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Simple Summary: Endometrial cancer (EC) is a prevalent gynaecological cancer, the growth and
spread of which are facilitated by angiogenesis. Our study used publicly available datasets to
compare the expression of angiogenesis-related genes and proteins in EC tissue and adjacent con-
trols. We validated these findings in a cohort of 36 EC patients and built an EC-grade prediction
model using machine learning. The results showed a significant up-regulation of IL8 and LEP
and down-regulation of 11 other genes in EC tissue. These genes were differentially expressed in
early-stage and lower-grade EC but not in more advanced forms or in patients with deep myometrial
or lymphovascular invasion. Gene co-expressions were stronger in EC tissue, especially when the
lymphovascular invasion was present. More extensive angiogenesis-related gene involvement was
seen in postmenopausal women. Our findings suggest that angiogenesis in EC is primarily driven by
reduced antiangiogenic factor expression, with altered regulation in the tumour-adjacent tissue of EC
patients with less favourable prognoses.

Abstract: Endometrial cancer (EC) is an increasing health concern, with its growth driven by an
angiogenic switch that occurs early in cancer development. Our study used publicly available
datasets to examine the expression of angiogenesis-related genes and proteins in EC tissues, and
compared them with adjacent control tissues. We identified nine genes with significant differential
expression and selected six additional antiangiogenic genes from prior research for validation on
EC tissue in a cohort of 36 EC patients. Using machine learning, we built a prognostic model for
EC, combining our data with The Cancer Genome Atlas (TCGA). Our results revealed a significant
up-regulation of IL8 and LEP and down-regulation of eleven other genes in EC tissues. These genes
showed differential expression in the early stages and lower grades of EC, and in patients without
deep myometrial or lymphovascular invasion. Gene co-expressions were stronger in EC tissues,
particularly those with lymphovascular invasion. We also found more extensive angiogenesis-related
gene involvement in postmenopausal women. In conclusion, our findings suggest that angiogenesis
in EC is predominantly driven by decreased antiangiogenic factor expression, particularly in EC with
less favourable prognostic features. Our machine learning model effectively stratified EC based on
gene expression, distinguishing between low and high-grade cases.

Keywords: endometrial cancer; angiogenic factor; tumour-adjacent tissue; machine learning; TCGA; LEP

Cancers 2023, 15, 3661. https://doi.org/10.3390/cancers15143661 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15143661
https://doi.org/10.3390/cancers15143661
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-9692-7043
https://orcid.org/0000-0003-4292-989X
https://orcid.org/0000-0003-4196-479X
https://orcid.org/0000-0001-9698-2130
https://orcid.org/0000-0002-3453-4081
https://doi.org/10.3390/cancers15143661
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15143661?type=check_update&version=2


Cancers 2023, 15, 3661 2 of 24

1. Introduction

Endometrial cancer (EC) is the most frequent gynaecological cancer in developed
countries. Its rates are increasing with the population ageing and with the epidemy of
obesity, which is a known risk factor for EC, especially in the postmenopausal popula-
tion, which presents with the most EC cases [1,2]. Nevertheless, 4% of EC patients are
women aged 40 years or younger with a fertility sparing preference [3]. Despite similar
early symptoms, i.e., abnormal uterine bleeding and discharge, EC does not present a
homogenous malignancy. The pre-treatment diagnosis is set after the endometrial biopsy
and histological verification.

Due to its histologic heterogeneity, classification into two types of EC was proposed in
1983: type I EC, which represents a more frequent, oestrogen dependent, and prognostically
favourable form; and type II which includes diagnostically less favourable, oestrogen less
dependent, and prognostically less favourable cases [4]. To further reduce the diagnostic
and prognostic discrepancies, recent molecular classification was introduced, stratifying
EC into four risk categories: POLE ultra-mutated, microsatellite instability hyper-mutated,
copy-number low, and copy-number high [5,6]. This classification of endometrial cancer has
been validated and incorporated in the ESMO/ESTRO risk stratification and is currently
used in clinical practice to guide EC management decisions.

A simple hysterectomy with bilateral adnexectomy is a sufficient and final treatment
in early-stage EC operative therapy. On the other hand, a suspicion of advanced disease or
prognostically less favourable types of EC—with positive risk factors, such as the presence
of lymphovascular invasion (LVI) or deep >50% myometrial invasion (DMI)—presents
the need for the further advanced retroperitoneal procedure of additional pelvic and
paraaortic lymphadenectomy, up to the level of the renal artery, and in many cases also
adjuvant chemo- or radiotherapy [7]. Extended treatment is also associated with increased
complications and longer recovery, which can vastly affect the patient’s quality of life. A
particular EC category is represented by premenopausal EC patients wishing to retain
fertility. In such cases, progestin-based therapy and the hysteroscopic resection of focal EC
lesions are possible in the earliest stages of well-differentiated EC; however, hysterectomy
is advised once the childbearing is completed [7,8].

However, besides fertility-sparing preference in younger patients and the burden
of common comorbidities in older patients, the decision on the extent of treatment is
based mainly on the histological findings acquired via endometrial sampling, which is
only a modest predictor of surgical pathology features [9]. Additional EC stratification
and an individually tailored treatment approach would reduce the possibility of both EC
recurrence (due to under-treatment), and an increased rate of postoperative complications
(due to over-treatment). Biomarkers may be pivotal in a more precise EC prognosis, in the
clinician’s decision-making process, and in an individually tailored therapeutic approach.

Angiogenesis is one of the earliest processes promoted by cancer tissue, induced
by the lack of oxygen and nutrition in a rapidly growing tumour mass through released
pro-angiogenic molecules and suppressed antiangiogenic molecules, commonly named
angiogenic factors (AFs). Cancer cells secrete AFs to the surrounding tissue, which provokes
the growth of new vessels [10–13] and enables further cancer growth and metastasis. Our
recent data and studies of other groups on preoperative plasma samples from EC patients
revealed the potential of angiogenic factors (AFs) as biomarker candidates for the early
diagnosis and risk stratification of EC [14–16].

Since AFs are controlled and produced directly in the cancerous tissue, confirming
AFs’ expression from the tumour cell is needed. Thus, AFs gene expression levels in
tumour tissue have the potential to become novel biomarkers as diagnostic and prognostic
indicators of EC to guide therapies and promote an understanding of the carcinogenesis
of EC.

In recent years, artificial intelligence (AI) and machine learning (ML) methods have
been ubiquitously used in several fields, including in medical diagnosis and classification
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tasks, and relatively recent advances in the field have allowed for the use of advanced ML
methods even on (very) small datasets [17].

The aims of this study were manifold and oriented towards evaluating the diagnostic
and prognostic potential of AF-encoding gene expression. (i) We analysed publicly available
datasets for the expression of angiogenesis-associated genes and proteins in EC tissues
(T) compared to tumour-adjacent control tissue (TA). Genes and encoded proteins with
the highest change in T versus TA expression were chosen for further analysis. (ii) An
additional six genes (CSF3, IL8, LEP, NRP1, TEK, FST) were included in further research
based on the results from our previous studies on biomarkers in the plasma samples of EC
patients [14,18]. (iii) Ultimately, 15 genes were included in the validation study using the
qPCR method on a cohort of 36 EC patients. (iv) By combining TCGA data and data from
our study, we applied machine learning modelling to create an EC grade prediction model
based on the T gene expressions in EC.

2. Materials and Methods
2.1. Analysis of Publicly Available Datasets

We analysed publicly available datasets for the expression of 91 angiogenesis-associated
genes in EC tissues compared to adjacent control tissue, and for the presence of 64
angiogenesis-associated proteins in EC tissue compared to adjacent control tissue. Details
about the datasets used in this study are listed in Table 1.

Table 1. List of publicly available datasets used in this study.

Dataset Downloaded from Detail Samples References

cBioPortal
https://www.
cbioportal.org/

accessed on 4 July 2022
TCGA Pan-Cancer study n (T) = up to 527 [19,20]

UCSC Xena https://xena.ucsc.edu/
accessed on 8 July 2022

GDC TCGA Endometrioid Cancer (UCEC)
study

(TCGA data uniformly reanalysed at GDC by
UCSC Xena group using the latest Human

Genome Assembly hg38)

n (T) = up to 548;
n (TA) = up to 35;

n (paired samples) = up
to 23.

