
Citation: Wang, Y.; Du, H.; Dai, W.;

Bao, C.; Zhang, X.; Hu, Y.; Xie, Z.;

Zhao, X.; Li, C.; Zhang, W.; et al.

Diagnostic Potential of Endometrial

Cancer DNA from Pipelle, Pap-Brush,

and Swab Sampling. Cancers 2023, 15,

3522. https://doi.org/10.3390/

cancers15133522

Academic Editor: Vito Andrea

Capozzi

Received: 15 May 2023

Revised: 29 June 2023

Accepted: 3 July 2023

Published: 6 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Diagnostic Potential of Endometrial Cancer DNA from Pipelle,
Pap-Brush, and Swab Sampling
Yinan Wang 1,2,3,4,† , Hui Du 1,3,4,†, Wenkui Dai 1,3,4,* , Cuijun Bao 1,3,4, Xi Zhang 5, Yan Hu 1,3,4, Zhiyu Xie 5,
Xin Zhao 6 , Changzhong Li 1,3,4, Wenyong Zhang 2 and Ruifang Wu 1,3,4,*

1 Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen 518036, China;
yinanwang@pkuszh.com (Y.W.); duhui_107108@163.com (H.D.)

2 School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue,
Shenzhen 518055, China; zhangwy@sustech.edu.cn

3 Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
4 Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases,

Shenzhen 518036, China
5 Department of Clinical Medicine, Xi’an Jiaotong University, Xi’an 710049, China
6 China National GeneBank, BGI-Shenzhen, Shenzhen 518116, China; zhaoxin@genomics.cn
* Correspondence: daiwenkui84@gmail.com (W.D.); wurfpush@126.com (R.W.);

Tel.: +86-13-713-867-612 (W.D.); +86-13-827-433-039 (R.W.)
† These authors contributed equally to this work.

Simple Summary: Endometrial cancer is a significant and growing health concern worldwide. In
this study, researchers aimed to find a safe and practical way of detecting early signs of endometrial
cancer, which is crucial for effective treatment and improved patient outcomes. The researchers
designed a panel targeting specific genes related to endometrial cancer and tested it using samples
from 38 endometrial cancer patients and 208 women with risk factors. The results showed that
the panel performed well, producing high-quality data and detecting genetic mutations with high
sensitivity. The best sample type for detecting mutations was endometrial biopsy using the Pipelle
aspirator, which had the best consistency with surgical tumor specimens. The findings suggest that
this targeted panel sequencing method combined with ultra-deep sequencing is a promising tool for
the early detection of endometrial cancer and could have significant clinical implications for patients.

Abstract: Endometrial cancer (EC) is a major gynecological malignancy with rising morbidity and
mortality worldwide. The aim of this study was to explore a safe and readily available sample and a
sensitive and effective detection method and its biomarkers for early diagnosis of EC, which is critical
for patient prognosis. This study designed a panel targeting variants for EC-related genes, assessed
its technical performance by comparing it with whole-exon sequencing, and explored the diagnostic
potential of endometrial biopsies using the Pipelle aspirator, cervical samples using the Pap brush,
and vaginal specimens using the swab from 38 EC patients and 208 women with risk factors for
EC by applying targeted panel sequencing (TPS). TPS produced high-quality data (Q30 > 85% and
mapping ratios > 99.35%) and was found to have strong consistency with whole-exome sequencing
(WES) in detecting pathogenic mutations (92.11%), calculating homologous recombination deficiency
(HRD) scores (r = 0.65), and assessing the microsatellite instability (MSI) status of EC (100%). The
sensitivity of TPS in detection of EC is slightly better than that of WES (86.84% vs. 84.21%). Of
the three types of samples detected using TPS, endometrial biopsy using the Pipelle aspirator had
the highest sensitivity in detection of pathogenic mutations (81.87%) and the best consistency with
surgical tumor specimens in MSI (85.16%). About 84% of EC patients contained pathogenic mutations
in PIK3CA, PTEN, TP53, ARID1A, CTNNB1, KRAS, and MTOR, suggesting that this small gene set
can achieve an excellent pathogenic mutation detection rate in Chinese EC patients. The custom
panel combined with ultra-deep sequencing serves as a sensitive method for detecting genetic lesions
from endometrial biopsy using the Pipelle aspirator.
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1. Introduction

Endometrial cancer (EC) is one of the three major gynecological malignancies, and its
morbidity and mortality are rising worldwide [1]. The five-year overall survival rate for EC
patients diagnosed in the early stage is more than 81%. However, the five-year survival rate
for 33% of patients with late-stage EC at diagnosis plummets to 15% [2]. Early diagnosis of
EC is critical for patient prognosis, but there is still no accurate and effective method.

