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Simple Summary: Leukemia is a type of cancer that affects white blood cells and can lead to serious
health problems and death. Diagnosing leukemia is currently performed through a combination of
morphological and molecular criteria, which can be time-consuming and, in some cases, unreliable.
Computer-aided diagnosis (CAD) systems based on deep-learning methods have shown promise
in improving diagnosis efficiency and accuracy. However, these systems suffer from the “black box
problem,” which can lead to incorrect classifications. This research proposes a novel deep-learning
approach with visual explainability for ALL diagnoses based on robust white blood cell nuclei
segmentation to provide a highly reliable and interpretable classification. The aim is to develop a
CAD system that can assist physicians in diagnosing leukemia more efficiently, potentially improving
patient outcomes. The findings of this research may impact the research community by providing a
more reliable and explainable deep-learning-based approach to blood disorder diagnosis.

Abstract: Leukemia is a significant health challenge, with high incidence and mortality rates.
Computer-aided diagnosis (CAD) has emerged as a promising approach. However, deep-learning
methods suffer from the “black box problem”, leading to unreliable diagnoses. This research proposes
an Explainable AI (XAI) Leukemia classification method that addresses this issue by incorporating a
robust White Blood Cell (WBC) nuclei segmentation as a hard attention mechanism. The segmenta-
tion of WBC is achieved by combining image processing and U-Net techniques, resulting in improved
overall performance. The segmented images are fed into modified ResNet-50 models, where the
MLP classifier, activation functions, and training scheme have been tested for leukemia subtype
classification. Additionally, we add visual explainability and feature space analysis techniques to
offer an interpretable classification. Our segmentation algorithm achieves an Intersection over Union
(IoU) of 0.91, in six databases. Furthermore, the deep-learning classifier achieves an accuracy of 99.9%
on testing. The Grad CAM methods and clustering space analysis confirm improved network focus
when classifying segmented images compared to non-segmented images. Overall, the proposed
visual explainable CAD system has the potential to assist physicians in diagnosing leukemia and
improving patient outcomes.

Keywords: acute lymphoblastic leukemia; deep-learning; XAI; nuclei segmentation; leukemia
classification

1. Introduction

Blood disorders are among the most challenging problems in medical diagnosis and
image processing, where blood samples can be used to analyze a person’s state of health
and diagnose various diseases such as allergies, infections, or cancer. Specifically, one of the
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most lethal cancers with the highest incidence rate is Leukemia, where malformation of the
white blood cells causes serious health problems that can lead to death. Although WBCs are
involved in protecting the human body, they are also susceptible to illness. The most critical
pathological conditions of the white blood cells are blood cancers. As a consequence of
malignant mutations in the lymphoid or myeloid cells, there is an uncontrolled proliferation
of malformed cells that do not function correctly in the organism, causing a decrease in
the patient’s health and even death. This process of malformation and uncontrolled
reproduction of white blood cells is called Leukemia [1,2].

Leukemia can be classified according to the type of malignant cell, either lymphoid or
myeloid, or the speed of symptoms development, chronic or acute. Acute Lymphoblastic
Leukemia (ALL) is the most common during childhood, and due to genetic factors, the most
affected ethnicity worldwide by ALL is the Hispanic population [2]. Currently, the way
to diagnose Leukemia is based on a mixture of morphological and molecular criteria. The
morphological classification relies on the FAB (French-American-British) medical criteria,
established on recognizing characteristics or patterns such as the number of white blood
cells, shape, and size, among others, where it is possible to differentiate between the
types [2,3].

One major disadvantage of this procedure is the time consumption for the specialist
in the analysis of each sample and the reliability of the diagnosis [4]. In addition, in low-
income countries where health systems are overwhelmed, the time to find an appointment
for the performance of these tests is high, which can result in a late diagnosis. Computer
Aided Diagnostic (CAD) systems assist physicians in routine tasks to diagnose more
efficiently, accurately, and with shorter diagnostic times, providing a better outcome for
the patient.

In particular, CAD systems based on Deep Learning methods have recently gained
relevance due to the good metrics obtained in research articles. However, as Loddo and
Putzu [5] stipulate, many of the systems based on Deep Learning, specifically segmen-
tation and classification systems of blood smear images, need a deeper analysis of the
results beyond the metrics and learning curves. One major challenge associated with
Deep Learning models is the “Black box problem,” where the lack of semantic associations
between input data and predicted classes hinders interpretability. This means that although
a Deep Learning model may achieve excellent metrics and accurately classify results, the
underlying associations made by the model might be incorrect. This conveys a significant
risk when applying these systems to different databases or integrating them into routine
clinical practice.

The growing spectrum of diseases and the potential of Computer Diagnosis have
sparked intense research into white blood cell (WBC) segmentation and leukemia classifica-
tion. Propelled by progress in computer vision and Deep Learning, considerable strides
have been taken in addressing the challenges intrinsic to WBC nuclei segmentation and
leukemia classification [6,7].

Recent research has shown the positive impact of appropriate pre-segmentation on
deep-learning classification in medical imaging. The research of Mahbod et al. [8] high-
lighted improved performance with the correct use of segmentation masks on dermoscopic
images, however, when segmentation was applied inaccurately, it resulted in a decrease in
model performance. Similarly, Al-masni et al. [9] found that feeding segmented skin lesions
into an integrated computer-aided diagnosis (CAD) system resulted in more effective
diagnostic classification.