[21]

NCI PDC
server

https://proteomic.
datacommons.cancer.

gov/pdc/
accessed on 5 July 2022

CPTAC UCEC Discovery Study—Proteome,
PDC ID: PDC000125,

study ID:
c935c587-0cd1-11e9-a064-0a9c39d33490

n (T) = up to 95;
n (TA) = up to 25;

n (paired samples) = up
to 24.

[22]

TCGA—The Cancer Genome Atlas; CPTAC—Clinical Proteomic Tumor Analysis Consortium; UCEC—Uterine
Corpus Endometrial Carcinoma.

For further analysis and validation on EC tissue, genes/proteins of interest were
selected when both criteria were fulfilled: more than 3-fold significant (adjusted p < 0.01)
difference in gene expression between the tumour and normal adjacent tissue, and more
than a 2-fold significant difference in protein levels between tumour and adjacent tissues.
Additionally, six AFs from our previous studies [14,18]—leptin, IL-8, neuropilin-1, Tie-
2, follistatin, and G-CSF—were included in the validation study in endometrial tissue.
In plasma, leptin and IL-8 were significantly increased, whereas Tie-2 and G-CSF were
significantly decreased in EC patients compared to control patients. Neuropilin-1 and
follistatin were significantly increased in the plasma of higher-grade EC patients and
LVI-positive patients, respectively.

2.2. Validation Study on Endometrial Cancer Tissue
2.2.1. Endometrial Tissue

The specimens of EC tissue and paired morphologically normal adjacent endometrial
tissue were obtained from 36 patients undergoing hysterectomies for histologically proven
EC (Table 2). All patients were treated at the Department of Gynaecology and Obstetrics at
the University Medical Centre, Ljubljana, from 2003 to 2010. Samples were collected and

https://www.cbioportal.org/
https://www.cbioportal.org/
https://xena.ucsc.edu/
https://proteomic.datacommons.cancer.gov/pdc/
https://proteomic.datacommons.cancer.gov/pdc/
https://proteomic.datacommons.cancer.gov/pdc/
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processed according to the approved standard clinical operating procedures. All patients
provided written informed consent, and the study was approved by the National Medical
Ethics Committee of the Republic of Slovenia (ID 0120-429/2017/8, 5 November 2017).

Table 2. Detailed information about the patients included in the study.

Sample Age Menopausal
Status

Histological
Type/Grade

FIGO
Stage

Gradus
HG/LG

Depth of Myometrial
Invasion

Lymphovascular
Invasion

5 39 premenopausal dedifferentiated IB HG >50% yes
7 50 premenopausal endometrioid G1 IB LG no no
8 83 postmenopausal dedifferentiated IB HG >50% no
9 41 premenopausal endometrioid G1 IA LG <50% no
10 53 postmenopausal endometrioid G1 IA LG no no
13 64 postmenopausal endometrioid G1 IV LG <50% NA
14 73 postmenopausal endometrioid G1 IB LG >50% no
16 69 postmenopausal endometrioid G1 IA LG <50% no
18 79 postmenopausal endometrioid G1 IB LG >50% no
19 74 postmenopausal endometrioid G1 IA LG <50% no
20 76 postmenopausal endometrioid G1 IA LG <50% no
21 53 premenopausal endometrioid G2 IA LG no no
23 45 premenopausal endometrioid G1 IA LG no no
24 69 postmenopausal endometrioid G2 IB LG >50% yes
25 54 premenopausal endometrioid G3 IA HG <50% no
26 72 postmenopausal endometrioid G1 IA LG <50% no
30 54 premenopausal endometrioid G1 IA LG no no
33 77 postmenopausal endometrioid G3 IB HG >50% no
34 57 postmenopausal mucinous IA LG <50% no
40 71 postmenopausal serous IA HG <50% no
44 73 postmenopausal serous IB HG >50% yes
47 27 premenopausal dedifferentiated IA HG <50% no
49 70 postmenopausal endometrioid G1 IA LG <50% no
50 73 postmenopausal endometrioid G1 IA LG <50% no
51 75 postmenopausal endometrioid G2 IA LG >50% yes
52 75 postmenopausal endometrioid G2 IA LG <50% yes
53 50 postmenopausal endometrioid G3 IA HG <50% yes
54 71 postmenopausal endometrioid G1 IA LG <50% no
56 55 postmenopausal endometrioid G1 IA LG no no
57 43 premenopausal endometrioid G1 IA LG no no
62 59 postmenopausal endometrioid G1 IA LG no no
63 66 postmenopausal endometrioid G1 IA LG <50% no
65 80 postmenopausal carcinosarcoma IB HG >50% yes
66 72 postmenopausal endometrioid G1 IA LG <50% no
68 45 premenopausal endometrioid G1 II LG <50% no
71 48 premenopausal serous IA HG <50% no

G—gradus, HG—high grade, LG—low grade.

2.2.2. RNA Isolation and Reverse Transcription

Immediately after surgery, the tissue samples were stored in RNAlater (Thermo Fisher
Scientific, Waltham, MA, USA) at −20 ◦C to stabilize and protect cellular RNA. Tissues
were then disrupted in the presence of liquid nitrogen using a mortar and pestle. The
total RNA from tissue samples was isolated using Tri Reagent (Sigma-Aldrich, St. Louis,
MO, USA), according to the manufacturer’s instructions. The RNA samples were addi-
tionally cleaned, and residual DNA was removed using RNeasy Mini kits and RNase-Free
DNase sets (Qiagen, Düsseldorf, Germany), respectively. We then analysed the purity and
quality of extracted RNA with the Agilent 2100 Bioanalyzer using the RNA 600 Nanokit
(Agilent Technologies Inc., Santa Clara, CA, USA) and demonstrated that the RNA was
of good quality (an average RIN 7.8 ± 0.80). Samples of the total RNA were reversely
transcribed into cDNA using RT2 First Strand Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions. The cDNA samples were stored at −20 ◦C.



Cancers 2023, 15, 3661 5 of 24

2.2.3. Quantitative Real-Time PCR

The expression of 15 genes encoding AFs was examined in pairs of cancer and adjacent
control endometrium using TaqMan Gene Expression Assays (Applied Biosystems; Foster
City, CA, USA) listed in Table 3.

Table 3. Details for the TaqMan “Assays on Demand” used for the 15 investigated genes and
2 reference genes.

Gene Symbol Gene/AF Name Assay ID

CSF3 colony stimulating factor 3 Hs99999083_m1
CXCL12 C-X-C motif chemokine ligand 12 Hs00171022_m1
ENPP2 ectonucleotide pyrophosphatase/phosphodiesterase 2 Hs00196470_m1
FBLN5 fibulin 5 Hs00197064_m1
FGF2 fibroblast growth factor 2 Hs00266645_m1
FST follistatin Hs00246256_m1

HPRT1 * hypoxanthine-guanine phosphoribosyltransferase Hs02758991_g1
IL8 C-X-C motif chemokine ligand 8 Hs00174103_m1
LEP leptin Hs00174877_m1

LYVE1 lymphatic vessel endothelial hyaluronan receptor 1 Hs00272659_m1
NRP1 neuropilin 1 Hs00826128_m1

PDGFRB platelet derived growth factor receptor beta Hs00387364_m1
POLR2A * DNA-directed RNA polymerase II subunit RPB1 Hs00426592_m1
SERPINF1 serpin family F member 1 Hs00171467_m1

TEK TEK receptor tyrosine kinase; Tie-2 Hs00176096_m1
TIMP2 TIMP metallopeptidase inhibitor 2 Hs00234278_m1
TIMP3 TIMP metallopeptidase inhibitor 3 Hs00165949_m1

* Reference gene.