Currently, EC is diagnosed and confirmed by histopathological analysis of endometrial
biopsy samples obtained by curettage and hysteroscopy. Histopathological diagnosis is
inconclusive in up to 30% of patients [3,4]. In addition, the sensitivity and specificity of
positive signs (i.e., vaginal bleeding) and auxiliary examinations, such as cervical smear,
transvaginal ultrasound scan, and tumor marker examination (e.g., protein cancer antigen
125), are insufficient [5]. Early diagnosis of EC in the potential risk population required
an optimal technology that needed a reasonable cost with acceptable minimally invasive
sampling methods [5]. The anatomical continuity of the uterine cavity with the cervix makes
vaginal and cervical samples, along with endometrial samples, candidates for minimally
invasive sampling [5,6]. Tumor cells shed from EC are carried into the endocervical canal or
vagina [6]. The Pap brush or cervical–vaginal swab can capture these cells [6–8]. However,
the number of tumor cells in vaginal and cervical samples is much lower than that of normal
cells. An analytic technique was needed to identify mutant alleles among large quantities of
wild-type alleles reliably. Recent advancements indicate that genomic analyses in minimally
invasive sampling are an essential step toward a widely applicable methodology for the
early detection of EC [9]. Kinde et al. used targeted sequencing to identify the same
mutations in Papanicolaou (Pap) specimens in 100% of ECs (n = 24), laying a foundation
for the diagnosis of EC by high-throughput sequencing [6]. Wang et al. applied an 18-gene
panel to sequence Pap-brush samples from 382 women with EC and 714 without cancer.
The sensitivity was 81%, and the specificity was 99% [8]. Reijnen et al. detected mutations
in eight genes for self-collected vaginal specimens, cervical Pap-brush samples, and Pipelle
endometrial biopsy from 59 EC patients and 31 controls. They found that the sensitivity
of these three types of samples was 67, 78, and 96%, with a specificity of 97, 97, and 94%,
respectively [7]. Genomics approaches have shown significant sensitivity and specificity
for detecting EC in these samples. However, this approach calls for further assessment of
the diagnostic accuracy of mutational analyses compared to traditional histopathological
diagnosis to be introduced as EC diagnosis tests for women with risk factors/EC patients.

Thus, the aim of this study was to design a panel targeting known variants for EC-
related genes for cost-effective and sufficient depth of sequencing and assess which Pipelle
endometrial (PIP-E) biopsy, cervical Pap-brush (PAP-C) sample, and vaginal swab (SWAB-
V) specimen is the optimal sample. We recruited 38 EC patients and 208 women with
risk factors for EC to collect the above three samples and, when available, tumor and
cancer-adjacent normal tissue samples. Then, we performed whole-exome sequencing
(WES) on the tumor and matched normal samples for panel customization and targeted
next-generation sequencing (NGS) on PIP-E, PAP-C, and SWAB-V for accuracy validation.

2. Materials and Methods
2.1. Patients and Sample Collection

In this prospective study, we recruited 40 suspected EC patients and excluded one
uterine leiomyoma and one cervical adenocarcinoma patient according to postoperative
pathology. Of the remaining 38 patients, the gynecologists collected 18 vaginal specimens
using swabs, 29 cervical samples using Pap brushes, and 27 endometrial biopsies using
Pipelle aspirators sequentially before surgery. The 38 EC patients each provided one
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surgery tumor sample for histopathological diagnosis and the other tumor and matched
cancer-adjacent normal tissue sample for sequencing (Figure 1).
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Figure 1. Schematic diagram of sample collection. The schematic drawing illustrates the sampling
locations, methods, and numbers. Numbers in the gray box indicate the number of samples collected,
and numbers in blue indicate the number of samples sequenced. The circle denotes whole-exome
sequenced samples, and the triangle denotes targeted panel sequenced samples. WES, whole-exome
sequencing; TPS, targeted panel sequencing.

Moreover, we recruited 228 women with risk factors for EC and excluded 21 women
with cervical intraepithelial neoplasia (CIN) based on the pathological findings. The
remaining 208 women meet at least one of the following risk factors for EC: (i) irregular
vaginal bleeding during non-pregnancy or delayed menopause (≥53-year-old); (ii) older
than 45 years; (iii) older than 35 years and having one of the following: long-standing
infertility; long-term estrogen stimulation; obesity; hypertension; diabetes; and family
history of hereditary non-polyposis colorectal cancer, colorectal cancer, breast cancer, or EC.
These 208 women provided 208 PIP-E, 208 PAP-C, and 198 SWAB-V samples, as shown
in Figure 1 and Table S1. They also provided uterine curettage samples from formal D&C
under anesthesia for histopathological diagnosis.

