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A personalized risk model for azacitidine outcome in myelodysplastic 
syndrome and other myeloid neoplasm identified by machine-learning 
model utilizing real-world data 
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Supplementary Methods 

Random survival forest machine learning algorithm 
Random survival forests (RSF)1 is an extension of random forest algorithm but apply to the 
setting of right-censored survival data. RSF has same general principles as random forest: (a) 
Survival trees are grown using bootstrapped data i.e. 0.632 sampling without replacement; (b) 
Random feature selection is used when splitting the tree nodes; (c) trees are generally grown 
deeply, and (d) the survival forest ensemble is calculated by averaging terminal node statistics 
(TNS). The TNS is the Kaplan-Meier estimator and the Nelson-Aalen cumulative hazard 
function. RSF returns an ensemble predicted mortality value for each sample which is 
calculated using the TNS for the sample. The mortality value (risk score)1 represents estimated 
risk for each individual calibrated to the scale of the number of events. For example, if i has a 
mortality value of 100, then if all individuals had the same covariate as i, which is X=xi, we 
would expect an average of 100 events. RSF return out-of-sample predicted values which are 
calculated using the hold out data for each tree. The out-of-sample values are used for inference 
on the training data. This is because they are cross-validated and will not over-fit the data. 
Prediction error for survival models is measured by 1−C, where C is Harrell’s concordance 
index2 to assess prediction performance in survival settings. Prediction error is between 0 and 
1, and measures how well the predictor correctly ranks two random individuals in terms of 
survival. RSF returns out-of-sample prediction error. RSF provides a fully nonparametric 
measure of variable importance (VIMP). VIMP is a technique for estimating the importance of 
a variable by comparing performance of the estimated model with and without the variable in 
it. For further details please refer to Ishwaran et al. (2021)3. 
 
 
Supplementary results  
Neutrophil counts prior to starting azacitidine was not significantly different between 
MDS, AML and CMML: Patients were classified into MDS Low risk (n=4), Intermediate 
risk (n=39), High risk (n=100) as per IPSS-R classification. The study also included AML 
(n=61), t-MN (n=45), and CMML (n=24). The mean±SD (standard deviation) of neutrophil 
counts of Low risk (1.10±0.61), Intermediate risk (4.37±10.99), High risk (3.92±8.66), AML 
(4.07±6.88), t-MN (2.39±5.01), and CMML (8.65±14.22) was not significantly different 
between the groups (p=0.202). This suggests that neutrophil counts may not be a distinguishing 
factor for risk stratification in our cohort. 
 
Frequency of abnormal chromosome 19 was not significantly different between MDS, 
AML and CMML: 
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Moreover, frequency of abnormal chromosome in Low risk (25%), Intermediate risk (0%), 
High risk (9.2%), AML (5.1%), t-MN (11.4%), and CMML (4.2%) was not significantly 
different between the groups (p=0.24). 
 
Azacitidine response rate according to somatic mutation type: Role of somatic mutations 
in predicting response to azacitidine is actively debated. We observed a higher frequency of 
TP53 (42% vs. 24%; P =0.09), SETBP1 (9.7% vs. 4.8%; P=0.41), and DNMT3A (26% vs. 
14%; P =0.21) mutations in the non-responder compared to the responder group, although 
these differences did not reach statistical significance. While frequency of ASXL1 (31% vs. 
16%; P =0.14), IDH1/2 (12% vs. 7%; P =0.43), SRSF2 (31% vs. 19%; P=0.26), and TET2 
(36% vs. 29%; P =0.54) mutations, although none of the differences were statistically 
significant.  This could be due to limited sample size and further studies including larger 
cohort of cases would be beneficial.  
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SUPPLEMENTARY TABLES 
 
 

 
Table S1: Clinical features and demographic of the MDS treated with azacitidine  

Variables (n = 273) 

Clinical features at diagnosis  

Age, median (IQR) 73 (67 - 78) 

Male/female 191/82 
Charlson Co-morbidity Index                                    n = 273 
1 4 (2) 
2 65 (24) 
3 119 (43) 
>4 85 (31) 
Rural/Urban 71/202 
WHO subcategories at diagnosis, n (%)   
AML 50 (18) 
MDS EB1 23 (8) 
MDS EB2 100 (37) 
MDS SLD/MDS MLD 17 (6) 
t-MN 59 (22) 
CMML 24 (9) 