The quantification was accomplished using the Applied Biosystems ViiA 7 Real-Time
PCR System (Thermo Fisher Scientific, Waltham, MA, USA), as described in our previous
studies [23]. Shortly, each sample was run in triplicates (replicates of 0.25 µL cDNA in a
total reaction volume of 5.0 µL) using the Applied Biosystems MicroAmp Optical 384-well
plates (Thermo Fisher Scientific, Waltham, MA, USA). The amplification efficiency (E) was
first calculated from the slope of the log-linear portion of the calibration curve for each
gene and was accounted for in further calculations. Next, the normalization factor was
calculated for each sample based on the geometric mean of the two most stably expressed
reference genes (HPRT1 and POLR2A). Last, normalized RNA was calculated from the
crossing-point value (Cq) as E−Cq, divided by the normalization factor. The Cq cut-off
value was set to 36. We followed The Minimum Information for Publication of Quantitative
Real-Time PCR Experiments guidelines in performing and interpreting qPCR reactions [24].

2.2.4. Statistics

In the first part of the study, protein and mRNA levels were evaluated in T and TA
tissue in publicly available datasets in up to 24 paired samples (all samples where the
data were available for both T and TA tissue) and analysed using Wilcoxon matched pairs
signed rank test with Bonferroni–Šidák corrections for multiple comparisons; an adjusted
p level < 0.01 was considered significant. Further on, in the clinical cohort, gene expression
was evaluated in 36 paired samples, which were further stratified into two groups based
on the clinical data (FIGO stage, menopausal status) and the histopathological data (tu-
mour histological grade, depth of myometrial invasion, and presence of lymphovascular
invasion). mRNA expressions in the tumour samples and the matched adjacent tissues
were analysed using the Wilcoxon matched-pairs signed rank test with Bonferroni–Šidák
corrections for multiple comparisons. Unmatched data within tissue groups were analysed
using the Mann–Whitney U test with Bonferroni–Šidák corrections for multiple compar-
isons. Unless noted otherwise, data are presented as mean ± sd and p level < 0.05 is
considered significant.
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2.3. Machine Learning Modelling

Since the study included a very small dataset of 36 patients, as described in Section 2.2.1,
the data modelling was performed by combining the data from the TCGA Pan-Cancer
study (TCGA data obtained with new generation sequencing technology) and the data
from our study (study data). The modelling used all available TCGA data records that
contained both the tumour tissue measurements and the tumour-adjacent tissue measure-
ments, combined with a part of the study data for training and the remaining study data
for testing. The combined training dataset, therefore, included 44 records, whereas the
test dataset included 14 records, which can be sufficient if adequate ML approaches are
used [17].

The general steps performed were the following:

1. TCGA and study data were normalised for merging;
2. TCGA data (22 samples) were merged with 22 stratified randomly selected samples

of study data; the remaining 14 samples were assigned to the test dataset;
3. An automated machine learning (AutoML) approach was used to create the models

on the training dataset;
4. The models were tested on the test dataset.

2.3.1. Merging and Normalisation

Combining a generally available dataset with a part of the target dataset to increase
dataset size and reduce model overfitting has been described previously [25], however,
with directly mergeable data. Since TCGA and study data were measured using a different
approach, a normalisation process needed to be devised to allow the data to be merged.
Several approaches have been studied previously, for example, combining microarray
data with RNA-seq data [26] or normalising for other divergent factors in gene expression
measurements [27].

However, since we wanted to preserve the information of the ratios based on the
original distribution of the data (thus making, e.g., quantile normalisation less appropriate),
and the data were not normally distributed (thus making e.g., Z scoring less appropriate),
we devised the following normalisation method:

• The best fitting distribution for data was empirically selected by trying to fit the
data to one of the common standard distributions (Normal, Log-normal, Poisson,
Beta, Gamma).

• For distributions that require positive data, the data were right-shifted to ensure that
the smallest value was positive.

• The best fitting distribution for most columns (Gamma) was then fitted for all columns,
and distribution parameters were calculated, together with the correlation coefficient,
significance, and estimated lower and upper bounds at the 95% confidence level using
the MATLAB “corrcoef ” function. It is worth noting at this point that the Gamma
distribution has previously been linked to gene expression in multiple studies [28].

• The original values were then transformed to the value of the cumulative distribution
function (CDF) of the fitted distribution at the original value, thus obtaining a value
between 0 and 1, indicating the relative (expected) ratio of the population with a value
lower than the original value [29].

Distribution fitting and transformation to the CDF values were performed using
MATLAB R2022b software; the fitted parameters are available in the Tables S4 and S5. For
missing data, the value of 0.5 was used, effectively meaning that median-based imputation
was used for missing data imputation.

The data were then merged into a single dataset, and finally split into the training and
test datasets:

• The training dataset was created by taking all 22 normalised samples from the TCGA
dataset and combining them with 22 randomly selected samples from the study
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dataset, where a stratified random sampling approach was used to ensure the final
dataset had a balanced distribution of the output variable (EC grade).

• The remaining samples from the study dataset represented the test dataset.

The training and test datasets were compared using the Wilcoxon rank-sum (Mann–
Whitney U) test using MATLAB’s built-in “ranksum” function and were then exported into
CSV files for further processing/modelling.

2.3.2. Modelling and Testing

The case/control classification models were created using the previously described
dataset using the mljar-supervised library 0.11.3 [30] and the underlying scikit-learn library
version 1.1.1 [31], which can be used successfully for small dataset modelling, as was
previously shown in similar datasets [14]. The library was configured using the “Compete”
mode, and the model validation phase was customised to utilise a stratified 5-fold validation
approach for model selection, where the models were optimised to improve the area under
the curve (AUC) for the receiver operating characteristic (ROC) curve using the mljar-
supervised, built-in roc_auc metric. The training was limited to 20 min per model.

Data were imported into Python using the Pandas library from the CSV format [32],
and three subsets of the data were created based on the hypotheses tested:

• A model utilising the data combining the tumour tissue, adjacent tissue data, and
calculated ratios between the tumour tissue and adjacent tissue measurements;

• A model utilising only the tumour tissue data;
• A model utilising only the adjacent tissue data.

For each feature group, the best-performing model (calculated using the aforemen-
tioned 5-fold cross-validation method within the training dataset) was tested on the study
data holdout (test) samples, containing four high-grade and ten low-grade samples. Confu-
sion matrices were generated utilising the decision threshold calculated during training,
providing the four standard metrics (true positive, false positive, true negative, false neg-
ative), based on which the model precision, recall, accuracy, sensitivity, specificity, and
F1 score were estimated. Confusion matrices were further tested using Fisher’s exact
test to confirm that the model result was statistically significantly divergent from ran-
dom guessing.

All models were trained to predict whether the sample belonged to the high-grade or low-
grade EC group. The complete MATLAB, Jupyter Notebook, and Python scripts are available
at the following link: https://github.com/klokedm/EndometrialCancerGradePrediction.

3. Results
3.1. Public Databases Examination Revealed Twenty-One AF-Encoding Genes and Twenty-Two
AF Proteins That Fulfilled Selection Criteria; Nine Gene/Protein Pairs Were in the Intersection

We first examined the publicly available mRNA and proteome datasets for the presence
of angiogenesis-associated proteins (EC tissue, n = up to 95; TA tissue, n = up to 25; paired
samples, n = up to 24) and the expression of angiogenesis-associated genes (EC tissue,
n = up to 548; TA tissue, n = up to 35; paired samples, n = up to 23) in EC tissue compared
to adjacent control tissue. The expression of 91 angiogenesis-associated genes and the
levels of 64 angiogenesis-associated proteins in endometrial cancer tissues and adjacent
control tissues are collected in Tables S1–S3. The most significantly down-regulated and
the most significantly up-regulated genes are shown in Figure 1A, and differential levels of
angiogenesis-associated proteins in EC compared to adjacent control tissue are presented
in Figure 1B.