In the context of WBC segmentation, one of the most relevant studies was carried out
by Vogado et al. [10], where color space transformations from RGB to CMYK and Lab*
were applied, followed by contrast adjustment and median filtering to enhance the image.
Leukocytes were highlighted by subtracting the B channel from the M channel. K-means
clustering and morphological operations were subsequently employed. Alternatively,
Makem and Tiedeu [11] introduced a WBC nucleus segmentation method by leveraging
color space transformations, arithmetical operations, and adaptive PCA fusion. Their
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approach demonstrated excellent performance with Dice Coefficients of 94.75%, 97.06%,
and 90.79% on the BloodSeg, CellaVision, and JTSC databases, respectively, validating its
effectiveness across diverse datasets. Meanwhile, Mousavi et al. [12] addressed the WBC
nucleus segmentation problem by employing a color balancing method based on the color
channels means, converting the image to CMYK and extracting the Magenta channel and
then segmenting the image. This approach was trained and tested with 985 and 250 images
from the Raabin WBC, respectively, obtaining a Dice Coefficient of 95.42%. After, Tavakoli
et al. [13] developed a three-step method for WBC nucleus segmentation. Applying color
balancing, RGB to HSL and CMYK conversions, and arithmetic operations to enhance
nuclei visibility, followed by Otsu filtering for binarization. The method achieved a Dice
Coefficient of 96.75% on a subset of 250 images from the Raabin WBC dataset.

Makem et al. [14] proposed a robust WBC segmentation method based on arithmetic
operations and the Fourier transform. They segment the WBC using RGB space operations and
Otsu thresholding, followed by Fourier-based image enhancement. The K-means algorithm is
then applied for nuclei grouping and segmentation. The method achieved high segmentation
accuracy on five databases, with Dice Coefficient results ranging from 86.02% to 97.35%. In
comparison, Mayala and Haugsøen. [15] proposed a WBC segmentation method based on
finding the minima between two local peaks in the image histogram analysis.

Ochoa-Montiel et al. [16] proposed an intermediate approach between handcrafted
and deep-learning methods for WBC segmentation and ALL classification. They em-
ploy RGB to HSI transformation, Otsu’s segmentation method, and handcrafted feature
extraction techniques. Classification is performed using handcrafted approaches and
deep-learning methods based on Alexnet and LeNet architectures.

In contrast, a few WBC segmentation schemes are based entirely on the Deep Learn-
ing approach. For example, Haider et al. [17] proposed a Deep Learning approach for
WBC segmentation, specifically nucleus and cytoplasm segmentation. They introduced
two networks, LDS-NET and LDAS-NET, which are modifications of U-NET with ad-
ditional features such as residual connections. The combination of these features helps
retain information and improve accuracy. The approach of Garcia-Lamont et al. [18] pro-
poses six methods for WBC nucleus segmentation: CPNNHSV, CPNRGB (neural network-
based), SOMHSV, SOMRGB (Self Organized Maps-based), and VarHSV, VarRGB (based on
chromatic variance). This approach has been tested using three different databases with
660 images.

Zhou et al. [19] applied a modified version of U-Net, a well-known Deep Learning
method used for segmentation. U-Net++ architecture modifies the plain skip connections
for nested and dense skip connections to combine the high-resolution map feature. This
algorithm was trained and tested with 989 and 250 images of the Raabin WBC database,
respectively, reaching a Dice Coefficient of 97.19%. Similarly, Oktay et al. [20] proposed a
new U-Net-based model with attention. This attention gate allows for highlighting relevant
features and removing irrelevant ones resulting in better segmentation. The algorithm was
implemented with the Raabin WBC dataset, trained and tested with 989 and 250 images,
respectively, resulting in a Dice Coefficient of 96.33%. Finally, He et al. [21] enhanced
the Faster R-CNN approach with the Mask R-CNN architecture for WBC segmentation.
The method improves the segmentation results by introducing a connection between the
convolutional feature maps and generating a masked ROI as an attention module.

The review of the state-of-the-art shows that WBC segmentation and Leukemia clas-
sification remains an active and evolving research area. In recent years, the significance
of model interpretability and explainability has garnered increasing attention in medical
diagnosis. Current methodologies encounter challenges regarding robustness and the
elucidation of the underlying rationale behind model predictions. Traditional Handcraft
approaches often involve intricate and non-intuitive segmentation steps and typically
perform worse than AI models. Deep Learning methods, while achieving impressive per-
formance, frequently suffer from the “Black box problem,” difficulting in the reliability of
the diagnosis. Thus, there is a pressing need to explore novel techniques prioritizing model
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interpretability and explainability. In addition, in assisted medical diagnosis systems, the
doctor must understand the reasons that lead to a particular Deep Learning classification
so that the physician can implement an accurate and reliable hybrid diagnosis.

In this article, we introduce a novel method for leukemia classification using Explain-
able Artificial Intelligence (XAI) and segmentation techniques. The unique feature of our
approach lies in its use of segmentation as a form of ’hard attention’ mechanism, which
enhances the classifier’s accuracy and interpretability by targeting the nucleus of white
blood cells (WBCs). We demonstrate the robustness of our segmentation method by testing
it across multiple databases. To make the network associations more tangible, we use
gradient attention maps that visualize the relevance of various regions, considering both
the intensity and location of the ’attention’ within the Region of Interest (ROI). By focusing
on the WBC nuclei before classification, our proposed method significantly improves the
quantitative and qualitative criteria, outperforming classifiers that do not use segmenta-
tion. We also compare Deep Learning approaches and demonstrate the superior efficacy
of the Mish activation function over the commonly used Rectified Linear Unit (ReLU).
Through these findings, we hope to advance the field of leukemia classification by offering
an approach that is not only more accurate but also more explainable.