We also gathered all patients’ epidemiological and clinical pathological informa-
tion (age, BMI, histological subtype, menopausal state, endometrial thickness, etc.). The
Peking University Shenzhen Hospital Ethics Committee approved this study (approval
date 29 May 2015). All of the patients signed the informed permission papers. Following
the National Health and Family Planning Commission of the People’s Republic of China’s
instructions, we conducted all trials.

2.2. WES and Data Analysis

To provide a target gene list and verify the accuracy of the custom panel, surgical
specimens, i.e., 38 tumors and matched cancer-adjacent normal tissue samples from the
above EC patients, were used for WES. Fresh surgical samples (tumor and normal) were
stored at −80 ◦C until DNA extraction. Specimen collection to DNA extraction took
place over the course of a week. DNA extraction, library preparation, and sequencing
were conducted by BGI (BGI, Shenzhen, China) as a commercial service. The detailed
DNA extraction and library preparation protocol is available in the BGI technical support
documents [10,11]. A MGIEasy Exome Capture V4 Probe Set was used for hybridization.
The probe regions were 59 Mb, covering over 20,000 genes. WES was processed on the
MGISeq-2000 platform with mean depth coverage of 750×, and the mode was set to PE100.

After obtaining raw read sequencing data, SOAPnuke [12] removed adapters and
filtered low-quality reads. An average of 0.44 billion clean reads per sample were ob-
tained. Sequencing quality was evaluated by FastQC v0.11.9 (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/, accessed on 8 January 2020) and MultiQC v1.10 [13].
BWA [14] aligned clean reads to the human reference genome (GRCh37) with the default

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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parameters. Then, the Genome Analysis Toolkit (GATK v 4.1.2.0) [15] was used to call so-
matic variants following the GATK Best Practices pipeline. The VariantFiltration module of
GATK filtered variants with the following hard-filtering expressions “QD < 2.0”, “FS > 60.0”,
“MQ < 30.0”, and “DP < 8.0” and BCFtools v1.10.1 (https://samtools.github.io/bcftools/,
accessed on 17 December 2019) filtered variants with DP ≥ 2. Ensembl Variant Effect
Predictor v93.7 (https://www.ensembl.org/info/docs/tools/vep/index.html, accessed
on 11 October 2018) was utilized for variant annotation. Tumor mutational burden (TMB)
was calculated as the number of non-synonymous somatic mutations per Mb of the tar-
get region. The microsatellite instability (MSI) was assessed using MSIsensor [16]. MSI
is classified as stable (MSS, MSI score < 0.07), high (MSI-H, MSI score > 0.08), or uncer-
tain (MSI-U, 0.07 ≤ MSI score ≤ 0.08). The homologous recombination deficiency (HRD)
score was calculated by scarHRD [17], combining three indicators: heterozygous deletion
(LOH), telomere allelic imbalance (TAI), and large segment migration (LST). HRD score, a
continuous variable, was used as an index for subsequent analysis.

To obtain high-confidence pathogenic mutations, we filtered variants as follows:
(1) variants with depth (DP) ≤ 10 were filtered out; (2) variants with allele depth ≤ 3 were
filtered out; (3) variants with population frequencies > 1% were filtered out; (4) variants
with the “common_variant” flag (allele frequency across at least one gnomAD subpopula-
tion is >0.04%) were excluded; (5) variants annotated as pathogenic or likely pathogenic
were retained for subsequent analysis. The population frequencies were obtained from the
1000 Genomes Project [18], Exome Aggregation Consortium East Asian dataset (ExAC_EAS,
https://gnomad.broadinstitute.org/downloads#exac-variants, accessed on 8 July 2021),
and gnomAD_EAS (https://gnomad.broadinstitute.org/, accessed on 27 May 2020).

2.3. Targeted NGS Panel Customization, Sequencing, and Analysis

Our custom hybrid capture panel covers coding exons and regions prone to mutations
of 10,929 genes that had variants in the above WES results or had been reported in the
literature of EC [6–8,19]. The list of targeted genes is in Table S2. Oligonucleotide probes
were designed by BGI. The probe regions were 4.96 Mb, and the average sequencing depth
was 20,000×.

All the samples were profiled by targeted panel sequencing (TPS). Fresh surgical
samples (tumor and normal) and PIP-E samples were stored at −80 ◦C until DNA extraction.
PAP-C and SWAB-V samples were preserved in ThinPrep PreservCyt solution at 4 ◦C
(Hologic, Marlborough, MA, USA). After delivery to the laboratory, PAP-C and SWAB-V
samples were centrifuged for 5 min at 14,000× g, and the precipitates were used for DNA
extraction. DNA extraction, library preparation, and targeted NGS were performed as
described above. Raw sequencing data of EC patients were also processed like WES data.
Sequencing data from women with risk factors for EC were identified as variants using the
HaplotypeCaller module of GATK.