https://github.com/klokedm/EndometrialCancerGradePrediction
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up to 23; Wilcoxon matched-pairs signed rank test with Bonferroni–Šidák corrections for multiple 
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n = up to 24; Wilcoxon matched-pairs signed rank test with Bonferroni–Šidák corrections for multi-
ple comparisons. Vertical lines: log2FC cut-off values in a selection protocol; red dots: genes/proteins 
that reach more than 2- or 3-fold significant difference with adjusted p < 0.01 as a criterion for further 
evaluation. (C) Venn-diagram of a selection process, and 21 genes with more than 3-fold expression 
change in tumour versus adjacent tissue, and 22 proteins with more than 2-fold level change in 
tumour versus adjacent tissue. Nine proteins and their encoding genes fulfilled both criteria simul-
taneously and were chosen for further validation using a clinical cohort. Genes encoding six proteins 
from our previous research [14,18] were added, leading to further analysis of 15 genes. (D) Analysis 
of protein–protein interactions from the STRING database for association networks [33]. Several 
known (from curated databases) and predicted interactions (based on gene co-occurrence, co-ex-
pression, and gene homology) are shown; the line thickness indicates the strength of data support. 
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International Federation of Gynecology and Obstetrics [34], twenty-five patients were 

Figure 1. Selection of angiogenesis-related genes in the study. Volcano plot visualising fold change
(FC) and the corresponding p-values of (A) normalised mRNA (data are from the GDC TCGA
Endometrioid Cancer (UCEC) study, downloaded from UCSC Xena server [21]). Paired samples,
n = up to 23; Wilcoxon matched-pairs signed rank test with Bonferroni–Šidák corrections for multiple
comparisons, and (B) angiogenesis-associated proteins in tumour tissue versus control tissue (data
are from the CPTAC UCEC Discovery Study—Proteome, PDC ID: PDC000125 [22]. Paired samples,
n = up to 24; Wilcoxon matched-pairs signed rank test with Bonferroni–Šidák corrections for multiple
comparisons. Vertical lines: log2FC cut-off values in a selection protocol; red dots: genes/proteins
that reach more than 2- or 3-fold significant difference with adjusted p < 0.01 as a criterion for further
evaluation. (C) Venn-diagram of a selection process, and 21 genes with more than 3-fold expression
change in tumour versus adjacent tissue, and 22 proteins with more than 2-fold level change in tumour
versus adjacent tissue. Nine proteins and their encoding genes fulfilled both criteria simultaneously
and were chosen for further validation using a clinical cohort. Genes encoding six proteins from
our previous research [14,18] were added, leading to further analysis of 15 genes. (D) Analysis of
protein–protein interactions from the STRING database for association networks [33]. Several known
(from curated databases) and predicted interactions (based on gene co-occurrence, co-expression, and
gene homology) are shown; the line thickness indicates the strength of data support.

Nine genes/proteins of interest (CXCL12, ENPP2, FBLN5, FGF2, LYVE1, PDGFRB,
SERPINF1, TIMP2, TIMP3) were then selected from analysed datasets based on the follow-
ing criteria: (a) the significant difference (adjusted p < 0.01) in gene expression between
tumour and tumour-adjacent tissue was more than 3-fold, and (b) the significant difference
in protein levels between tumour and adjacent tissues was more than 2-fold. An additional
six genes (CSF3, IL8, LEP, NRP1, TEK, FST) were included in further research based on the
results from our previous studies of biomarkers in plasma samples of EC patients [14,18].
We ultimately chose 15 genes, which we further examined in the validation study on a
cohort of 36 EC patients (Figure 1C).
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Finally, we analysed the STRING database [33] for the protein–protein interaction
between proteins encoded by 15 selected genes. This way, we detected several known
(i.e., from curated databases and credible experimental data) and predicted interactions
(i.e., based on gene co-occurrence, co-expression, and gene homology). The interactions
are depicted in Figure 1D and are ranked (the thickness of the line) based on the inter-
action confidence score. The highest combined score (0.913) was assigned to the interac-
tion between CXCL8 (also known as IL-8) and CSF3, coming in the main part from the
database annotation score (0.900), enhanced with the co-expression score (0.172). This is
followed by LEP/CSF3 and TIMP2/TIMP3, with combined scores of 0.800 and 0.714,
respectively. High scores (0.600) from the database annotations are also assigned to
PDGFRB/FGF2, TEK/FGF2, PDGFRB/LEP, and PDGFRB/CSF3. TIMP2/TIMP3 and
PDGFRB/TEK show the highest gene homology, with scores of 0.925 and 0.588, respec-
tively. The gene co-expression is highest between PDGFRB and each TIMP3, CXCL12, and
FBLN5 (co-expression score 0.227, 0.211, and 0.180, respectively), as well as between TEK
and LYVE1 (co-expression score 0.179).

3.2. Validation of Findings on the Clinical Cohort
3.2.1. Clinical Characteristics of Enrolled Patients

Paired samples of tumours and tumour-adjacent tissues were collected from 36 patients
with histologically verified EC. Their mean age was 62.1 ± 14.0 years. In total, 25 patients
(69.4%) were postmenopausal, 28 patients (77.8%) were diagnosed with endometrioid
adenocarcinoma, and 8 (22.2%) with other histological types. Deep myometrial invasion
was observed in nine EC patients (25.0%), <50% invasion into the myometrium in nineteen
EC patients (52.8%), and no invasion into the myometrium in eight EC patients (22.2%). LVI
was observed in eight patients (22.2%). According to the classification of the International
Federation of Gynecology and Obstetrics [34], twenty-five patients were diagnosed with
EC in stage IA (69.4%), nine patients in stage IB (25.0%), one patient in stage II (2.8%), and
one patient in stage IV (2.8%). The detailed clinical characteristics are presented in Table 2.

3.2.2. Thirteen Genes Encoding AFs Are Differentially Expressed in Tumour Tissue
Compared to Adjacent Control Tissue in EC Patients

The local expression of 15 genes encoding proteins involved in angiogenesis pathways
was determined using quantitative polymerase chain reaction (qPCR) in 36 patient-matched
samples of tumour and tumour-adjacent macroscopically normal tissue. A total of 13 genes
were differentially expressed in EC versus adjacent control tissue samples. IL8 and LEP were
up-regulated in tumour tissue (4.8-fold and 4.7-fold, respectively), while CXCL12, FGF2,
LYVE2, NRP1, TIMP2, TIMP3, ENPP2, FBLN5, PDGFRB, TEK, and SERPINF1 were down-
regulated in tumour tissue in comparison to morphologically normal tumour-adjacent
tissue (Figure 2). The most profound differences in the gene expression between the
two tissues were observed for CXCL12 and TIMP3 genes (18.2-fold and 14.8-fold change,
respectively). Mean fold changes in tumour-to-adjacent tissue expression and the 95% CI
for all genes are listed in Table 4.

3.2.3. Relationships of Gene Expression with Clinical Characteristics

In the next step, we analysed the effect of the clinicopathological conditions of patients
on the expression of the selected genes. We stratified patients according to the clinical data,
i.e., FIGO stage, menopausal status, and the histopathological data, i.e., histological tumour
grade, depth of myometrial invasion, and the presence of lymphovascular invasion.