Furthermore, this research has four main sections; Section 2 shows the datasets and the
metrics used for evaluation; Section 3 presents the proposed methodology; Section 4 exhibits
results as well as the discussion; finally Section 5 summarized scientific contributions of
this research.

2. Materials
2.1. Datasets

This research used six databases with digitalized images of blood or bone marrow
samples. A total of 2823 different images were used to test the developed method. The
databases employed have different characteristics concerning each other, such as the
number and size of white blood cells, image color, saturation, illumination, etc.

• Leukemia Dataset [16] is formed by 651 classified images of Acute Lymphoblastic
Leukemia according to FAB classification (217-ALL1, 217-ALL2, 217-ALL3), with
dimensions of 256× 320 pixels. This dataset is the only one in the state-of-the-art that
labels the different types of Acute Lymphoblastic Leukemia with reliability through
cytogenetic tests.

• CellaVision [22] is made up of 100 blood samples, and each image has dimensions of
300× 300 pixels and a bit depth of 24 bits. This dataset usually consists of a single cell,
and the core color is violet, while the background has pinkish and yellowish tints.

• JTSC [22] is made by the Jiangxi Telecom Science Corporation in China. This dataset
consists of 300 images of 120 × 120 pixels containing the GT of the nucleus and
cytoplasm for comparative analysis. It contains a wide variability among its samples
since there are cells in which the nucleus has a highly saturated coloration, while in
others, the nucleus is almost translucent. Furthermore, the image’s background varies
from an intense yellow to a pinkish white.

• SMC_ID (Blood_Seg) [23] is composed of 367 images of WBC with a size of
640× 480 pixels. Each sample characterizes by the GT of the nucleus, which facil-
itates its analysis. Commonly, the images that integrate this dataset have a cell nucleus
with low color saturation. Additionally, the WBC is located in diverse positions over
the image.

• Raabin_WBC [24]. It provides 1145 images of blood samples, with dimensions of
545 × 545 pixels, where white blood cells are subdivided into 242 lymphocytes,
242 monocytes, 242 neutrophils, 201 eosinophils, and 218 basophils. Each of these
1145 samples also contains a ground truth, both whole cell and nucleus. This is one of
the best databases by now, as it has numerous samples of different cell types classified
and annotated with ground truth for analysis and comparison of results.
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• ALL_IDB2 [25]. It consists of 260 images of 257× 257 pixels. This dataset derives from
the ALL-IDB1 dataset, where individual cells have been cropped to obtain the region
of interest.

Examples of the datasets used in the research are shown in Figure 1.

Figure 1. Used dataset images: Leukemia Dataset (a), CellaVision (b); JTSC (c); BloodSeg (d);
Raabin_WBC (e); ALL_IDB2 (f).

2.2. Metrics

For evaluating the proposed segmentation and classification method, seven of the
most widely used metrics were employed [26]:

• Accuracy value measures the appropriate classification over the total elements.

Acc =
TP + TN

TP + TN + FP + FN
. (1)

• Precision metric estimates the number of elements correctly classified among all the
positive elements to evaluate.

Pre =
TP

TP + FP
. (2)

• Recall also known as sensitivity, is used to denote the number of positive elements
that are correctly classified.

Rec =
TP

TP + FN
. (3)

• Specificity measures the proportion of true negatives that are successfully identified
by the model.

Spec =
TN

TN + FP
. (4)

• Dice Similarity Coefficient or DSC can be considered to be a harmonic mean of
precision and recall. Furthermore, known as F1-Score.

DSC = 2 ∗ Precision ∗ Recall
Precision + Recall

. (5)

• Intersection over Union also known as Jaccard Index is the most important metric in
image segmentation tasks since it measures the magnitude of overlap between the GT
and the segmented image.

IoU =
TP

TP + FP + FN
. (6)

were TP represents true positives, TN true negatives, FP false positives and FN false negatives.
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3. Proposed Method

In this work, a novel CAD system for Acute Lymphoblastic Leukemia classification
was developed. The novel approach relies on an ensemble state of art white blood cell
segmentation that acts as a hard attention mechanism for the network, increasing diagnostic
accuracy and reliability. Furthermore, a visual Grad CAM interpretation with four gradient
activations maps (GradCAM, GRADCAM++, Hi-Res-CAM, Xgrad-CAM) and a clustering
space analysis increase the reliability of the method. The proposed system diagram is
shown in Figure 2. Below, each of the three phases of the method is presented.

Figure 2. Proposed Method.

3.1. Handcrafted WBC Nuclei Segmentation

This research proposes a new robust and consistent segmentation method for dif-
ferentiating the WBC nucleus from the rest of the sample. To address the issue of color
variations between blood samples, caused by factors such as illumination, microscope type,
and staining, a method proposed by Hedge et al. [27] is employed. This method involves
multiplying the original RGB channels by a weight calculated based on the ratio between
the average grayscale intensity and the average intensity of the respective channel (Red,
Green, and Blue), as can be seen below in Equation (7). By applying this approach, the
colors in the samples are homogenized, enhancing the tonal consistency across different
datasets and improving the method’s applicability and robustness.

