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Simple Summary: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death
worldwide. HCC is often diagnosed at a late stage when treatment effectiveness is limited and its
prognosis remains dire. Exosomes are secreted by all living cells, including cancer cells, and contain
biological material with potential to highlight disease conditions or dysregulated pathways involved
in tumourigenesis. This study employs artificial intelligence methods to identify a signature of
exosomal RNAs from 114,602 exosomal RNAs in 118 HCC patients and 112 healthy individuals that
can predict HCC. A signature of nine exosomal RNAs, mainly in the immune, platelet/neutrophil and
cytoskeletal pathways, was identified to predict HCC with an accuracy of ~85%. Hence, these nine
exosomal RNAs have potential to be developed as clinically useful minimally invasive biomarkers
for HCC.

Abstract: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death world-
wide. Although alpha fetoprotein (AFP) remains a commonly used serological marker of HCC, the
sensitivity and specificity of AFP in detecting HCC is often limited. Exosomal RNA has emerged
as a promising diagnostic tool for various cancers, but its use in HCC detection has yet to be fully
explored. Here, we employed Machine Learning on 114,602 exosomal RNAs to identify a signature
that can predict HCC. The exosomal expression data of 118 HCC patients and 112 healthy individuals
were stratified split into Training, Validation and Unseen Test datasets. Feature selection was then
performed on the initial training dataset using permutation importance, and the predictive perfor-
mance of the selected features were tested on the validation dataset using Support Vector Machine
(SVM) Classifier. A minimum of nine features were identified to be predictive of HCC and these
nine features were then evaluated across six different models in an unseen test set. These features,
mainly in the immune, platelet/neutrophil and cytoskeletal pathways, exhibited good predictive
performance with ROC-AUC from 0.79–0.88 in the unseen test set. Hence, these nine exosomal RNAs
have potential to be clinically useful minimally invasive biomarkers for HCC.

Keywords: hepatocellular carcinoma; biomarker; machine learning; exosome; RNA

1. Introduction

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the
liver [1]. Despite improvement in treatment options, prognosis remains poor with a high
global mortality rate of 9.5 cases per 100,000 patients [2] and a 5-year survival of 18%. This
is attributed to a large proportion of patients being only diagnosed at a late stage when
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there is high likelihood of extra-hepatic metastasis [3]. It is further observed that early
diagnosis with curative treatment increases the 5-year survival rate [4]. As such, various
medical bodies have recommended screening for high-risk patients such as those with
liver cirrhosis.

The difficulty of implementing screening programmes is in part due to the lack
of appropriate screening methods. Clinically, abdominal ultrasound and serum alpha-
fetoprotein (AFP) constitute the backbone for HCC screening. However, the sensitivity and
specificity of AFP are limited [5] as raised levels of serum AFP are also indicative of chronic
infection or deterioration of the liver, with or without the development of HCC. Moreover,
some HCC patients retain normal AFP levels throughout progression of disease [6–9]. As
such, the discovery of novel markers that address the low sensitivity and specificity is
needed for more accurate screening and diagnosis of HCC.

Exosomes have emerged as a promising source of biomarkers for various cancers,
with ongoing clinical trials investigating their use in diagnostics and therapeutics [10,11].
Exosomes are membrane-bound micro-vesicles that range from 40–150 nm in diameter
secreted by all living cells and are present in biological fluids such as blood, urine, CSF and
breast milk [12]. They contain nucleic acids, proteins and lipids specific to their host cell,
allowing for an astute reflection of the cell’s specific conditions [13–16]. In addition, they
carry out various functions including the maintenance of cellular homeostasis [17], inter-
cellular communication [18] and immunomodulation [19]. Tumour cells were also shown
to transfer oncoproteins and RNAs to promote oncogenic transformation in neighbouring
cells [20]. Several aspects of exosomes make them attractive candidates as biomarkers.
Firstly, exosomes are considered critical indicators of cancers given their high specificity
to the host cell and astute reflection of the biological state of its parent cell [14]. Measured
changes can therefore be used to capture intra-tumour heterogeneity [14]. Secondly, exo-
somes are released in body fluids, which enable minimally invasive sampling [16]. Thirdly,
they are highly stable in body fluids due to their lipid bilayer membrane which protects
contents from degradation [16,21].