In Early Stages and Lower Grades of EC, but Not in More Advanced or Aggressive Forms
of EC, Genes for AFs Tend to Be Differentially Expressed in Tumour Tissue Compared to
Adjacent Control Tissue

We assessed endometrioid EC grade 3 cancers together with non-endometrioid tu-
mours (serous and dedifferentiated EC) as high-grade EC since several important reports
have firmly demonstrated that high-grade endometrioid cancers have molecular char-
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acteristics, risk factors, clinical behaviours, and prognoses overlapping with those of
non-endometrioid cancers [35,36]. The low-grade EC group comprised endometrioid EC
grade 1 and 2 and mucinous EC. In patients with low-grade EC (n = 26; Figure 3A), there
was no difference in the expression of CSF3 and FST between the tumour and adjacent
tissue. In addition to those two genes, in patients with FIGO stage IA (n = 25; Figure 3C),
there was additionally no difference in the expression of LEP. In both groups of patients, IL8
was up-regulated in tumour tissue, by 5.4-fold and 5.6-fold, respectively. All other genes
were down-regulated in low-grade and low-stage EC, most prominently CXCL12, which
was down-regulated by 20.9-fold and 21.9-fold, respectively. In high-grade EC (n = 10;
Figure 3B), NRP1, TIMP2, TIMP3, and SERPINF1 were significantly down-regulated in
T tissue compared to TA tissue, by 6.0-fold, 6.2-fold, 17.2-fold, and 12.2-fold, respectively.
In a group of patients with stages IB–IV EC (n = 11; Figure 3D), TIMP2, CSF3, ENPP2,
and SERPINF1 were significantly down-regulated in tumour tissue, by 4.9-fold, 9.6-fold,
10.2-fold, and 9.2-fold, respectively.
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Figure 2. Expression of genes encoding 15 angiogenic factors in 36 paired samples of EC (T) and
tumour-adjacent (TA) tissue. Data were analysed using the Wilcoxon matched-pairs signed rank
test with Bonferroni–Šidák corrections for multiple comparisons. Fold regulation (FR) is presented
as a mean of pairwise T/TA expression ratios or their negative inverse values. * p-value ≤ 0.05,
** p-value ≤ 0.01, ns—not significant.
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Table 4. Comparison of fold regulation (FR) in gene expression between tumour and tumour-adjacent
control tissue.

Genes Mean FR FR CI 95% p-Value ‡

IL8 4.75 2.46 7.04 0.0164 *
CXCL12 −18.21 −31.95 −4.46 0.0015 **

FGF2 −7.39 −10.51 −4.27 0.0015 **
LEP 4.68 2.87 6.49 0.0104 *

LYVE1 −10.98 −16.52 −5.44 0.0015 **
NRP1 −3.67 −5.11 −2.22 0.0015 **
TIMP2 −6.79 −8.87 −4.70 0.0015 **
TIMP3 −14.77 −21.77 −7.77 0.0015 **
CSF3 −10.43 −20.51 −0.35 0.8328 ns

ENPP2 −10.10 −15.05 −5.14 0.0015 **
FBLN5 −8.27 −12.70 −3.83 0.0015 **

FST −6.77 −9.98 −3.56 0.0668 ns
PDGFRB −4.50 −6.08 −2.92 0.0015 **

TEK −5.20 −7.50 −2.91 0.0015 **
SERPINF1 −8.68 −12.71 −4.66 0.0015 **

‡ adjusted p-values after Wilcoxon matched-pairs signed rank test with Bonferroni–Šidák corrections for multiple
comparisons. * p-value ≤ 0.05, ** p-value ≤ 0.01, ns—not significant.

Figure 3. Expression of angiogenesis-related genes in EC patients stratified based on the cancer grade
and stage. Expression of genes encoding 15 angiogenic factors in paired tissue samples from patients
with (A) low-grade EC (n = 26) and (B) high-grade EC (n = 10); tumour tissue is shown in dark blue
and tumour-adjacent tissue in light blue colour. Expression of genes in paired tissue samples from
(C) patients with stage IA EC (n = 25) and (D) stage IB–IV EC (n = 11); tumour tissue is shown in
dark green, and tumour-adjacent tissue is in light green colour. Wilcoxon matched pairs signed
rank tests with Bonferroni–Šidák corrections for multiple comparisons. Data are shown as scattered
dot plots with marked means with 95% CI, * p-value ≤ 0.05, ** p-value ≤ 0.01, *** p-value ≤ 0.001,
**** p-value ≤ 0.0001.
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Genes for AFs Are Differentially Expressed between Tumour and Adjacent Control Tissue
Only in Patients without DMI or LVI

The stratification of data according to the presence or absence of deep myometrial or
lymphovascular invasion revealed that genes for AFs are differentially expressed only in
endometrial tissue from patients without DMI (n = 27; Figure 4A) or LVI (n = 28; Figure 4C).
In both analyses, all genes except CSF3 and FST were differentially expressed between
the tumour and tumour-adjacent tissue. In both patient categories, IL8 and LEP were
up-regulated in tumour tissue: in patients without DMI, 5.8-fold and 5.4-fold, respectively,
and in patients with absent LVI, 5.5-fold and 5.0-fold, respectively. Other genes were
down-regulated in tumour versus adjacent tissue, most prominently CXCL12 (20.6-fold in
patients without DMI and 21.7-fold in patients without LVI), followed by TIMP3 (15.0-fold
in DMI absent and 16.2-fold in LVI-absent EC). No significant gene expression difference
was detected in EC patients with DMI or LVI.
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Figure 4. Expression of angiogenesis-related genes in EC patients stratified based on the presence of
deep myometrial (DMI) or lymphovascular invasion (LVI). Expression of genes encoding 15 angio-
genic factors in paired tissue samples from (A) patients without DMI (n = 27) and (B) from patients
with present DMI (n = 9); tumour tissue is shown in dark purple and tumour-adjacent tissue in light
purple colour. Expression of genes in paired tissue samples from (C) patients without LVI (n = 28)
and (D) from patients with present LVI (n = 8). Tumour tissue is shown in dark pink, and the adjacent
tissue is in light pink. Wilcoxon matched pairs signed rank tests with Bonferroni–Šidák corrections
for multiple comparisons. Data are shown as scattered dot plots with marked means with 95% CI,
* p-value ≤ 0.05, ** p-value ≤ 0.01, *** p-value ≤ 0.001, **** p-value ≤ 0.0001.

Noteworthy, the groups of patients with FIGO IB-IV, high-grade EC, patients with
LVI, and patients with DMI included in the study were small; thus, data obtained in these
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groups must be considered cautiously, and additional studies in larger groups of patients
are needed.

There Is Much Broader Angiogenesis-Related Gene Involvement in Postmenopausal
Women with EC Than in Women of Reproductive Age

Next, we stratified patients according to their menopausal status. In premenopausal
patients (n = 11; Figure 5A), six genes were statistically significantly down-regulated in
tumour tissue compared to tumour-adjacent tissue: TIMP3 (13.1-fold), ENPP2 (11.4-fold),
FGF2 (7.6-fold), CXCL12 (7.5-fold), TIMP2 (5.2-fold), and PDGFRB (4.9-fold change). On
the other hand, eleven genes were significantly down-regulated in postmenopausal women
(n = 25; Figure 5B), most prominently CXCL12 (22.9-fold) and TIMP3 (15.5-fold change).
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Figure 5. Expression of angiogenesis-related genes in paired tissue samples from (A) premenopausal
(n = 11) and from (B) postmenopausal EC patients (n = 25). Tumour tissue is shown in dark red,
and tumour-adjacent tissue is in orange colour. Wilcoxon matched pairs signed rank tests with
Bonferroni–Šidák corrections for multiple comparisons. Data are shown as scattered dot plots with
marked means with 95% CI, * p-value ≤ 0.05, *** p-value ≤ 0.001, **** p-value ≤ 0.0001.

Finally, we separately compared the gene expression within the tumour and tumour-
adjacent tissue in EC patients stratified according to EC grade, FIGO stage, presence of DMI,
LVI, and menopausal status. ENPP2 was 2.4-fold down-regulated in tumour tissue, and
LYVE1 was 2.8-fold down-regulated in high-grade cancer compared to low-grade cancer.
On the other hand, ENPP2 was 2.3-fold up-regulated within tumour-adjacent tissue, and
FGF2 was 2.4-fold up-regulated in postmenopausal women compared to premenopausal
women. There was no statistically significant difference within the tumour tissue, nor in
the tumour-adjacent tissue between patients with different FIGO stage EC, nor between
the patients with a presence or absence of LVI or DMI (Figure S1).
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3.2.4. Co-Expression Patterns of the Genes: Higher Number of Strong Correlations Was
Identified in EC Patients with Present LVI

Correlations between gene expressions were performed to highlight trends and re-
lationships in the expression profiles of selected angiogenesis-related genes in T and TA
tissues. Correlations between gene expressions in different tissues and inter-tissue expres-
sion relations were analysed.