IPSS-R, n=185 (%) 
Very low 2 (1) 
Low 3 (2) 
Intermediate 31 (17) 
High 68 (37) 
Very High  81 (44%) 

Karyotype, n (%)  
Very Good  6 (2) 
Good 101 (37) 
Intermediate 52 (19) 
Poor 30 (12) 
Very poor 74 (27) 
Missing 10 (3) 

Bone marrow blast at start azacitidine n (%)  
<5% 42 (15) 
5-10% 45(14) 
11-20% 123 (46) 
>20% 57 (23) 
Missing 6(2) 

Platelet count prior to starting azacitidine 
< 50 x109/L 128 (47) 
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> 50 x109/L 145 (53) 
RBC units transfused ≥ 4 units 8 weeks pre-azacitidine 

Yes 103 (38) 
No 170 (62) 

Number of cytopenia 
0 10 (3) 
1 82 (30) 
2 112 (41) 
3 67 (25) 
Missing 2 (0.007) 
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Table S2: IPSS and IPSS-R of de novo MDS and oligoblastic AML at treatment  
  R-IPSS 
  Very low 

(n = 2) 
Low  
(n = 3) 

Intermediate 
(n = 31) 

High 
(n = 68) 

Very High 
(n = 81) 

IPSS Low (n = 2) 2 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
Int-1 (n = 26) 0 (0%) 3 (11%) 15 (58%) 8 (31%) 0 (0%) 

Int-2 (n = 91) 0 (0%) 0 (0%) 14 (16%) 43 (47%) 34 (37%) 
High (n = 66) 0 (0%) 0 (0%) 2 (3%) 17 (26%) 47 (71%) 

Total  185 2 (1%) 3(1%) 31 (17%) 68 (37%) 81 (44%)  
IPSS and IPSS-R was not assessed in t-MN (n=59) and proliferative CMML and MDS/MPN-U 
(n=23) as these patients were excluded in the original IPSS and IPSS-R prognostic scoring 
system 
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Table S3: Patient characteristics for training and validation cohorts 
Characteristics Overall (n = 273) Training (n= 139) Validation (n= 134) P  
Age, median (IQR) 73 (67, 78) 72 (67, 77) 73 (67, 79) 0.231 
SEX n (%)  

Male  
Female 

 
191 (70) 
82(30) 

 
96 (69.1) 
43 (30.9) 

 
95 (70.9) 
39 (29.1) 

 
0.792 

Interval from diagnosis to HMA start, median 
(IQR) 

2.20 (0.92, 11.51) 1.81 (0.90, 10.45) 2.29 (1.09, 11.58) 0.629 

Pre-Treatment Clinical Variables, median 
(IQR) 

Hemoglobin 
Neutrophil Count 
Platelet count 
Bone Marrow Blast Count 
Creatinine  
Albumin  
Bilirubin 
LDH 
ALT 
GGT 

 
 
92.00 (83, 104) 
1.39 (0.67,3.10) 
58 (31,101) 
12 (8,18) 
86 (72, 106) 
36 (33, 39) 
11 (8,16) 
244 (200, 329) 
20 (14, 29) 
32.5 (22, 59) 

 
 
91 (82.5,106.2) 
1.47 (0.78, 3.63) 
46 (30.5,103.2) 
12 (8,19) 
87 (71.5, 106) 
37 (34, 39) 
11 (8, 17) 
253 (203.5, 334.2) 
18 (13, 27) 
33 (22, 59) 

 
 
92 (84.1,101.0) 
1.33 (0.54, 2.78) 
64.5(32,95.3) 
12 (8,18) 
86 (72, 106.2) 
36 (33, 39) 
11 (8, 16) 
239 (196, 307) 
21 (15, 30) 
32 (22, 59) 

 
 
0.807 
0.182 
0.579 
0.41 
0.84 
0.422 
0.879 
0.266 
0.075 
0.953 

RBC units transfused from diagnosis to HMA 
start, median (IQR) 

4 (0, 10.2) 4 (0, 11.7) 4 (0, 10) 0.878 

Number of platelet units transfused, median 
(IQR) 

0 (0, 2) 0 (0, 2) 0 (0, 2) 0.21 

RBC Transfusion Dependency n (%) 
Dependent 
Independent 

 
113 (43.8) 
145 (56.2) 

 
61 (46.2) 
71 (53.8) 

 
52 (41.3) 
74 (58.7) 