2.4. Statistical Analysis

Data normality was verified using the Shapiro–Wilk test in SPSS version 22 (IBM,
Armonk, NY, USA). Pairwise comparisons were performed by the Wilcoxon matched-pairs
signed rank test. Multiple-group comparisons were performed using the Kruskal–Wallis
test followed by Benjamini–Hochberg (BH) correction. The correlation was calculated with
the Spearman rank test. Cohen’s kappa statistic (K) was used to assess the agreement
between WES and TPS. R v4.0, GraphPad Prism 8 (GraphPad Software, La Jolla, CA, USA),
Oviz-Bio platform (https://bio.oviz.org/demo-project/analyses/landscape, accessed on
2 July 2020) [20], and Adobe Illustrator (v2021, Adobe, San Jose, CA, USA) were used
for Statistics and Visualization. p < 0.05 or false discovery rate (FDR) indicated statistical
significance.

https://samtools.github.io/bcftools/
https://www.ensembl.org/info/docs/tools/vep/index.html
https://gnomad.broadinstitute.org/downloads#exac-variants
https://gnomad.broadinstitute.org/
https://bio.oviz.org/demo-project/analyses/landscape
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3. Results
3.1. Cohort Characteristics of Study Participants

In total, 246 Chinese women participated in the study, including 38 patients with EC
and 208 women with risk factors for EC (Figure 1). No patients overlapped between these
two groups. The median age of the EC and potential risk groups was 56 years (range 33–65)
and 45 years (range 23–75), respectively. The median BMI was 24 kg/m2 for the EC group
and 23 kg/m2 for the potential risk group. EC included endometrioid adenocarcinoma (27,
71.05%), serous carcinoma (6, 15.79%), and other nonendometrioid carcinomas (5, 13.15%)
in the EC group. Most EC patients were in menopause (25, 65.79%) and had vaginal
bleeding (34, 89.47%).

In the potential risk group, ten women were detected to have precancerous lesions
of EC, i.e., one atypical endometrial hyperplasia, eight endometrial hyperplasias, and one
cystic endometrial atrophy. Moreover, 69 women had benign lesions, including chronic
endometritis (n = 23), endometrial polyp (n = 4), adenomyosis (n = 1), and benign cystic
glandular hyperplasia (n = 41). There were 50 women with unchanged endometrium (in
the phase of proliferation and secretion). About 72% (149/208) of women had vaginal
bleeding, and most (194, 93.27%) had an endometrial thickness of ≥4 mm. Sixteen, nine, and
twenty-five women had hypertension, diabetes, and a family history of cancer, respectively
(Table 1).

Table 1. Baseline characteristics of the study population.

Variable EC Group (n = 38) Potential Risk Group (n = 208) All (n = 246)

n (%) n (%) n (%)

Age at diagnosis, median
(range) 56 (33–65) 45 (23–75) 46 (23–75)

<60 years 22 (57.89) 199 (95.67) 221 (89.84)
60–70 years 15 (39.47) 6 (2.88) 21 (8.54)
>70 years 0 (0) 1 (0.48) 1 (0.41)

Missing data 1 (2.63) 2 (0.96) 3 (1.22)

BMI (kg/m2)
<25 23 (60.53) 130 (62.50) 153 (62.20)

25–29.9 9 (23.68) 52 (25.00) 61 (24.80)
≥30 1 (2.63) 18 (8.65) 19 (7.72)

Missing data 5 (13.16) 8 (3.85) 13 (5.28)

Histological subtype
Endometrioid 27 (71.05) 0 (0) 27 (10.98)

Serous 6 (15.79) 0 (0) 6 (2.44)
Clear cell 3 (7.89) 0 (0) 3 (1.22)

Mixed carcinomas 2 (5.26) 0 (0) 2 (0.81)
Atypical endometrial

hyperplasia 0 (0) 1 (0.48) 1 (0.41)

Endometrial hyperplasia 0 (0) 8 (3.85) 8 (3.25)
Cystic endometrial atrophy 0 (0) 1 (0.48) 1 (0.41)

Endometrial polyp 0 (0) 4 (1.92) 4 (1.63)
Benign cystic glandular

hyperplasia 0 (0) 41 (19.71) 41 (16.67)

Chronic endometritis 0 (0) 23 (11.06) 23 (9.35)
Proliferative phase 0 (0) 28 (13.46) 28 (11.38)

Secretory phase 0 (0) 22 (10.58) 22 (8.94)
Others 0 (0) 10 (4.81) 10 (4.07)

Missing data 0 (0) 70 (33.65) 70 (28.46)
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Table 1. Cont.