When all EC patients were considered, we identified five strong positive correlations
with r > 0.85 and p < 0.05 within T tissue, with the strongest being between PDGFRB
and SERPINF1. A list of all strong correlations is shown in Table 5. The pattern of gene
correlations was similar within TA tissue; however, no correlations were considered strong
(r > 0.85). No correlation between T and TA tissue gene expression reached r > 0.85
(Figure 6A).

Table 5. Strong correlations between mRNA expressions within the tumour and tumour-adjacent
tissue and between both tissues, considering EC patients stratified according to LVI status.

Tumour Tissue Tumour-Adjacent Tissue Tumour Tissue vs. Tumour-Adjacent
Tissue

Gene_T Gene_T r p-Value Gene_TA Gene_TA r p-Value Gene_T Gene_TA r p-Value

All EC
Patients

PDGFRB SERPINF1 0.906 3.3 × 10−14

TEK SERPINF1 0.888 4.9 × 10−13

TIMP2 TIMP3 0.879 1.7 × 10−12

FGF2 TIMP3 0.871 4.9 × 10−12

PDGFRB TEK 0.866 9.2 × 10−12

EC
Patients
without

LVI

PDGFRB SERPINF1 0.878 7.9 × 10−10 ENPP2 TEK 0.854 7.2 × 10−9

CXCL12 TIMP3 0.875 1.1 × 10−9

FBLN5 PDGFRB 0.873 1.4 × 10−9

TIMP2 SERPINF1 0.858 5.3 × 10−9

TIMP2 TIMP3 0.857 5.8 × 10−9

EC
Patients

with
LVI

PDGFRB TEK 1.000 4.9 × 10−5 CXCL12 SERPINF1 0.952 0.001 TIMP3 NRP1 0.929 0.002
LYVE1 NRP1 0.976 4.0 × 10−4 CXCL12 TIMP2 0.929 0.002 ENPP2 PDGFRB 0.929 0.002
LYVE1 PDGFRB 0.976 4.0 × 10−4 TIMP2 SERPINF1 0.929 0.002 FGF2 PDGFRB 0.905 0.005
LYVE1 TEK 0.976 4.0 × 10−4 TIMP2 TIMP3 0.905 0.005 ENPP2 NRP1 0.905 0.005
NRP1 SERPINF1 0.976 4.0 × 10−4 FBLN5 SERPINF1 0.905 0.005 FGF2 NRP1 0.881 0.007

PDGFRB SERPINF1 0.976 4.0 × 10−4 FGF2 TIMP3 0.857 0.011 NRP1 NRP1 0.881 0.007
TEK SERPINF1 0.976 4.0 × 10−4 FGF2 ENPP2 0.857 0.011 PDGFRB NRP1 0.881 0.007

LYVE1 SERPINF1 0.952 1.1 × 10−3 TIMP3 ENPP2 0.857 0.011 TEK NRP1 0.881 0.007
CXCL12 FST 0.922 2.6 × 10−3 PDGFRB TEK 0.857 0.011

FGF2 TIMP3 0.905 4.6 × 10−3

NRP1 TIMP3 0.905 4.6 × 10−3

TIMP3 PDGFRB 0.905 4.6 × 10−3

TIMP3 TEK 0.905 4.6 × 10−3

IL8 CSF3 0.881 7.2 × 10−3

CXCL12 NRP1 0.881 7.2 × 10−3

CXCL12 PDGFRB 0.881 7.2 × 10−3

CXCL12 TEK 0.881 7.2 × 10−3

TIMP3 ENPP2 0.881 7.2 × 10−3

TIMP3 SERPINF1 0.881 7.2 × 10−3

CXCL12 TIMP3 0.857 1.1 × 10−2

CXCL12 SERPINF1 0.857 1.1 × 10−2

FGF2 TIMP2 0.857 1.1 × 10−2

LYVE1 TIMP3 0.857 1.1 × 10−2

ENPP2 SERPINF1 0.857 1.1 × 10−2

r—Spearman correlation coefficient, p < 0.05 is considered significant.

Next, patients were stratified according to LVI status. We identified similar correlation
patterns between genes in EC patients without LVI to those in a group of all EC patients
(Figure 6B). In patients without LVI, the strongest correlation found within T tissue was
between PDGFRB and SERPINF1 and within TA tissue between ENPP2 and TEK.
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Figure 6. Gene co-expression pattern in tumour tissue, tumour-adjacent tissue, and between both
of them. (A) All EC patients; n = 36, (B) EC patients without LVI; n = 28, (C) EC patients with LVI;
n = 8. A Heatmap of Spearman correlation coefficients is shown. For details on strong correlations,
see Table 5.

A drastically higher number of strong correlations was identified in EC patients
with present LVI. Within T tissue, 24 strong correlations with r > 0.85 were detected; the
strongest correlations were between PDGFRB and TEK, between LYVE1 and the genes
NRP1, PDGFRB, and TEK, and between SERPINF1 and the genes NRP1, PDGFRB, TEK, and
LYVE1. Nine strong positive correlations were identified within TA tissue, the strongest
between CXCL12 and the genes SERPINF1 and TIMP2, between TIMP2 and the genes
SERPINF1 and TIMP3, and between FBLN5 and SERPINF1. CSF3 was negatively correlated
with the majority of the other genes, but no relationship reached r > 0.85.

Remarkably, when LVI was present, there was also a significant correlation between T
versus TA tissue gene expression. We identified eight strong correlations between NRP1
in TA and the following genes in T: TIMP3, ENPP2, FGF2, NRP1, PDGFRB and TEK; and
between PDGFRB in TA and the following genes in T: ENPP2 and FGF2. However, these
results should be considered cautiously since the number of patients with LVI was low
(n = 8).

3.3. Machine Learning Modelling Succeeded in Creating a Relatively Robust EC-Grade Prediction
Model Based on the Tumour Gene Expressions
3.3.1. Data Normalisation Results

The results of the gamma distribution fitting (α, β) and the corresponding correlation
coefficients for individual variables for the TCGA are shown in Table S4, and the results of
the distribution fitting (α, β) and the corresponding correlation coefficients for the study
dataset are shown in Table S5.

3.3.2. Comparison of Training and Test Datasets

The training dataset contained 44 patients (75.9%), the testing dataset contained
14 patients (24.1%), and none of the 62 variables used in modelling significantly differed
between the training and test datasets. Each variable’s Wilcoxon rank-sum statistic results
are presented in Table S6.

The training dataset contained 22 records (50%) from the TCGA dataset, and 22 records
from the study dataset (50%), and the test dataset contained 14 records (100%) from the
study dataset. Twenty-two records (50%) represented low-grade EC in the training dataset,
and ten represented low-grade EC in the test dataset (71.4%).

3.3.3. Modelling Results

Of the three created models, all models showed a good prediction of the EC tumour
grade (low/high) on the training dataset (AUC > 0.9), and two of the models kept good
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prediction capabilities on the holdout (test) data, including one of the models maintaining
an AUC above 0.9. The ROC curves are presented in Figure 7, with the left (7A) figure
representing the ROC curves for the training dataset and the right (7B) figure showing the
ROC curves for the test dataset.
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As shown in Table 6, all primary metrics for the EC tumour grade classification for all
three models are high on the training data, with the accuracy, precision, F1, and specificity
for all three models reaching or exceeding 90%, with AUC scores near 1.00. The remaining
metrics exceeded 80% for all models on the training dataset.

Table 6. Primary metrics achieved on the training dataset.

Model Accuracy Precision Recall F1 AUC Sensitivity Specificity

All Data 93.2% 100% 86.4% 92.7% 1.00 86% 100%
Tumour (Normalised T) 90.9% 100% 81.8% 90% 0.99 82% 100%

Adjacent (Normalised TA) 95.5% 91.7% 100% 95.7% 0.99 100% 91%

The primary metrics remained high on two models for EC tumour grade prediction;
specifically, the models utilising the data from the tumour tissue (all data and normalised
tumour data), as shown in Table 7. The best-performing model on the test dataset is based
only on tumour data, reaching an accuracy above 85%, with 100% recall and sensitivity,
80% specificity, and 66.7% precision; the AUC of the model remained very high at 0.98. The
second model that performed well was the model using all data, which also reached an
accuracy above 85%, with a slightly better precision at 75%, but reduced recall (75%) and F1
score, and a lower AUC score of 0.78. The model utilising only the tumour-adjacent tissue
performed similarly to a random model, with an accuracy of 50%.