To date, there have been a number of studies exploring candidate biomarkers of
HCC within exosomes, many of which rely on statistical inference to identify features
correlated with HCC [22,23]. However, a limitation of these methods is that they are not
designed to optimize predictive performance and involve assumptions about the data [24].
In addition, in the analysis of genetic data, there is often the issue of overfitting of models
as the expression data typically have a small sample size and large number of features.
Machine learning models overcome this through their ability to analyze large heterogenous
datasets and predictive powers which set them apart from the traditional focus of statistical
approaches [25]. Machine learning is a type of artificial intelligence that has emerged as a
powerful discipline in medical research. It builds analytical models by analyzing existing
data, and learns by observations with the primary purpose of making decisions on its own
in the future. Models can be trained and automated to analyze multidimensional data
for classification, clustering and predictive purposes [26,27]. Classification is a supervised
learning approach in machine learning which is used to analyze a dataset provided and
construct a model to divide data into a unique set of categories [28]. Among the classifica-
tion techniques in machine learning, Supported Vector Machine (SVM) has been used as an
effective tool in addressing binary classification problems in real world applications [29–35].
In SVM, the decision functions are determined directly from the dataset provided (training
data) with the aim to maximize the separation (margin) between the decision borders in a
highly dimensional space (feature space) [29].

As far as we are aware, only two studies have investigated the use of machine learn-
ing to identify or evaluate diagnostic and prognostic exosomal markers of HCC [36,37].
However, either the studies identify exosome-related genes from tumour tissue samples or
machine learning was only used to evaluate three RNA detection panels for liver cancer.

In this study, we propose that machine learning can be used to identify biologically
significant biomarkers based on exosomal RNA expression to predict HCC. Therefore, the
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aims of this study are first to identify the most predictive exosomal signatures of HCC from
a model that integrates exosome mRNA, lncRNA and circRNAs, followed by evaluating
their biological relevance to HCC. The strategy used is shown in Figure 1.
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Figure 1. Overview of Model Building and Predictive Feature Selection Process of the Exosomes of
HCC patients. The figure illustrates the process to build the predictive model and select relevant
exosomal features. A total of 114,602 RNA expression profiles were obtained from 118 healthy individ-
uals and 112 patients with hepatocellular carcinoma (HCC) in exoRBase. Data Splitting: The complete
dataset was divided into an unseen test set (20%) and a full training set (80%). Further division of the
training set created a validation set (20%) and an initial train set (80%). Data Preprocessing: Features
that were not expressed in >80% of samples within the initial train set were removed, resulting in
18,970 remaining RNAs. Subsequently, the initial train set underwent normalization. Model Training:
An SVM (Support Vector Machine) model was used to train the initial train set, and the hyperpa-
rameters were tuned for optimal performance. Feature Selection: Permutation importance scores
were calculated for all features based on their predictive performance on the validation set. Features
with permutation importance scores greater than 0 were considered as potential predictive features.
Model Evaluation: Six different Machine Learning models were employed to assess the predictive
capabilities of the potential predictors. Their predictive performance was evaluated on both the
full training set and the unseen test set. Biological Significance Analysis: To evaluate the biological
relevance of the potential predictors, additional analyses were conducted, including differential
expression analysis, pathway analysis, and literature search.

2. Materials and Methods
2.1. Exosomal RNA Expression Data

Exosome RNA (circRNA, mRNA and LncRNA) expression profiles from blood sam-
ples of HCC patients and healthy controls were downloaded from exoRBase 2.0 [38,39]
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(http://www.exorbase.org/ (accessed on 15 August 2022)) which contains RNA sequenc-
ing data of exosomal RNAs. The total dataset contains the expression of 114,602 RNAs
consisting of 35,518 mRNAs/lncRNAs and 79,084 circRNAs from the blood samples of
112 HCC patients and 118 healthy controls.