Variable EC Group (n = 38) Potential Risk Group (n = 208) All (n = 246)

Menopausal state
Premenopausal 12 (31.58) 182 (77.12) 194 (78.86)
Postmenopausal 25 (65.79) 24 (10.17) 49 (19.92)

Missing data 1 (2.63) 2 (0.85) 3 (1.22)

Vaginal bleeding
Yes 34 (89.47) 149 (71.63) 183 (74.39)
No 2 (5.26) 57 (27.40) 59 (23.98)

Missing data 2 (5.26) 2 (0.96) 4 (1.63)

Endometrial thickness
<4 mm 0 (0) 3 (1.44) 3 (1.22)
≥4 mm 20 (52.63) 194 (93.27) 214 (86.99)

Missing data 18 (47.37) 11 (5.29) 29 (11.79)

Gravidity
Yes 34 (89.47) 196 (94.23) 230 (93.50)
No 2 (5.26) 7 (3.3652) 9 (3.66)

Missing data 2 (5.26) 5 (2.40) 7 (2.84)

Hypertension
Yes 10 (26.32) 16 (7.69) 26 (10.57)
No 26 (68.42) 190 (91.35) 216 (87.80)

Missing data 2 (5.26) 2 (0.96) 4 (1.63)

Diabetes
Yes 4 (10.53) 9 (4.33) 13 (5.28)
No 32 (84.21) 138 (66.35) 170 (69.11)

Missing data 2 (5.26) 61 (29.33) 63 (25.61)

Family history of cancer
Yes 8 (21.05) 25 (12.02) 33 (13.41)
No 28 (73.68) 179 (86.06) 207 (84.15)

Missing data 2 (5.26) 4 (1.92) 6 (2.44)

EC, Endometrial cancer; BMI, body mass index.

3.2. Performance of the Custom Panel in Surgical Specimens

We first assessed the quality of WES and TPS data. After removing adaptor sequences
and low-quality reads, an average of 1.14 billion clean reads per sample was obtained by
TPS. The base Q30 values and the mapping ratios for all TPS samples were greater than
85% and 99.35%, respectively. Compared with WES, TPS had a higher rate of regions with
coverage depth over 100× (Cov100×, 97.65% vs. 80.71%) due to its higher sequencing
depths (Table S3). From the above results, the data from TPS passed quality control checks.

To assess the performance of the TPS for detecting somatic mutations, we compared
its results with those of WES and postoperative pathology reports (Figure 2a). All patients
harbored detectable mutations either by TPS or WES. TPS and WES identified pathogenic
mutations in 33 and 32 EC patients, respectively (Figure 2b). Compared with the clinical
pathological results, the sensitivity of TPS and WES in detection of EC was 86.84% (33/38)
and 84.21% (32/38). TPS and WES identified pathogenic mutations in 31 patients and none
in four, indicating strong consistency between TPS and WES (92.11%, K = 0.68, p < 0.001).
About 72.76% (219/301) of the pathogenic mutations detected by WES were also detected
by TPS (Figure 2c and Table S4).
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Figure 2. Performance of the custom panel in surgical specimens. (a) By-variant comparison of
pathogenic mutations in the top 50 genes detected by TPS and/or WES in surgical specimens from
endometrial cancer (EC) patients. Green represents mutations detected by both approaches, and blue
represents mutations detected only by TPS or WES. The number of patients having a certain mutation
is represented by the bar on the right. The number of mutations each patient has is represented by
the bar at the top of the graph. The bottom heatmap shows the EC cohort’s clinical features and is
color-coded according to the legends on the right. Every two columns of the mutation spectrum and
each column of the heatmap represent one patient. The patient order of the mutation spectrum is
consistent with the patient order of the heatmap. Slash lines indicate missing data. BMI, body mass
index; DM, diabetes mellitus; FHC, family history of cancer; VB, vaginal bleeding; HS, histological
subtype; SE, serous; MC, mixed carcinomas; EN, endometrioid; CC, clear cell. (b) The consistency
of TPS and WES in detection of pathogenic mutations in EC patients. (c) Number of pathogenic
mutations detected in the surgical tumor specimens of EC patients. The number of pathogenic
mutations detected by both TPS and WES is indicated in dark green, only by TPS is indicated in grass
green, and only by WES is indicated in blue. The Euler diagram shows the overlapping mutations
detected by TPS and WES. (d) TPS and WES data consistency for TMB, HRD, and MSI analyses. ns,
not significant; ***, p < 0.001 by Wilcoxon matched-pairs signed rank test.
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Following the results of WES, 84.21% (32/38) of the patients with EC had pathogenic
mutations. The most common genes with pathogenic mutations were PIK3CA (53%, 17/32),
PTEN (38%, 12/32), TP53 (19%, 6/32), ARID1A (16%, 5/32), ABCA12 (12%, 4/32), CTNNB1
(12%), and KRAS (12%). About 76% (29/38) of EC patients contained pathogenic mu-
tations in PIK3CA, PTEN, TP53, and ARID1A. The addition of each of the three genes,
CTNNB1, KRAS, and MTOR, increased by 2.63% in the pathogenic mutation detection rate
(Figures 2a and S1a). TPS also detected pathogenic mutations in the above seven genes in
32 patients (Figures 2a and S1b). These seven genes can be combined to form a gene panel
with a good pathogenic mutation detection rate in Chinese EC patients.