CCChannel = ChannelIntensity
(

mean Grayscale
mean ChannelIntensity

)
. (7)

We enhance the WBC nucleus by matching image tonalities and employing color
space transformations (RGB to CMYK and HSV). Guided by purple tonalities and high
saturation in the ROI region, the Saturation and Magenta channels are combined using
the Hadamard product to highlight nuclei and remove unwanted elements. The bilateral
filter [28] is employed after the Hadamard product to refine the segmentation process
further to eliminate image noise and blur the WBC nucleus. This step ensures that any
regions potentially lost during the Hadamard product operation are recovered while
maintaining the original shape and integrity of the cell edges. The grayscale image is then
transformed to a binary image via the adaptive Otsu Thresholding [29], resulting in an
image where the WBC nuclei are highlighted in white and the other components of the
image in black.

Since areas with holes could be found in the nucleus of the binarized image, the
morphological transformations of closing and filling holes are applied to improve the
segmentation process. The closing eliminates the small black regions, filling holes operation
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dilates the white regions within the WBC nucleus. Finally, a filter by ROI pixel area removes
small spurious elements that remain, where the elements with a smaller area of pixels than
those established by the threshold are eliminated from the image. All the presented steps
of the WBC nuclei segmentation method can be summarized in Algorithm 1.

Algorithm 1 Proposed Handcrafted WBC Nuclei Segmentation.

1: Read RGB image
2: CC_RGB← Apply Color Constancy to RGB image
3: CMYKImage ← Trans f orm CC_RGB to CMYK
4: M← split(CMYKImage)
5: HSVImage ← Trans f orm CC_RGB to HSV
6: S← split(HSVImage)
7: MultImage ← M� S (Hadamard Product)
8: BilateralImage ← BilateralFilter(MultImage)
9: BinarizedImage ← Th_Otsu(BilateralImage)

10: BinarizedImage ← Closing(BinarizedImage)
11: BinarizedImage ← Fill_Holes(BinarizedImage)
12: AreaFilterImage ← BinarizedImage >= pixel number
13: SegmentedImage ← Mask(AreaFilterImage, RGB Image)

3.2. Deep Learning WBC Nuclei Segmentation

The encoder-decoder architecture, U-Net [30], was implemented for the Deep Learning
segmentation phase. The encoder downsamples the input image and extracts high-level
features, while the decoder upsamples the features to reconstruct the original image size
and generate a segmentation map. The skip connections between the encoder and decoder
help to preserve spatial information and enable precise segmentation of objects. Our im-
plementation of the UNet model has the following structure: Designed for 2-dimensional
spatial inputs, begins with an input of 3 channels. The model progresses through five
distinct levels, each corresponding to a different size of the channel, expanding from 32 to
512. At each level, the model performs downsampling using strided convolutions, with
strides of 1 at the first level, and 2 at subsequent levels. The model employs Instance Nor-
malization, includes a dropout rate of 0.5 for regularization, and uses the Mish activation
function for non-linearity [31] (see Equation (8))

Mish(x) = x ∗ tanh(ln((1 + ex)) . (8)

Furthermore, we used the state-of-the-art Unified Focal Loss function [32] as a loss
function for our UNet-based model, which can improve the segmentation due to its better
handling of class imbalance and the combination of Focal Loss, Equation (9), (distribution-
based loss) and Tversky Loss, Equation (10), (region-based loss).

LmFocalLoss = δ(1− p)1−γ ∗ LBinaryCrossEntropy . (9)

LmFocalTverskyLoss =
C

∑
c=1

(1−mTI)γ . (10)

LUn f ied Focal Loss = λLmFocalLoss + (1− λ)LmFocalTverskyLoss . (11)

For Unified Focal Loss, see Equation (11), the three tuning parameters are defined as: δ
controls the relative weighting of positive and negative classes, γ manages the suppression
of background classes and the attention of rare classes, and lastly, λ handles the weights
between the distribution-based loss and the region-based loss.
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3.3. Ensemble Segmentation

Ensemble segmentation is a technique for improving the accuracy and robustness
of image segmentation using multiple segmentation models. Combining the predictions
of several models can improve the overall performance of the segmentation. The novel
method employs a Hybrid ensemble segmentation technique. By combining the proposed
Handcrafted and Deep Learning segmentations, we can overcome the limitations of in-
dividual approaches and produce more reliable segmentation results. Since the biggest
problem in both segmentation methods was the false positives, the logical AND operation
was used to merge both masks, significantly reducing the number of false positives and
increasing the stability of the ensemble segmentation. For instance, when one of the two
methods does not correctly remove a non-ROI region and the other does, this non-ROI
region is removed from the Ensemble segmentation mask. After the fusion technique, we
applied an area opening as a post-processing operation.

Ensemble Mask = Handcra f tedMask ∧ DeepLearningMask . (12)

3.4. ALL Classification

In this study, the proposed classifier is based on ResNet-50 [33], which through their
residual connections, allows a better back-propagated gradient flow through the network,
contributing simultaneously to assembling more layers in a CNN network while improving
the network’s learning. Since the ResNet-50 architecture forms a vector of 2048 features
in the Fully Connected layer, and the proposed method attempts to classify three classes
of Leukemia, it is necessary to modify the MLP classifier layer. It has been proposed two
different configurations: One going from 2048 to 1024-512-3 (Medium) and the other from
2048 to 3 (Linear). The objective behind the different classifiers configurations is based
on the assumption that adding more hidden layers is needed to approximate the feature
function of each class, leading to a classification improvement.

To find the best classifier for this problem, eight models were trained based on ResNet-
50, changing the activation function, the number of hidden layers and neurons in the MLP
classifier, and the input images, Segmented and NoSegmented, as is shown in Table 1:

Table 1. Summary of the different modifications in the developed models.