Table 7. Primary metrics achieved on the test dataset.

Model Accuracy Precision Recall F1 AUC Sensitivity Specificity

All Data 85.7% 75% 75% 75% 0.78 75% 90%
Tumour (Normalised T) 85.7% 66.7% 100% 80% 0.98 100% 80%

Adjacent (Normalised TA) 50% 28.6% 50% 36.4% 0.40 50% 50%

The confusion matrices for the EC tumour grade prediction on the test dataset, which
form the basis for the metrics in Table 7, are presented in Figure 8 below. According to
Fisher’s exact statistics, the confusion matrices for all data and normalised tumour models
are statistically significant (all data: p < 0.05; tumour: p < 0.05). The confusion matrix for
the model using the adjacent tissue data is not significant.
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4. Discussion

In this study, we evaluated the expression of 15 genes known for their involve-
ment in angiogenic processes, 9 of which were selected from publicly available libraries,
TCGA [19–21] and CPTAC UCEC [22], out of 91 different angiogenesis-related genes and
64 encoded proteins, respectively, based on their differential detection in EC T tissue in
comparison to morphologically normal adjacent endometrial tissue. Those nine genes were
the following: CXCL12, ENPP2, FBLN5, FGF2, LYVE1, PDGFRB, SERPINF1, TIMP2, and
TIMP3. Six genes, CSF3, IL8, LEP, NRP1, TEK, and FST, were preselected in our previous
research [14,18] on plasma samples from EC patients. To the best of our knowledge, this is
the largest set of genes involved in angiogenesis analysed in EC tissue.

Using a clinical cohort of 36 EC patients, we confirmed the difference between T and TA
tissue expression in EC for thirteen out of fifteen analysed genes involved in angiogenesis.
According to TCGA data, all nine genes selected from data libraries are down-regulated in
T versus TA tissue, with an expression ratio range from −17.5 (FGF2) to −3.5 (PDGFRB).
We observed similar T-to-TA expression ratios for individual genes in the clinical cohort.
Out of six additional genes, LEP and IL8 were significantly up-regulated, and TEK was
significantly down-regulated in T tissue, which is in accordance with our previous research,
where plasma levels of EC patients were compared to those of control patients with benign
gynaecological pathology [14,18]. In contrast to our plasma research, in the present tissue-
based study, NRP1 was significantly down-regulated, and the differences in T versus TA
expression for CSF3 and FST were insignificant.

Interestingly, all the genes selected from TCGA were down-regulated in T tissue com-
pared to TA tissue (Figure 1A), highlighting the importance of the antiangiogenic lever
of the angiogenic switch in the endometrial tissue. The endometrial tissue’s uniqueness
is its cyclic exposure to extensive hormonal changes. During each monthly cycle, ovar-
ian hormones trigger angiogenic processes and endometrium regeneration, followed by
blood vessel loss. Endometrial tissue thus produces both pro- and anti-AFs [11,37]. The
levels of various main AF groups, like angiopoietins, VEGFs, and MMPs, fluctuate during
different menstrual cycle phases [38,39]. EC, however, occurs mainly in postmenopausal
women where the expression of AF is not exposed to altered concentrations of ovarian
hormones. When screening TCGA library data in EC, genes encoding these AFs were
not differentially expressed between T and TA tissue, while on the other hand, genes for
their endogenous inhibitors, i.e., TEK (binding to angiopoietins), NRP1, PDGFRB, FBLN5,
SERPINF1 (receptors and inhibitors of VEGF), TIMP2, and TIMP3 (inhibitors of MMPs)
were substantially down-regulated in T versus TA tissue. While pro-angiogenic factors
promote angiogenesis during the normal monthly menstrual cycle [38], our data suggest
that tumour angiogenesis in EC is promoted mainly by the decreased gene expression of
various antiangiogenic factors.

In our study, CXCL12 was the most down-regulated gene in all analysed strata: it was
18.2-fold down-regulated in all EC patients and 20.9-fold, 21.9-fold, 20.6-fold, and 21.7-fold
down-regulated, respectively, in low-grade EC, in low stage EC, in DMI-absent EC, and LVI-
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absent EC patients. CXCL12 is a chemokine that plays a critical role as a chemoattractant in
the tumour niche. Its secretion by myofibroblasts stimulates tumour progression [40]. The
CXCL12/CXCR4 axis plays a vital role in endometrial cancer’s proliferation, invasion, and
metastasis [41]. CXCL12 primarily binds to its receptor CXCR4 to regulate the trafficking
of both normal and malignant cells. In a paracrine manner, CXCL12 attracts CXCR4-
expressing tumour cells to a new tumour niche, resulting in tumour cell invasion and
metastasis [42,43]. CXCL12/CXCR4 also has essential roles in the muscular infiltration of
endometrial cancer by activating the PI3K/Akt signalling pathway [44]. Different authors
have reported that CXCL12/CXCR4 expression in human EC tissues was inversely related
to the histological grade, whereas survival rates were significantly better in patients with
higher levels of CXCR4 [45].

EC is a heterogeneous disease; different angiogenic mechanisms are expressed during
different endometrial cancer phases. We stratified patients according to their clinical
and histopathological characteristics. Similar observations were reached in all analyses.
In patients with prognostically more favourable forms of EC—in less advanced stages
and lower grades of EC, genes for AFs tended to be differentially expressed in T tissue
compared to non-cancerous TA tissue. On the contrary, differences in gene expressions
are less prominent in more advanced or aggressive forms of EC. Likewise, stratification
according to the presence or absence of deep myometrial or lymphovascular invasion
identified differentially expressed genes only in endometrial tissue from patients without
DMI or LVI, whereas no significant difference was detected in gene expression in EC
patients with DMI or LVI. The groups of patients with FIGO IB-IV, high-grade EC, patients
with LVI, and patients with DMI included in our study were small; thus, data obtained
in these groups must be considered cautiously, and additional studies in larger groups of
patients are needed.

Nevertheless, the finding concurs with published data on various genes coding for
AFs. The loss of TIMP3 correlated with advanced-stage disease and poor prognosis in
various cancers [46]. A decreasing expression of TIMP-2 in EC tissue was correlated with
the histological grade of EC, with the level of myometrial invasion, lymphovascular space
involvement, and lymph node involvement [47].

We also examined the co-expressions of analysed genes within T and TA tissue in
EC patients stratified according to LVI status, the cornerstone of risk stratification in
EC [7]. Curiously, we identified a drastically higher number of strongly correlated mRNA
expressions in both T and TA tissue when LVI was present. There was also a significant
correlation between eight gene expressions in T versus TA tissue, which was not observed
in the absence of LVI. Primarily, in T tissue and in LVI-positive samples, numerous strong
correlations were found between the expression of SERPINF1 and other angiogenesis-
related genes, which has not been acknowledged before in the STRING database. Due
to the low number of samples with LVI, these findings should be additionally analysed
in a larger cohort. SERPINF1 is a known antiangiogenic factor with many additional
functions like anti-tumour, anti-inflammation, nutrition, and nerve protection functions,
and is involved in fat metabolism. In various cancers, including EC, the expression of
SERPINF1 is lower in tumour tissue than in control tissue [48]. It is expressed in the normal
and cancerous endometrium, and its loss of expression is associated with endometrial
hyperplasia, a precursor for EC, and increased EC proliferation [49].