We analyzed TMB, MSI, and HRD to explore clinical utility based on TPS and WES
data. The TMB of TPS and WES showed significant correlations (Spearman test, r = 0.87,
p < 0.001), whereas the TMB of TPS was lower than that of WES (Wilcoxon matched-pairs
test, p < 0.001). The HRD of TPS and WES showed no differences (Wilcoxon matched-pairs
test, p = 0.10; Spearman test, r = 0.65, p < 0.001). All MSI status recognized by TPS was
consistent with those by WES (Figure 2d and Table S5). Taken together, our custom TPS
had good consistency with WES in detecting pathogenic mutations, calculating HRD score,
and assessing the MSI status of EC.

3.3. TPS Data Quality of Endometrial, Cervical, and Vaginal Samples

We assessed the TPS data quality of 215 endometrial biopsies, 228 cervical samples,
and 206 vaginal specimens from EC and potential risk groups. The numbers of clean reads
obtained from surgical specimens, endometrial biopsies, cervical samples, and vaginal
specimens were not different (p = 0.82; Figure 3a). About 1.17 billion clean reads were
obtained per endometrial, cervical, and vaginal sample. The Q30 of sequencing data, as
well as the Cov100×, did not differ between these types of samples (Q30: p = 0.21; Cov100×:
p = 0.77; Figure 3b,c). The mapping ratios of endometrial biopsies and surgical specimens
had no difference (FDR = 0.09) and were higher than those of cervical and vaginal samples
(FDR < 0.0001; Figure 3d). In conclusion, the data from endometrial, cervical, and vaginal
samples were qualified, and the data from endometrial biopsies were of better quality.
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3.4. Early Detection Effectiveness of Endometrial, Cervical, and Vaginal Samples for EC Patients
and Women with Risk Factors

Of the 38 EC patients, TPS data of endometrial biopsies, cervical samples, and vaginal
specimens were available for 27, 29, and 18 women, respectively (Figure 1). We compared
these three types of samples with their matched surgical tumor specimens to assess the
diagnostic value of these three samples (Figure 4a). After stringent filtering, TPS detected so-
matic mutations in 100% of endometrial, 96.55% of cervical, and 94.44% of vaginal samples.
Pathogenic mutations were identified in 81.48% (22/27) of endometrial, 55.17% (16/29) of
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cervical, and 44.44% (8/18) of vaginal samples, respectively (Figures 4b and S2–S4). Thus,
the sensitivity in detection of mutations of EC of endometrial biopsy was the best. About
78.80% (145/184), 53.92% (117/217), and 42.86% (48/112) of the pathogenic mutations
detected in surgical specimens were also detected in endometrial, cervical, and vaginal
samples, respectively (Figure 4c and Table S4). The pathogenic mutation detection rates
of the gene set comprising PIK3CA, PTEN, TP53, ARID1A, CTNNB1, KRAS, and MTOR
in PIP-E, PAP-C, and SWAB-V samples were 100% (22/22), 93.75% (15/16), and 87.5%
(7/8) in patients with detectable pathogenic mutations, respectively (Figures S2 and 4). The
endometrial biopsy had the best consistency of pathogenic mutation calls with the surgical
tumor specimen (PIP-E: K = 0.71, PAP-C: K = 0.58, SWAB-V: K = 0.70). Otherwise, the
TMB of WES from the surgical specimen was different from that of TPS from endometrial
biopsy (p < 0.0001) and not different from that of the cervical (p = 0.88) and vaginal sample
(p = 0.24; Figure 4d). Precisely the opposite was observed in HRD (Figure 4e). There was
no difference between the HRD of TPS from endometrial biopsy and the HRD of WES from
the surgical specimen (p = 0.56), but the correlation was poor between them (Spearman test,
r = 0.09, p = 0.32). Moreover, the best agreement with the MSI of WES (or TPS) was obtained
from endometrial biopsy (85.16%; Figure 4f and Table S5). Overall, the consistency between
the endometrial biopsy and the surgical tumor specimen is the best.
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cervical, and/or vaginal samples. Public indicates mutations existing in all samples, shared indicates
mutations existing in part of all samples, and private indicates mutations existing in one type of
sample. PIP-E, Pipelle endometrial biopsy; PAP-C, cervical Pap-brush sample; SWAB-V, vaginal
specimen. (b) The sensitivity in detection of mutations of EC of endometrial, cervical, and vaginal
samples. (c) The number of overlapping mutations detected in endometrial biopsies and surgical
tumor specimens, cervical samples and surgical tumor specimens, and vaginal specimens and surgical
tumor specimens. The heatmap shows the number of pathogenic mutations detected in each sample.
The darker the color, the greater the number of mutations. White boxes indicate no mutations
detected. Slashes indicate that no sample was collected or the sample sequencing failed. (d–f) The
consistency of TPS data between endometrial, cervical, vaginal, and surgical specimens for TMB,
HRD, and MSI analyses. ns, not significant; *, FDR < 0.05; ***, FDR < 0.001 by Kruskal–Wallis test
followed by Benjamini–Hochberg correction.