Input Image
Segmented Train the model with the previously Segmented Images

NoSegmented
(Ablation)

Train the model with the original images (No Segmented Images)
(Traditional manner)

MLP Classifier
Linear Modify the MLP classifier from 2048 to 3 neurons

Medium Modify the MLP classifier from 2048 to 1024-512-3 neurons
Activation Function

Mish Change all the activation functions of the model to Mish, including
MLP classifier

ReLU Change all the activation functions of the model to ReLU, including
MLP classifier

3.5. Visual Explainability

A crucial component of our proposed method is the integration of a visual explainabil-
ity stage, which aims to provide insights into the network’s learning process and ensure that
the regions of interest (ROIs) are accurately identified during Deep Learning classification.
This step enhances the method’s overall effectiveness and enables clinicians to interpret the
results generated by the network. Since, in the field of Deep Learning interpretability, there
is currently no consensus on the best metrics-based approach for activation map generation,
and it is known that each method could highlight different regions. Therefore, we per-
form a comprehensive analysis of four gradient-based methods, namely GRAD-CAM [34],
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Grad CAM++ [35], HiRes-CAM [36], and XGrad-CAM [37]. By examining these methods’
outputs, we ensure a robust evaluation of the network’s attention and activation patterns.
This approach enables us to better understand the network’s decision-making process and
further strengthens the interpretability of our proposed method.

3.6. Clustering Space Analysis

We introduced a clustering space analysis to visualize class predictions in the proposed
method to enhance reliability and robustness. By obtaining the logits of each sample in the
test set and their corresponding true targets, a 3-dimensional map was generated where the
coordinates represented class predictions (L1, L2, and L3). Principal Component Analysis
(PCA) was applied to reduce dimensionality and visualize clusters. This visualization
technique allowed us to observe how the network grouped classes in the logits space,
aiming to maximize inter-class variance and minimize intra-class variance. The analysis
included calculating the Euclidean distance between cluster centroids to measure inter-
class variance and using the standard deviation of “PC1” and “PC2” within each cluster to
quantify intra-class variance. Recognizing the significance of inter-cluster distance in class
prediction, we introduced the Dist/SD Ratio, a weighted ratio of 3-1 Distance/SD intra-
class. We think that models amplifying this ratio may exhibit superior robustness when
clustering-classifying new data, reflecting better class separability and tighter intra-class
clustering for enhanced generalization performance, as is shown in Figure 3.

Figure 3. Model clustering space comparison.Where the best model is the one that enhances inter-class
distance and reduces intra-class separability.

4. Results and Discussion
4.1. Segmentation Results

The handcrafted segmentation method was implemented using a PC, with an Intel
Core i7-4510U processor, 8 GB RAM, the operating system Windows 64-bit, using Python
version 3.9.7 and the libraries Scikit-image[38] and OpenCV [39]. The deep-learning
segmentation was made in a Google Colab environment, using a Tesla T4 GPU, Pytorch
v1.12.1 [40], Scikit-learn [41] and Monai [42]. A 10-fold cross-validation was used to
assess the predictive performance of the proposed model. The dataset was randomly
shuffled and divided into 10 equal parts or folds. During each iteration, nine of these
folds were used for training the model, while the remaining fold was reserved for testing.
This process was repeated 10 times, with each fold as the test set once. The model’s
performance was evaluated on diverse data by rotating the test set across different folds
improving reliability, [43,44]. Furthermore, we applied data augmentation techniques
on the fly [45], such as VerticalFlip, HorizontalFlip, RandomRotate90, Transpose with a
probability of p = 0.5 and RandomGamma, CLAHE, GaussNoise with p = 0.2 and a Resize
(256,256) with p = 1. General hyperparameters were: Adam optimizer, unified focal loss,
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and ReduceLROnPlateau.Specific hyperparameters, for each UNet such as lambda, delta,
gamma, learning rate, dropout probability, and weight decay, can be seen in Table A2.

The proposed WBC nuclei segmentation method was evaluated in Leukemia Dataset,
CellaVision, JTSC, SMC_IDB, Raabin_WBC, and ALL_IDB2 datasets. Figure 4 compares the
three proposed methods on two images, one of JTSC and one from the Leukemia dataset. It
can be seen that the combination of both methods, Handcraft and Deep, results in improved
segmentation, even with the color differences or cell numbers in the images.

Figure 4. Comparison between HM,DEE P, and Ensemble results.

Further perceptual results of the Ensemble method are shown in Figure 5, where a
cyan border surrounds the segmented WBC nuclei. From the figure, one can perceive the
overall accuracy of the segmentation method, despite the differences in saturation, color,
transparency of the cells, etc.

Meanwhile, the quantitative results were obtained by comparing segmented images
against their GT. Seven different quality metrics were used to assess the performance
of the proposed methods. In Table 2, it can be seen that the proposed method obtains
competitive results for all the databases and all the proposed quality metrics. These
high-performance results confirm the robustness of the proposed segmentation system,
where this system appears to demonstrate minimal variability in the output results despite
changes in the input.

Table 2. Results of the proposed Ensemble method for the WBC datasets.