 
0.453 

WHO subtype n (%) 
MDS-SLD  
MDS-MLD 
MDS-EB1 
MDS-EB2 

 
4 (2) 
21 (8) 
36 (13) 
124 (46) 

 
2 (1.4) 
8 (5.8) 
20 (14.5) 
63 (45.7)  

 
2 (1.5) 
13 (9.7) 
16 (11.9) 
61 (45.5) 

 
0.863 
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AML (blasts 20-30%) 
MDS/MPN overlap 

62 (23) 
25 (9) 

33 (23.9) 
12 (8.7) 

29 (21.6) 
13 (9.7) 

De novo MDS, n (%) 
t-MN n (%) 

215 (78.8) 
58 (21.2) 

110 (79.1) 
 29 (20.9) 

105 (78.4) 
 29 (21.6) 

0.884 

IPSS-R prior to starting azacitidine n (%) 
Low 
Intermediate 
High 
Very High 

 
9 (3.3) 
79 (29.0) 
89 (32.7) 
95 (34.9) 

 
5 (3.6) 
40 (29.0) 
45 (32.6) 
48 (34.8) 

 
4 (3.0) 
39 (29.1) 
44 (32.8) 
47 (35.1) 

 
1 

Place of residence n (%) 
Rural 
City 

 
70 (25.6) 
203 (74.4) 

 
38 (27.3) 
101 (72.7) 

 
32 (23.9) 
102 (76.1) 

 
0.58 

Chromosome 3 abnormality n (%) 27 (10.2) 15 (11.3) 12 (9.0) 0.685 
Chromosome 5 abnormality n (%) 63 (23.7) 29 (21.8) 34 (25.6) 0.564 
Chromosome 7 abnormality n (%) 67 (25.2) 41 (30.8) 26 (19.5) 0.048 
Trisomy 8 n (%) 43 (16.2) 21 (15.8) 22 (16.5) 1 
Chromosome 9 abnormality n (%) 18 (6.8) 7 (5.3) 11 (8.3) 0.465 
Chromosome 11 abnormality n (%) 31 (11.7) 16 (12.0) 15 (11.3) 1 
Chromosome 12 abnormality n (%) 36 (13.6) 17 (12.9) 19 (14.3) 0.858 
Chromosome 13 abnormality n (%) 24 (9.1) 12 (9.1) 12 (9.0) 0.831 
Chromosome 16 abnormality n (%) 20 (7.5) 11 (8.3) 9 (6.8) 0.817 
Chromosome 17 abnormality n (%) 35 (13.3) 16 (12.2) 19 (14.4) 0.717 
Chromosome 18 abnormality n (%) 23 (8.6) 10 (7.5) 13 (9.8) 0.663 
Chromosome 19 abnormality n (%) 19 (7.2) 12 (9.1) 7 (5.3) 0.245 
Chromosome 20 abnormality n (%) 31 (11.7) 17 (12.9) 14 (10.5) 0.572 
Chromosome 21 abnormality n (%) 19 (7.2) 11 (8.3) 8 (6.0) 0.486 
Deletion Y n (%) 11 (4.2) 5 (3.8) 6 (4.5) 1 
Complex karyotype n (%) 66 (24.8) 32 (24.1) 34 (25.6) 0.887 
Monosomal karyotype n (%) 54 (20.3) 28 (21.1) 26 (19.5) 0.879 
Complex and monosomal karyotype n (%) 47 (17.7) 24 (18.0) 23 (17.3) 1 
Marker chromosome n (%) 36 (13.6) 16 (12.1) 20 (15.0) 0.591 
Ring chromosome n (%) 9 (3.4) 4 (3.0) 5 (3.8) 1 
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Table S4: Clinical and cytogenetic variables included in the machine learning model  
 

Clinical variables Cytogenetics variables 

SEX Chromosome 3 abnormality 

Charlson co-morbidity index Chromosome 5 abnormality 

RBC transfusion dependency status Chromosome 7 abnormality 

WHO subtype Trisomy 8 

therapy-related MDS Chromosome 9 abnormality 

Place of residence Chromosome 11 abnormality 

Age Chromosome 12 abnormality 

Hemoglobin Chromosome 13 abnormality 

RBC units transfused from diagnosis to HMA start Chromosome 16 abnormality 

Platelet count Chromosome 17 abnormality 

Number of platelet units transfused Chromosome 18 abnormality 

Neutrophil count Chromosome 19 abnormality 

Bone marrow blast percentage  Chromosome 20 abnormality 

Interval between diagnosis and starting azacitidine Chromosome 21 abnormality 

Creatinine Chromosome Y deletion  

Albumin Complex karyotype 

Bilirubin Monosomal karyotype 

LDH Complex plus monosomal 
karyotype 

ALT Marker chromosome 

GGT Ring chromosome 
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Table S5: Baseline clinical variables in patients who completed and could not complete six-
cycles of azacitidine 
 