Next, we stratified EC patients by menopausal status. Six genes were significantly
down-regulated in the reproductive age group and eleven in postmenopausal women.
The diversity of genes supporting angiogenesis in EC in younger populations was much
lower than in postmenopausal patients. All the down-regulated genes in premenopausal
patients were, with even higher significance, down-regulated in postmenopausal patients,
while six additional genes were down-regulated in the latter group. This indicates broader
angiogenesis-related gene involvement in postmenopausal women with EC, which is in
accordance with findings of an age- and menopausal-status-related increase in somatic
mutation frequency across many tumour types [50,51]. One of the genes with the most
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reduced expression in both menopausal status subgroups was tissue inhibitor of metallopro-
teinases, TIMP3, the silencing of which is consistently associated with cancer progression or
poor patient prognosis in multiple human cancers, including EC. TIMP3 promoter is a fre-
quently targeted methylation site, and its epigenetic silencing indicates a pro-tumorigenic
outcome [46,52].

EC often involves patients with other comorbidities, like obesity, an established risk
factor for EC [53–57]. Leptin, an adipokine encoded by the LEP gene, has an important role
in energy balance and glucose metabolism. It plays an integral part in the link between
obesity and EC, where the tyrosine kinase-dependent intracellular pathway promotes
angiogenesis during cancer development [58–60]. There is a continuous debate with
contradicting results on whether the effect of leptin on EC risk is related to higher BMI or
whether it is an independent risk factor for EC [61–63]. In our previous research, we used
an automated machine learning approach through which we showed that in univariate and
multivariate models, leptin might predict EC better than BMI [14]. This supports findings
that leptin might be involved in EC development through mechanisms beyond obesity-
related pathophysiology, including through angiogenesis [59,60]. The overexpression of
LEP in endometrioid EC compared to benign control patients was reported before [64].
Indeed, in our study, the expression of the LEP gene was significantly elevated in tumour
tissue compared to patient-paired, morphologically normal, adjacent endometrial tissue
(mean FR = 4.68; 95% CI 2.87–6.49; p = 0.0104; Table 4), which directly supports the
hypothesis of leptin’s independent role in EC carcinogenesis.

Besides leptin, IL8 mRNA expression was up-regulated in T versus TA tissue (mean
FR = 4.75; 95% CI 2.46–7.04; p = 0.0164), which supports our previous findings in plasma [14].
IL-8 is a pro-inflammatory cytokine secreted by adipocytes and represents another link
between adipose tissue and EC [65,66]. It is chemotactic for lymphocytes and neutrophils
and has an important role in angiogenesis [67,68]. Elevated IL-8 serum levels were in-
dependently associated with shorter disease-free and overall survival in EC cancer [69].
The protein–protein interaction analysis using the STRING database [33] revealed strong
interaction and gene co-expression between IL8 and CSF3 (Figure 1D). Our data con-
firmed this interaction, but only within T tissue in EC patients with LVI present (r = 0.881;
p = 7.2 × 10−3; Table 5).

Fertility-sparing treatment is considered for endometrioid patients with endometrial
carcinoma of a low grade [8]. In order to verify whether the selected AF levels in the tumour
or adjacent tissue could be used for EC grade stratification, we developed three different
models utilising automated machine learning approaches using the differentially expressed
genes identified on the TCGA dataset. While all models received near-perfect scores on
the training dataset, the model based on the TA data did not generalise well (achieved
random scores on the test data), which was probably caused by overfitting, as the sample
was very small. However, the model based on the T tissue data retained excellent scores
on the test data, retaining AUC at the 0.9 level, with a sensitivity of 100% and specificity
of 80%. Caution is always required when interpreting results on such small datasets,
but further multicentre validation studies, including one specifically for reproductive-age
women, would probably be warranted, given the statistical significance of the result on the
test dataset.

Our data indicate that the regulation of angiogenesis-related genes in EC with prog-
nostically less favourable characteristics is not limited to T tissue alone but rather spreads
onto the non-cancerous TA tissue of the surrounding endometrium. This is in accordance
with the fact that TA tissues are often involved in the development and progression of the
tumour [70–72]. TA tissue is a distinct tissue type that presents a unique intermediate state
between healthy tissue and tumour tissue [72]. Several studies suggest that TA tissue may
offer helpful information for predicting disease prognosis [73]. This may be due to either
(1) field cancerisation theory, which suggests that paired TA tissues are in an intermediate
state between normal and tumour, thus bearing information on early tumour initialisation
and development, or (2) tumour microenvironment theory, which suggests that TA tissues
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contain information about the microenvironment surrounding tumours, which either pro-
motes or suppresses tumour development [73]. There is increasing evidence that a single
genetic mutation is insufficient to initiate the disease and that microenvironment-derived
signals may be required to drive tumour progression. The neoplastic and non-neoplastic
cells in the microenvironment communicate to produce a microenvironment favourable
for the progression of endometrial carcinogenesis [43,45]. According to different lines of
evidence, genomic data from non-cancerous TA tissue can independently predict cancer
survival, and, in some cases, provide even superior performance relative to models based
on tumour-derived data alone [71,73,74]. We found fewer differences between angiogenesis-
related gene expression in T versus TA tissue in higher stages and grades of EC, indicating
that the progression of the tumour was not only related to the expression of AFs in the
tumorous tissue but also to the expression in the TA tissue samples. While our machine
learning modelling did not confirm the ability to use TA tissue for cancer grade classifica-
tion, it is worth stressing that the models for TA did overfit due to sample size limitations,
and it is therefore impossible to draw direct conclusions from the result.

Additionally, in order to be able to model the combined data from the TCGA dataset
and the data from our study, a novel approach to data merging (and normalisation) was
utilised, building upon previous ideas on combining different datasets [25,28]. As the
results are promising, a further study to identify whether the method could be generalised
might be interesting.

It is again important to stress that the overall sample size used in the study is a
limitation and results should be interpreted with that in mind. This could be addressed
in the future by conducting a study in a larger group of patients, ideally in multiple
geographically dispersed centres using the same clinical protocol.

5. Conclusions

We showed that angiogenesis in EC is promoted mainly by the decreased gene expres-
sion of antiangiogenic factors. Our data also indicate that the regulation of angiogenesis-
related genes in EC with prognostically less favourable characteristics, i.e., higher cancer
stage or grade, or the presence of LVI or DMI, is affected not only in T but also in the TA
tissue of the surrounding endometrium, where gene expression is altered inside morpholog-
ically normal cells within the tumour microenvironment. However, we identified stronger
gene co-expressions in T than in TA tissue; correlations were particularly strong when the
lymphovascular invasion was present. We also confirmed broader AF gene involvement in
postmenopausal compared to premenopausal women with EC. Additionally, by combining
TCGA data and data from our study, we applied machine learning modelling to create
a relatively robust model, able to differentiate between low-grade and high-grade EC
based on the T gene expressions, which might be helpful in fertility-sparing settings in
EC patients.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/cancers15143661/s1, Table S1: Normalized expression of angiogenesis-
associated genes in endometrial cancer tissues and adjacent control tissues; data from the GDC TCGA
Endometrioid Cancer (UCEC) study; Table S2: Normalized levels of angiogenesis-associated proteins
in endometrial cancer tissues and adjacent control tissues; data from the CPTAC UCEC Discovery
Study—Proteome; Table S3: Expression of angiogenesis-associated genes in endometrial cancer tissue
(n = up to 527). Data are from the TCGA Pan-Cancer study; Table S4: The calculated distribution fit
correlation with the original data, including the p-values and estimated upper and lower bounds
for the 95% confidence intervals for the TCGA dataset; Table S5: The calculated distribution fit
correlation with the original data, including the p-values and estimated upper and lower bounds
for the 95% confidence intervals for the study dataset; Table S6: Comparison between the training
and test datasets using the Wilcoxon rank-sum Test; Figure S1: Volcano plots identifying significant
changes in gene expression within the tumour and tumour-adjacent tissue separately, in EC patients
stratified according to the presence of LVI or DMI, EC grade, FIGO stage, and menopausal status.
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in Endometrioid Endometrial Carcinoma: Implications for Clinical Practice. Medicina 2022, 58, 1330. [CrossRef] [PubMed]

17. Kokol, P.; Kokol, M.; Zagoranski, S. Machine learning on small size samples: A synthetic knowledge synthesis. Sci. Prog. 2022,
105, 00368504211029777. [CrossRef]
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