Dataset Acc (%) Pre (%) Rec (%) Spec (%) DSC (%) IoU

Leukemia Dataset 98.50 88.32 95.03 98.59 91.16 0.840
CellaVision 99.32 97.08 97.88 99.57 97.40 0.951

JTSC 99.03 96.38 96.09 99.50 96.10 0.926
SMC_IDB 99.62 95.57 96.30 99.81 95.78 0.920

Raabin_WBC 98.99 97.38 94.71 99.65 94.83 0.923
ALL_IDB2 98.51 93.45 97.14 98.60 95.14 0.910

AVERAGE 99.00 94.77 96.19 99.28 95.69 0.917

Moreover to general results, the proposed system is explicitly compared using each of
the databases and against recent state-of-the-art methods. The results derived from these
comparisons can be seen in Tables 3 and 4.
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Figure 5. Qualitative results of the ensemble segmentation method on the six datasets. Cyan color
borders the segmented nuclei.

Table 3. Leukemia Dataset WBC nuclei segmentation results. The best results are in bold, and the
second best is underlined.

Leukemia Dataset

Method Acc (%) Pre (%) Rec (%) Spec (%) DSC (%) IoU

Proposed HM 97.96 82.43 97.63 97.70 89.01 0.806
Proposed DEEP 98.30 85.82 95.81 98.30 90.02 0.823

Proposed Ensemble 98.50 88.32 95.03 98.59 91.16 0.840

The training and validation plots for each fold were obtained for evaluating the
adequate training of each U-Net model, as shown in Figure 6. From these graphs, it is
possible to observe the correct network learning for Cellavision and the other databases.
The rest of the curves can be found in Figure A1.
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Figure 6. Training and Validation Intersection Over Union and Loss curves for the 10 folds.

Table 4. WBC nuclei segmentation comparison. The best results are in bold, and the second best
is underlined.

Cellavision

Method Acc (%) Pre (%) Rec (%) Spec (%) DSC (%) IoU # Test Images

Vogado et al. [10] 98.77 97.88 99.75 89.39 93.22 0.873 100
Makem & Tiedeu [11] 99.37 97.37 96.97 - 97.06 0.945 100

CPNNHSV [18] 99.2 94.86 97.31 99.41 96.31 0.929 100
Makem et al. [14] 99.43 97.31 97.60 99.61 97.35 0.950 100

LDS-NET [17] - 98.48 95.91 - 97.18 0.945 20
LDAS-NET [17] - 99.09 97.11 - 98.09 0.963 20

Proposed Ensemble 99.32 97.08 97.88 99.57 97.40 0.951 100

JTSC

Method Acc (%) Pre (%) Rec (%) Spec (%) DSC (%) IoU # Test Images

Vogado et al. [10] 97.13 93.55 98.99 83.18 87.68 0.781 300
Makem & Tiedeu [11] 97.29 91.01 93.12 - 90.79 0.843 300

VarRGB [18] 98.38 91.10 96.29 98.68 93.88 0.885 300
Makem et al. [14] 97.79 93.64 97.60 98.43 93.17 0.884 300

Mayala & Haugsøen [15] - 94.89 95.30 99.31 94.81 0.903 300
LDS-NET [17] - 98.85 92.39 - 95.56 0.917 60

LDAS-NET [17] - 94.42 98.36 - 96.35 0.931 60
Proposed Ensemble 99.03 96.38 96.09 99.50 96.10 0.926 300

SMC_IDB (BloodSeg)

Method Acc (%) Pre (%) Rec (%) Spec (%) DSC (%) IoU # Test Images

Vogado et al. [10] 99.15 80.51 94.51 99.30 86.46 0.761 367
Makem & Tiedeu. [11] 99.63 92.99 97.06 - 94.75 0.902 367

Makem et al. [14] 97.67 91.27 96.93 97.82 93.48 0.883 367
Proposed Ensemble 99.62 95.57 96.30 99.81 95.78 0.920 367
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Table 4. Cont.

Raabin

Method Acc (%) Pre (%) Rec (%) Spec (%) DSC (%) IoU # Test Images

U-Net ++ [19] - 95.98 98.73 - 97.19 0.945 250
Attention U-Net [20] - 94.78 98.50 - 96.33 0.929 250

Mask R-CNN [21] - 8.59 96.80 - 91.98 0.852 250
Mousavi et al. [12] . - 93.62 98.27 - 95.42 0.912 250
Tavakoli et al. [13]. - 99.72 95.26 - 96.75 0.936 250

Proposed Ensemble 98.99 97.38 94.71 99.65 94.83 0.923 1145

ALL_IDB2

Method Acc (%) Pre (%) Rec (%) Spec (%) DSC (%) IoU # Test Images

Vogado et al. [10] 98.59 91.24 98.09 98.62 94.17 0.890 300
CPNNHSV.[18] 98.32 91.59 96.11 98.66 93.42 0.877 300

Proposed Ensemble 98.51 93.45 97.14 98.60 95.14 0.910 300

4.2. Leukemia Classification

For the classification stage of the method, previously segmented images from the
Leukemia Dataset were used for the Segmented Models and Original Images for the Non-
Segmented Models. Both datasets were divided into a 90% Train-Validation split and a 10%
Test split. A stratified K-fold with 10 folds was then applied to the Train-Validation Split.
Each model was trained for 30 epochs during each K-fold. For each training set in the K-fold,
‘on the fly’ data augmentation operations were applied, including Vertical Flip, Horizontal
Flip, RandomRotate90, Random Gamma, CLAHE, Transpose, and Gaussian Noise, each
with a probability of p = 0.5. Finally, all the images were transformed with Resize (232),
CenterCrop (224), and Normalize (mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225)).
The hyperparameters of the ResNet-50 models included a batch size of 8, a learning rate of
1 × 10−5, an Adam optimizer with a weight decay of 1 × 10−4, cross-entropy loss, and the
ReduceLROnPlateau learning rate scheduler.