Variables ≥ 6 cycles completed 
 (n = 174) 

 6 cycles completed 
(n = 99) 

P-
value 

Age at diagnosis 71.5 (67 - 78) 74 (53 - 87) 0.42 
Sex M/F 120/44 71/38 0.233 

R-IPSS prior to starting azacitidine 
Very Low 2 (1%) 0 (0%)  

 
0.001 

Low  6 (3%) 1 (1%) 
Intermediate 55 (32%) 24 (24%) 
High 63 (36%) 26 (26%) 
Very High 47 (27%) 48 (49%) 

Bone marrow blasts prior to starting azacitidine 
0-5% 28 (16%) 14 (14%)  

 
0.98 

5-10% 25 (14%) 14 (14%) 
11-20% 81 (47%) 47 (48%) 
>20% 40 (23%) 24 (28%) 

MDS risk group according to WHO classification 
MDS-EB1 13 (8%) 20 (20%)  

 
 

0.49 

MDS-EB2 68 (39%) 27 (27%) 
AML 26 (15%) 15 (15%) 
t-MN 32 (18%) 27 (27%) 
CMML 19 (11%) 5 (5%) 
Other MDS 16 (9%) 5 (5%) 

Blood counts and RBC transfused prior to starting azacitidine 
Platelet count < 50x109/L 67 (38%) 61 (61%) 0.002 
RBC units transfused > 4 58 (33%) 55 (55%) <0.001 
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Supplementary Figures 

 

 

Figure S1: Schematic of machine learning approach and its performance. (A) The schematic 
of Machine learning approach. (B) The performance of the model measured by Harell’s 
concordance index in training and validation cohort. 
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Figure S2: Overall survival according to chromosome 19 abnormality and neutrophils 
counts in (A-B) training and (C-D) validation cohorts.  
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Figure S3. Performance of the prognostic model, derived by machine learning, and IPSS-R 
for predicting overall survival of azacitidine treated patients. (A) The concordance index (c-
Index), a commonly used metric to evaluate how good prediction model is, for the machine 
learning model was 0.72 in the training and validation cohort, while 0.62 and 0.61 for the IPSS-R 
in the training and validation cohorts, respectively. Overall survival according to IPSS-R risk 
group in the (B) training and (C) validation cohorts. 
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Figure S4. Integration of somatic mutation profile refine the machine learning (ML) model. 
(A) Overall survival of TP53 mutated patients was significantly poor compared to patients without 
TP53 mutation; (B) In patients without TP53 mutation (TP53wt), DNMT3A, RAS, BCOR, BCORL1, 
EZH2 or SETBP1 mutation was associated with poor survival; (C) Forest plot shows the 
multivariate Cox proportional hazard regression analysis on mutational risk groups and the ML 
model risk groups. (D) Adverse risk mutations (TP53, DNMT3A, RAS, BCOR, BCORL1, EZH2 or 
SETBP1) stratified Standard risk patients further with distinct survival difference; (E) OS of Poor 
risk patients with and without Adverse risk mutations; (F) Integration of Adverse risk mutations 
and risk group identified by clinical variables using ML algorithm.  
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Figure S5: Overall survival of azacitidine treated patients according to transfusion burden. 
RBC-transfusion burden is associated with poor outcome in the (A) training and (B) validation 
cohort. Similarly, platelet transfusion is associated with poor survival in the (C) training and (D) 
validation cohort.   
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Figure S6. Hospitalization during azacitidine therapy. (A) Bar diagram showing percentage of 
patients requiring hospitalization during each cycle of azacitidine; (B) duration of hospitalization 
during each cycle of azacitidine; (C) hospitalization burden was higher in Poor risk compared to 
Standard risk group.  
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Figure S7: In each response category, overall survival of Poor risk patients was significantly 
inferior compared to Standard risk patients in (A-C) Training cohort and (D-F) Validation 
cohort. 
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