2.2. Splitting and Processing of Data

The dataset was shuffled and split in 80:20 ratio for the train and unseen test set using
the Scikit-learn module in Python (3.9.12). (Figure 1) The data were split in a stratified
manner to retain the ratio between groups in each set.

2.3. Model Training and Feature Selection by Permutation Importance

The training set was further split 80–20 into a subset (hereon referred to as the initial
train set) and a validation set, respectively. Features that were not expressed in more than
80% of patients in the initial train set were removed to reduce computational load and
prevent inclusion of noise. The initial train set was scaled by sample to unit l2-norm using
the Normalizer() function in Scikit-learn module [40], as this was reported to maximize
accuracy and reduce fit time [41]. A Support Vector Machine (SVM) model was trained
on the initial train set using GridSearchCV. The hyperparameters were further tuned to
optimize its accuracy at predicting the validation set.

Due to the use of a non-linear SVM kernel, permutation importance was used to
rank features. This method involves permutating data one feature at a time to calculate
the importance of a feature based on the decrease in model score, which we defined as
accuracy. As each permutation is random, this process was iterated three times before
calculating the average permutation importance score for each feature. Features with an
average permutation importance greater than 0 were selected for further evaluation.

2.4. Evaluating the Predictiveness of Selected Features
2.4.1. Evaluation with Permutation Test

After feature selection, the selected features were evaluated using permutation test
score from Scikit-learn module. In this test, the selected features were first extracted from
the original training set, followed by training with 5-fold cross validation using SVM
model. The significance of the performance of this trained model was then evaluated by
comparing mean performance score of the original data and permutated datasets which
have labels that were randomly shuffled 1000 times. Then, the empirical p-value between
model performance on the original and the permutated set was calculated.

2.4.2. Evaluation across 6 Different Models

Nine selected features were evaluated across six models in the full training and
unseen test sets. Apart from SVM, the other models include random forest, multilayer
perceptron (MLP), logistic regression, Gaussian naïve bayes and K-nearest neighbour.
The hyperparameters of each model were tuned by GridSearchCV to maximize accuracy
and evaluated by 5-fold cross-validation with the best estimator. Final assessment of
the 6 models was based on prediction of the unseen test set; metrics include accuracy,
ROC-AUC, specificity, sensitivity and F1 score.

2.5. Analysing Differential Gene Expression in Exosomal RNA Expression Data

Differential expression analysis was performed on exosomal RNA expression data.
Fold change was calculated between HCC patients and healthy controls. Wilcoxon rank-
sum test was performed on log2-normalized values to compare expression between the
two groups. p values were adjusted using False Discovery Rate correction. The threshold
for differential expression was set at absolute fold change >1.2 and adjusted p < 0.05.

http://www.exorbase.org/
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2.6. Validation of Differential Expression and Predictive Performance of Potential Predictors in
Tissues Samples

Tissue RNA sequencing files were downloaded from The Cancer Genome Atlas
(TCGA) database (https://www.cancer.gov/tcga (accessed on 20 September 2022)). Tran-
script per million (TPM)-normalized data from 50 tumours matched with 50 adjacent
non-tumour samples from 50 HCC patients were used for differential expression analysis.
Fold change was calculated with the TPM values of each gene between matched tumour
and adjacent non-tumour samples. Paired T test was performed on the log2-normalized
values. p values were corrected for multiple testing using the Benjamin–Hochberg method.
The threshold for differential expression was set at absolute fold change >1.2 and adjusted
p < 0.05.

2.7. Pathway Enrichment Analysis

Over-representation analysis was performed on the selected predictive features using
ConsensusPathDB (release 35) [42,43] to visualize their potential functions and pathways
as defined by Reactome [44] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [45].

2.8. Text Mining Analysis

To gain insight into the roles of the selected predictive features in HCC, Biopython [46]
was used to search and return the PubMed IDs of articles that contained feature names or
their alias and “HCC”, “LIHC” or “hepatocellular carcinoma” within the abstract. Features
were annotated based on the reported association to HCC and whether any functional
experiments were performed. Articles were excluded if features were not directly relevant
to HCC and if features were only mentioned as housekeeping genes.