The top four results from the ten K-fold validations across the eight models are
presented in Table 5, while the corresponding training and validation plots can be found in
Figure A2. These results provide evidence for the accuracy of the proposed classifier.

Table 5. Best results for the train-validation 10 K-fold.

Model Acc (%)

Segmented Mish Medium 99.99
NoSegmented ReLU Medium 99.97

Segmented Mish Linear 99.97
No Segmented ReLU Linear 99.97

Comparing our method with six classifiers used by Ochoa-Montiel et al. for the
Leukemia Dataset reveals that deep-learning-based methods, such as LeNet, AlexNet, and
our proposed method, yield superior results in contrast to handcrafted methods such as
MLP and Random Forest (see Table 6). Our study presents methods that are competitive
within this landscape. However, as outlined in the Related Work (Section 1) and Methods
(Section 3) sections, we go a step further by extending our analysis beyond conventional
metrics. We incorporate Explainable AI (XAI) and clustering space analysis to affirm the
robustness and reliability of our model [5,7].
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Table 6. Performance Comparison for ALL Classification.The best results are in bold, and the second
best is underlined.

Method Validation Accuracy (%)

Random_Forest Set_Full. [16] 97.08
LeNet. [16] 98.36

AlexNet. [16] 99.98
Proposed Method 99.99

4.3. Clustering Space Analysis Results

In this phase, 10% of the hold-out datasets were used to test the robustness of the
model. Transformations commonly found in real environments [46], such as MotionBlur
(blur_limit = 5), MultiplicativeNoise, GaussNoise (var_limit = 10, mean = 0), were applied
to each image, in addition to the transformations mentioned in Section 4.2. Table 7 demon-
strates that the two most robust models, yielding the best metrics, are those trained on seg-
mented images, specifically with the Mish and ReLU activations, respectively. In contrast,
the models most sensitive to daily noise are those trained on raw, non-segmented images.

Table 7. Best and worst models in Test Dataset. The best results are in bold, and the second best
is underlined.

Test Dataset

Architecture Acc (%) Pre (%) Rec (%) F1 (%)

Segmented
Mish Medium 100 100 100 100

Segmented
ReLU Medium 98.50 98.60 98.50 98.50

No Segmented
ReLU Linear 89.40 89.70 89.40 89.40

No Segmented
Mish Medium 80.30 87.60 80.30 80.30

On the other hand, the results of the clustering analysis, shown in Table 8, indicate
that the two best models, those that improve inter-class separability and decrease intra-
class separability, are the segmented models with Mish and ReLU activations. In contrast,
the models with the poorest clustering results are the unsegmented ones. The visual
results from the aforementioned tables are presented in Figure 7. Here, the ’Segmented
Mish Medium’ model, shown in Figure 7a, performs the best in clustering and achieves
higher separability, suggesting that it is learning features that better differentiate the
classes. Conversely, the ’NoSegmented’ model, shown in Figure 7b, has lower intra-class
separability, making classification more difficult. This leads to the classification results that
can be appreciated at their respective confusion matrix.

Table 8. Prediction Cluster Analysis on the test dataset. The best separability results are bold, and
the second best is underlined.

Dist
L1–L2

Dist
L2–L3

Dist
L1–L3

Dist
Total

SD
Cluster

L1

SD
Cluster

L2

SD
Cluster

L3

SD
Total

Ratio
Dist/SD

SegmentedMish Medium 10.12 8.22 7.31 25.65 2.05 0.68 2.06 2.99 25.78
Segmented ReLU Medium 6.60 5.17 3.65 15.41 1.09 1.43 0.66 1.92 24.12

NoSegmented ReLU Linear 3.94 3.34 2.99 10.27 1.32 1.60 1.33 2.46 12.52
NoSegmented Mish Linear 3.15 2.08 1.88 7.11 0.94 1.49 0.50 1.83 11.63
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Figure 7. Clustering comparison between the best model Segmented Mish Medium in (a) and the
worst model in No Segmented ReLU Linear (b).

4.4. Class Activation Maps

The class activation maps for the ’Segmented Mish Medium’ and ’NoSegmented ReLU
Linear’ models are shown in Figure 8. From these, it is apparent that applying segmentation
to the WBC images, as shown in Figure 8a, allows the network to focus precisely where the
WBC kernels are located. Conversely, in Figure 8b, the network is easily distracted due to
the shared similarities between the WBC and blood cell characteristics.

By employing various activation maps, we can discern the semantic connections
inferred by the network for classification. This is illustrated in Figure 9, where the network
makes two distinct semantic associations from the same images in the Test Dataset, both
leading to correct classifications. The segmented image model accurately classifies L3 with
a high confidence level of 0.999, attributable to the model’s focus on the WBC. On the other
hand, the ‘NoSegmented’ model also correctly classifies L3 but with a reduced confidence
level of 0.734, indicating that the model may be making associations atypical to L3. For
additional results, see Table A3.

Finally, based on the previous results, the ‘Segmented Mish Medium’ model emerged
as the best overall for classification, as it improves both classification performance and
explainability. Summary results from our proposed method can be found in Figure 10.
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Figure 8. Comparison of Gradient Class Activation Maps between Segmented Mish Medium in
(a) and NoSegmented ReLU Linear in (b). Red highlighted areas indicate more attention, while deep
blue areas mean null attention.