Of the 208 women with risk factors for EC, TPS data of endometrial biopsies, cervical
samples, and vaginal specimens were available for 188, 199, and 188 women, respectively
(Figure 1). Pathogenic mutations were identified in 70, 66, and 64 women using endome-
trial, cervical, and vaginal samples, respectively (Table S6). Based on the pathology report,
women could be divided into three subgroups: hyperplasia group (including women with
atypical endometrial hyperplasia and endometrial hyperplasias); benign group (including
women with chronic endometritis, endometrial polyp, benign cystic glandular hyperplasia,
and adenomyosis); and unchanged group (including women in in the phase of prolifera-
tion and secretion). We detected pathogenic mutations in 77.78% (7/9) of women in the
hyperplasia group, 33.33% (23/69) of women in the benign group, and 42.00% (21/50) of
women in the unchanged group (Figure 5 and Figure S5). Pathogenic mutations occur more
frequently in the hyperplasia group, although this might also be due to potential errors
caused by the small sample size. Otherwise, considering gene mutation is an early but
insufficient event in tumorigenesis, women with pathogenic mutations in the potential risk
group may have a higher risk of EC and require intervention or follow-up.
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Figure 5. The number of pathogenic mutations and clinical features of women in hyperplasia, benign,
and unchanged groups. (a) The heatmap on the top denotes the number of pathogenic mutations
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mutations. Each column represents a patient. Slashes indicate that no sample was collected or the
sample sequencing failed. The heatmap on the bottom denotes the clinical features of women in
hyperplasia, benign, and unchanged groups and is color-coded according to the legends on the left.
Each column represents a patient. Slash lines indicate missing data. (b) The pathogenic mutation
detection rate of three groups. The number above the bar graph indicates the number of cases.
Numbers inside the bar charts represent the percentage of women with pathogenic mutation(s).
PIP-E, Pipelle endometrial biopsy; PAP-C, cervical Pap-brush sample; SWAB-V, vaginal specimen;
BMI, body mass index.

4. Discussion

Early diagnosis of EC is challenged due to the lack of a safe and readily available
sample, sensitive and effective biomarkers, and detection methods. Gene abnormalities
are essential biomarkers in EC [19]. Detection of such abnormalities in specimens collected
using a Tao brush [8] or uterine lavage [21,22] rather than in tumor tissue has attracted
significant attention because of its convenience, easy operation, and low cost. EC diagnosis
and prevention can be improved by molecular analyses of specimens obtained using
minimally invasive sampling methods [19].

In this prospective single-center study, we assessed the technical performance of our
custom panel in detecting mutations by comparing with WES and the diagnostic potential
of endometrial biopsy using the Pipelle aspirator, cervical sample using the Pap brush,
and vaginal specimen using swabs by applying TPS to them and their matching surgical
tumor specimens from 38 patients with EC. TPS produced high-quality data at high depth
and was found to have strong consistency with WES in detecting pathogenic mutations,
calculating HRD scores, and assessing the MSI status of EC. The sensitivity of TPS is slightly
better than WES (86.84% vs. 84.21%) due to its ultra-deep sequencing. Of the three types of
samples detected using TPS, endometrial biopsy using the Pipelle aspirator had the highest
sensitivity in detection of pathogenic mutations (81.87%) and the best consistency with
surgical tumor specimens in MSI analyses.

Moreover, we found that seven genes, i.e., PIK3CA, PTEN, TP53, ARID1A, CTNNB1,
KRAS, and MTOR, can achieve an excellent pathogenic mutation detection rate in Chinese
EC patients, regardless of sample type. This gene set contained well-known cancer driver
genes ARID1A, PTEN, PIK3CA, and CTNNB1 [23]. PTEN, ARID1A, CTNNB1, PIK3CA, and
KRAS mutations commonly occur in type I EC [24,25], whereas TP53 mutations are frequent
in type II (90%) and associated with serous carcinoma and endometrial intraepithelial
carcinoma [26,27]. Some gene mutations are associated with morphological changes in
the endometrium. PTEN, PIK3CA, and KRAS mutations are known to be involved in
endometrial hyperplasia, the precursors of EC [28,29]. Moreover, CTNNB1 mutations were
associated with squamous differentiation and mucinous differentiation absence [30]. This
small gene set, combined with lower genital tract sampling, i.e., vaginal swabs or cervical
brushes, is cheaper and easier to operate. It is a viable option for large-scale applications.