3. Results
3.1. Nine Exosomal RNA Signatures Selected by Machine Learning Approach Have Good
Predictive Performance in Predicting HCC

The exosomal RNA expression data of 230 samples (118 healthy, 112 HCC) were first
split into full training and unseen test set. The full training set consists of 184 samples
(94 healthy; 90 HCC) while the unseen test set contains 46 samples (24 healthy; 22 HCC).
The full training set was further split into initial train (75 healthy; 72 HCC) and validation
set (19 healthy; 18 HCC) for feature selection (Figure 1).

Features with 0 expression in more than 80% of the samples were removed from the
initial train set, which reduced features to 18,970. After fine-tuning the SVM model on
the initial train set, the best parameters were found to be kernel = polynomial, cost = 10,
gamma = scale. Permutation importance was then used to identify exosomal RNAs that are
important in prediction. As a result, nine features had positive importance scores (Average
permutation importance score > 0) and the best predictive performance with ROC-AUC of
0.89 in the validation set (Figure S1).

To evaluate the validity of the result and ensure that the good predictive performance
is not due to random chance, the features were further evaluated with a permutation
test using 5-fold cross validation of the SVM model on the full training set. The model
with selected features predicted the full training set with an accuracy of 0.865, which
was significantly greater than that for the permutated dataset (mean accuracy = 0.498,
p = 9.99 × 10−3) (Figure 2). Therefore, accuracy of the SVM model was significantly better
than random prediction.

The nine features were also evaluated across five other machine learning (ML) models
and all models achieved ROC-AUCs from 0.85–0.91 in the full training set (Figure 3).

https://www.cancer.gov/tcga
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Figure 3. Predictive performance of nine exosomal features in training set across six ML models. The
figure shows ROC curve graphs that represent performance of SVM (top left), Random Forest (top right),
multilayer perceptron (MLP) (middle left), Logistic Regression (middle right), K-nearest neighbour
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reference point which indicates that the model’s prediction is based on chance.
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Finally, the predictive performance of these nine features was evaluated using six
ML models on the unseen test set. As a result, the nine features have good predictive
performance with accuracies from 0.76–0.85 and ROC-AUC from 0.79–0.88 in all six ML
models (Table 1).

Table 1. Performance of nine exosomal RNAs in predicting HCC vs. healthy patients in unseen
test set.

Model SVM MLP Random Forest Logistic
Regression

K-Nearest
Neighbour

Gaussian
Naïve Bayes

Accuracy 0.761 0.761 0.848 0.783 0.848 0.761
Precision 0.790 0.739 0.941 0.833 0.941 0.867

Sensitivity 0.682 0.773 0.727 0.682 0.727 0.591
Specificity 0.833 0.750 0.958 0.875 0.958 0.917

FPR 0.167 0.250 0.042 0.125 0.0417 0.083
F1-Score 0.732 0.756 0.821 0.750 0.821 0.703

AUC 0.840 0.850 0.870 0.810 0.880 0.790
Red border: ML model with the best performance.

3.2. The Nine ML Selected Exosomal RNA Signatures Performs Better than Top Nine Differentially
Expressed RNAs

Seven of nine exosomal RNA signatures selected by the ML method are mRNAs (Table 2)
while two are circRNAs which are derived from the exons of their parent genes (Table 3).

Table 2. Annotation of selected mRNA features.

Exosome RNA Gene Ensemble ID Name Mean Importance Importance Rank

MTRNR2L8 ENSG00000255823.4 MT-RNR2 Like 8 0.162 1
FTL ENSG00000087086.14 Ferritin Light Chain 0.090 2

PPBP ENSG00000163736.3 Pro-Platelet Basic Protein 0.027 4
TMSB4X ENSG00000205542.10 Thymosin Beta 4 X-Linked 0.018 5
S100A11 ENSG00000163191.5 S100 Calcium Binding Protein A11 0.018 6
S100A9 ENSG00000163220.10 S100 Calcium Binding Protein A9 0.009 7
ACTB ENSG00000075624.14 Actin Beta 0.009 8

Table 3. Annotation of selected circRNA features.

