E.; Ungewiss, J.; Paschke, M.; Haase, C.; von
Hacht, J.L.; et al. Preclinical evaluation of FAP-2286 for fibroblast activation protein targeted radionuclide imaging and therapy.
Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3651–3667. [CrossRef]

179. Zhang, Y.; Ertl, H.C. Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T
cells within tumors. Oncotarget 2016, 7, 23282–23299. [CrossRef] [PubMed]
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