This study provides a sensitive assay and optimal sample for EC detection. Still, the
specificity of this approach needs to be evaluated with a large number of healthy controls
before it can be applied to clinical settings. However, it is encouraging that few pathogenic
mutations have been detected in healthy controls so far in any of the evaluations. In the
“PapGene” test, no mutations were detected in the 14 Pap specimens from healthy controls
using targeted sequencing [6]. In the “PapSEEK” test, the specificity of the endocervical
sample with Pap brush and the endometrial sample with a Tao brush was 99% (704/714)
and 100% (125/125) [8]. Only one healthy woman (1/385) had one somatic mutation in
her cervical sample in the Peremiquel-Trillas et al. study [31]. Reijnen et al. found that the
specificity of Pipelle endometrial biopsies, Pap-brush samples, and self-samples were 94,
97, and 97% [7].

In addition, we have carried out a valuable exploration of EC early diagnosis for
women with risk factors. We found that pathogenic mutations were more likely to be
detected in women with endometrial hyperplasia, which was a precancerous lesion of EC.
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Although this might be due to the potential errors caused by the small sample size, previous
studies also support our findings [19,32,33]. The accumulation of somatic aberrations in
normal and atrophic endometrial glandular epithelium drives an evolving phenotype to
EC [19,32]. Mota et al. revealed the presence of mutations in 50% (5/10) of the atypical
hyperplasia cases and 3.70% (1/27) of the control patients (7 non-atypical hyperplasia,
7 leiomyomas, and 13 normal endometrium) [33]. Moreover, our study points to the
following shortcomings of the current method and future directions. First, a large number
of variants of uncertain/unknown significance (VUSs) lead to the failure of TPS to detect
pathogenic mutations in all EC patients. In other words, pathogenic mutations cannot be
separated from VUSs, although they were detected by TPS. Second, for targeted NGS panels,
the variant allele frequency (VAF) limit of detection (LoD) ranges from 1% to 5%. However,
the number of tumor cells in endometrial, cervical, and vaginal samples is relatively
small, and the sensitivity of sequencing may not be sufficient to detect rare mutations
(VAF < 1%). Even with unique molecular identifiers and a sequencing depth 30,000×, the
SNV LoDs are about 0.1% [34,35]. Perhaps multiplex blocker displacement amplification,
which can simultaneously provide good mutation sensitivity (LoD as low as 0.02%) and
low cost, is an option [36]. Third, we did not collect control samples in potential risk
groups, so we used HaplotypeCaller to call variants for non-matched NGS data. Although
HaplotypeCaller has been used for somatic variant calling [37], it performs poorly for
low-frequency somatic variants [38]. Collecting peripheral blood as a normal control in
women with risk factors is recommended. Moreover, pathogenic mutations were found in
~28% of the women with risk factors. The gene mutation is an early but insufficient event in
tumorigenesis [19]. According to mathematical models, developing a serous endometrial
intraepithelial carcinoma from a TP53 pathogenic variant takes decades [39]. Considering
mutations may precede tumorigenesis, we have followed up with the potential risk group
with pathogenic mutations to track whether these women have precursor lesions for EC
in the future. Based on the follow-up results, we can ascertain whether mutations are
potential biomarkers for assessing potential windows of intervention.

5. Conclusions

In summary, our results demonstrate that TPS is a sensitive method, and Pipelle
endometrial biopsy is the optimal sample for detecting genetic lesions in EC. A small gene
set consisting of PIK3CA, PTEN, TP53, ARID1A, CTNNB1, KRAS, and MTOR can achieve an
excellent pathogenic mutation detection rate in Chinese EC patients and has the potential
for large-scale application. For women with risk factors of EC, women with endometrial
hyperplasia were more likely to have pathogenic mutations than those with benign lesions
or unchanged endometrium.
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(c) groups. Table S1. Clinical information of 38 patients with endometrial carcinoma and 249 women
with risk factors; Table S2. List of target genes of the custom panel; Table S3. Quality assessment of
whole-exome sequencing and targeted panel sequencing data; Table S4. The number of pathogenic
mutations in EC patients; Table S5. Indices for clinical risk stratification; Table S6. The number of
pathogenic mutations in women with risk factors of EC.
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