exoRBase circID circBase ID Genomic
Position Strand Parent Gene

Symbol
Parent Gene

Type
Mean

Importance
Importance

Rank

exo_circ_22106 hsa_circ_000072 chr16:85633914-85634132
(exon) + GSE1 protein coding 0.036 3

exo_circ_79050 hsa_circ_0009024 chrY:19587210-19587507
(exon) + TXLNGY pseudogene 3.70 × 10−17 9

Of these, MTRNR2L8, S100A11, S100A9 and exo_circ_79050 were differentially ex-
pressed between HCC patients and healthy individuals using an absolute fold change
threshold >1.2 and adjusted p < 0.05 (Red box in Table S1). Given that only 4/9 potential
predictors identified by ML feature selection method are differentially expressed, an ad-
ditional analysis was conducted to evaluate the predictive performance of the top nine
differentially expressed exosomal RNAs with the greatest absolute fold change and ad-
justed p value < 0.05 (Table S2) across the same six ML models. As a result, the predictive
performance in the unseen test set decreased across all six models as the accuracies are less
than 0.70 while the ROC-AUC values are less than 0.80 (Table S3) except for the Random
Forest model which had accuracy of 0.78 and ROC-AUC of 0.85. These results demonstrate
the robustness in prediction of HCC by the potential predictors selected by ML feature
selection method.
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3.3. Majority of the Exosomal RNA Signatures Are also Differentially Expressed in Tumour Tissues
as Compared to Adjacent Non-Tumourous Tissues

As exosomal RNAs were shown to be secreted by tumour cells and to contain molecu-
lar information that reflect the biological state of their parent cells [14,20], we investigated
if the seven exosomal mRNAs from the nine ML selected features and parental genes of the
two ML selected exosomal circRNAs are differentially expressed in tumour versus adjacent
non-tumour tissues from TCGA dataset. Using fold change >1.2 and adjusted p < 0.05, six
mRNAs and both parental genes of circRNAs are differentially expressed in tumour versus
non-tumour tissues (Red box in Table S4). This suggests that the 8/9 exosomal mRNAs
that are mainly detected in blood exosomes could also reflect the deregulated expression in
the tumour tissues of the patients.

3.4. ML-Selected Exosomal RNA Signatures Are Mainly Implicated in Immune Pathways and
Majority Are Previously Reported to Be Associated with HCC

To obtain insights on the biological significance of the exosomal RNA signatures, seven
exosomal mRNAs and the parent genes of the two exosomal circRNAs were mapped on Con-
sensusPathDB using over-representation analysis (Figure 4). Most pathways identified were
immune-related while the other pathways were involved in regulation of the cytoskeleton.
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The nine exosomal RNA signatures were also searched in Pubmed using Biopython in
order to gain insight into their relevance in HCC in the previous literature. Of nine features,
seven have been reported in the literature to be associated with HCC (Table S5). On the
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other hand, MTRNR2L8 and exo_circ_79050 were not reported to be associated with HCC
previously, suggesting that these two features could be novel mRNA or circRNA in HCC.

4. Discussion

The new frontier in biomarker research is the development of panels instead of a
single marker for the detection of cancer [47]. This is supported by evidence on how the
use of a panel may improve accuracy and predictive performance [48]. Hence, in this
study, we employed a machine learning approach to identify a panel of nine exosomal
RNA signatures which included seven exosomal mRNAs and two exosomal circRNAs
that distinguished HCC patients from healthy controls with good predictive performance.
We showed that the best machine learning model with nine exosomal RNAs signatures
distinguished HCC patients from an unseen test with the highest accuracy of 85% and
ROC-AUC of 0.88 (Red box in Table 1). The performance of our model was significantly
more accurate at predicting HCC as shown in the permutation test (Figure 2) and therefore
this result is not by chance.

Conventionally, biomarkers have been selected based on differential expression be-
tween cancer and non-cancer samples. However, only four of the nine potential predictors
identified by ML feature selection methods are differentially expressed in exosomes be-
tween HCC patients as compared to healthy controls. When we evaluated the predictive
performance of six ML models trained on nine exosome features with the highest absolute
fold change, the prediction accuracy on the unseen test set was lower as compared to the
predictive accuracy using the nine ML-selected exosomal RNA signatures. This is likely
because analysing differential expressed RNAs independently provides limited biological
insight. For example, it is known that slight changes in the expression of hub genes can
critically affect important pathways in various diseases and therefore may be more predic-
tive [49]. However, these genes may be filtered out in differential expression analysis if
their effect size is too small [50].