Figure 9. Comparison of Gradient Class Activation Maps between Segmented Model Mish Medium
and NoSegmented Mish Linear. Red highlighted areas indicate more attention, while deep blue areas
mean null attention.
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Figure 10. Visual explainability and classification results. The input image is segmented to enhance
ResNet-50 attention; then, the image is classified with high accuracy. Red highlighted areas indicate
more attention, while deep blue areas mean null attention.

4.5. Discussion

Our experimental results underscore the advantages of integrating a highly accu-
rate handcrafted segmentation algorithm with deep-learning-based segmentation. This
combination has proven to significantly enhance the classification process. Employing a
pre-segmentation approach as a hard attention mechanism prior to the classification of
a Leukemia Dataset not only improves the quantitative outcomes but also enhances the
model’s explainability. Furthermore, segmented models have demonstrated the capability
to direct greater attention to the Region of Interest (ROI) for white blood cells (WBCs). The
fusion of these methodologies significantly boosts model interpretability and reliability
through the attention mechanism and visual explanation. It also paves the way for ana-
lyzing the logit space generated by the models through cluster space analysis. This could
provide measures of class separability and indirectly assess the model’s ability to extract
high-quality deep features that enhance classification.

This integrated segmentation approach could help to improve the segmentation and
differentiation of cytoplasm in various cells and could be a valuable preprocessing step for
classifying other malignancies.

Despite the promising results produced by our methodology, there is room for further
enhancement. The need for labeled images, while necessary, is time-consuming and prone
to errors. Future research could address these challenges by exploring unsupervised
or deep reinforcement learning. Additionally, the incorporation of modern diagnostic
techniques, such as Flow cytometric immunophenotyping, into morphology-based studies
could lead to a more comprehensive and robust diagnostic tool by combining genetic and
morphological characteristics.
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5. Conclusions

In this research, we developed a novel Computer-Aided Diagnosis (CAD) system for
Acute Lymphoblastic Leukemia (ALL) classification. This innovative system utilizes an
ensemble of state-of-the-art white blood cell segmentation techniques, functioning as a
hard attention mechanism, and has achieved a remarkable Intersection over Union (IoU)
of 0.91 across six databases. Our ResNet-50 model, equipped with the hard attention
mechanism provided by the white blood cell segmentation, demonstrated enhanced perfor-
mance. Furthermore, we ensured greater transparency by incorporating visual Grad CAM
interpretation and clustering analysis. The developed CAD system represents a significant
step forward in improving the accuracy of ALL diagnoses, potentially leading to better
patient outcomes.

In terms of future work, we plan to expand our model to classify various types
of white blood cells and synergize image and genetic data to create a more powerful
ensemble classifier.
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Appendix A. Segmentation and Classification Parameter’s and Extra Results

Appendix A.1. WBC Nuclei Segmentation

The parameters for each technique that makes up the handcraft segmentation method
are presented in Table A1.

Table A1. Handcrafted segmentation parameters.

Technique Parameter

Bilateral Filter (Kernel size) 9
Bilateral Filter (radial, spatial sigma) 50

Closing Kernel 3
Area Filter 150

Dilation 2
Dilation (Raabin-Basophil) 4

Appendix A.2. WBC Deep Learning Segmentation

The hyperparameters for each employed U-Net that conformed the Deep Learning
segmentation phase are listed in Table A2.
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Table A2. U-Net Train Parameters for each dataset.

U-Net Train Parameters

Dataset Lambda Delta Gamma Learning
Rate Dropout Weight Decay

Cellavision 0.4 0.7 1.0 1 × 10−4 0.1 1 × 10−3

JTSC 0.5 0.8 1.0 1 × 10−4 0.05 1 × 10−4

SMC_IDB 0.6 0.7 1.0 1 × 10−4 0.05 1 × 10−3

Raabin_WBC 0.4 0.7 1.0 1 × 10−4 0.5 1 × 10−2

ALL-IDB2 0.4 0.7 1.0 1 × 10−4 0.1 1 × 10−4

Dataset Leukemia 0.4 0.4 1.0 1 × 10−4 0.05 1 × 10−5

Learning curves for the deep-learning segmentation procedure with a 10 K-Fold. Left
column shows the IoU and at the right column the loss curve.

Figure A1. Intersection Over Union and Loss curves over 30 epochs and for each of the 10 folds.
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Appendix A.3. Deep Learning Classification

Deep-learning classification curves for the eight proposed models are presented in
Figure A2. On the left column, Train and Validation Accuracy over epochs, and on the right
column, Train and Validation Loss.

Figure A2. Average accuracy and loss curves for the eight proposed models with 10 K-fold.

Table A3 shows the nine results of “accurate” classification from ALL with four
models. Although all the images were correctly classified, the classification certainty differs
between them.

Table A3. Leukemia class prediction probabilities of nine correct diagnoses. Most reliable results are
in bold and second best results are underlined.

Class Prediction Probability

Image Mish Linear-
S

Mish Linear-
NS

Mish Medium-
S

Mish Medium-
NS

ALL-1
1_1_7 0.998 0.426 1.000 0.945

1_3_132 0.992 0.430 0.999 0.993
1_3_158 0.998 0.464 1.000 0.993

ALL-2
2_1_33 0.998 0.750 1.000 0.991
2_2_127 0.999 0.734 1.000 0.990
2_3_202 0.999 0.778 1.000 0.970

ALL-3
3_1_3 0.973 0.570 0.997 0.846

3_1_32 0.993 0.439 0.999 0.806
3_2_11 0.998 0.492 1.000 0.838

Average 0.994 0.565 0.999 0.930
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