Notably, the majority of the exosomal RNA signatures (eight exosomal mRNAs including
parental genes of circRNAs) were differentially expressed in tumour tissues as compared
to adjacent non-tumour tissues in TCGA dataset. This result suggests that the potential
predictors could be oncogenes or tumour suppressors that are secreted from tissue samples to
exosomes and may therefore also act as potential biomarkers for HCC. Nonetheless, future
studies are required to validate their potential oncogenic or tumour-suppressing effects.

It is interesting to note that, although the potential predictors were identified by a
machine learning approach, the exosomal RNA signatures are biologically relevant, as
shown in pathway analysis and the text mining approach. Enrichment analysis indicated
that seven exosomal mRNAs and the parent genes of the remaining two exosomal circRNAs
converged on immune pathways. This is consistent with the understanding that exosomes
can regulate immune components [51] while the immune contexture of HCC has been
shown to be important for predicting clinical outcomes [52].

Of the 9 features, 7/9 have also been associated with HCC in the past literature
(Table S5). MTRNR2L8, which was identified as the most important feature in our predictive
model (Table 2), has not yet been implicated in HCC. However, it has been reported to be
significantly downregulated in breast cancer and is likely to interact with lncRNA NEAT1,
which has been found to drive the progression of various cancers including colorectal, breast
and gastric cancer [53]. Therefore, future study can be conducted to further investigate the
potential role of MTRNR2L8 in HCC.

On the other hand, exo_circ_79050 was identified as the most differentially expressed
RNA in the exosome (Tables S2 and 3). This circRNA is derived from the Y-linked pseu-
dogene TXLNGY, and, since males are at a greater risk of developing HCC, it is likely
that its differential expression is in part due to a greater proportion of males among HCC
patients compared to healthy controls. Although we did not find any studies to suggest its
involvement nor the involvement of its parent gene in HCC, the parental gene TXLNGY
has been reported in other male-dominated cancers. One study found that downregu-
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lation of TXLNGY and Y disruption in the tumour are associated with poor prognosis
in male-dominant cancers such as lung cancer [54]. Therefore, a follow up of this study
would be to determine the predictive value of exo_circ_79050 for diagnosing HCC in a
male-only cohort. Additionally, future study can be carried out to evaluate if removing this
feature would improve accuracy in HCC prediction among females. Taken together, these
findings suggest that predictive exosomal RNA signatures are biologically relevant to HCC
or other cancers.

Future studies are required to validate the predictive performance of the nine exosomal
RNA signatures in larger and independent cohorts. To further improve our prediction
model, it is worthwhile exploring whether the exosomal RNA signatures could be further
reduced by incorporating clinical information in the machine learning models in the future.

5. Conclusions

Overall, this study shows that exosomal RNA signatures identified by a machine
learning approach with good predictive performance could act as potential biomarkers of
HCC. Moreover, these features are not just artefacts of a single model but are likely to have
biological significance.

6. Patents

We are in the process of obtaining a patent for this study. The identity of the genes
and circRNAs will be revealed once the IP is obtained.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cancers15143749/s1, Figure S1. Predictive performance of
nine machine learning selected exosomal RNAs in validation set; Table S1. Differential expression
of nine machine learning selected exosomal RNAs signatures between HCC patients and healthy
individuals; Table S2. Top nine exosomal RNAs that are significantly differentially expressed with
the highest absolute fold change between HCC patients and healthy individuals; Table S3. Predictive
performance of top nine significantly differentially expressed exosomal RNAs in predicting HCC pa-
tients vs. healthy individuals in unseen test set; Table S4. Differential expression of the nine exosomal
RNA signatures between tumour and adjacent non-tumour samples in TCGA data; Table S5. Existing
literature of nine exosomal RNA signatures in HCC.
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