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Simple Summary: Owing to the 40-year worldwide efforts for improving diagnosis and therapy
for acute myeloid leukemia (AML), the second most common type of leukemia in children, overall
survival rates of children with AML have now reached 70% to 80% in developed countries. This
review article comprehensively describes the history and advances in the current state-of-the-art
risk-stratified therapy for AML in children. However, it is likely that the traditional approaches have
already reached their limits, and therefore, novel approaches are absolutely essential. The current
state and future directions for incorporating novel molecular-targeted drugs into contemporary
therapy through international collaboration are also extensively discussed. These aspects present key
solutions for further improvements in outcomes of children with AML.

Abstract: Acute Myeloid Leukemia (AML) is the second most common type of leukemia in children.
Recent advances in high-resolution genomic profiling techniques have uncovered the mutational
landscape of pediatric AML as distinct from adult AML. Overall survival rates of children with
AML have dramatically improved in the past 40 years, currently reaching 70% to 80% in developed
countries. This was accomplished by the intensification of conventional chemotherapy, improvement
in risk stratification using leukemia-specific cytogenetics/molecular genetics and measurable residual
disease, appropriate use of allogeneic hematopoietic stem cell transplantation, and improvement in
supportive care. However, the principle therapeutic approach for pediatric AML has not changed
substantially for decades and improvement in event-free survival is rather modest. Further refine-
ments in risk stratification and the introduction of emerging novel therapies to contemporary therapy,
through international collaboration, would be key solutions for further improvements in outcomes.

Keywords: acute myeloid leukemia; children; cytogenetics; molecular genetics; measurable residual
disease; chemotherapy; hematopoietic stem cell transplantation; novel therapy

1. Introduction

Acute Myeloid Leukemia (AML) is a form of hematopoietic malignancy characterized
by clonal proliferation of immature myeloid cells. As can be seen from the fact that the
median diagnostic age of AML is over 60 years old, AML is the most common type of
leukemia in adults, whereas it is the second most common leukemia subtype in children,
accounting for 20–25% of pediatric leukemia cases, with an incidence of approximately
seven cases per 1,000,000 children per year [1]. There are no sex differences in prevalence
of AML in children. Although AML in children may arise from certain constitutional
chromosomal abnormalities (e.g., Down syndrome [trisomy 21]), familial predisposition
syndromes or inherited gene mutations/translocations (e.g., inherited bone marrow failure
syndromes), acquired conditions (e.g., myelodysplastic syndrome [MDS]), or exposure to
chemotherapy/radiotherapy (therapy-related myeloid neoplasms), most of the children
develop AML as a de novo disease without apparent etiology. A multi-step process of
an accumulation of chromosomal and genomic alterations within immature myeloid cells
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results in the development of AML. Recently, novel AML classifications (Fifth edition of
the World Health Organization [WHO] Classification of Haematolymphoid Tumours and
International Consensus Classification [ICC] of Myeloid Neoplasms and Acute Leukemias)
have been proposed [2–4]. Despite some existing differences, both classifications place
more emphasis on molecular/genetic criteria compared to the previous ones. However,
one should note that recent evidence suggests that AML in children and that in adults are
distinct at least in terms of mutational landscape [5].

Overall Survival (OS) rates of children with AML have dramatically improved in
the past 40 years, currently reaching 70–80% in developed countries [6–17]. This was
accomplished mainly by the intensification of conventional chemotherapy, improvement in
risk stratification, appropriate use of allogeneic Hematopoietic Stem Cell Transplantation
(HSCT), and improvement in supportive care. However, despite the cytogenetic/mutational
heterogeneity of the disease, the principle treatment for pediatric AML has not changed sub-
stantially for decades and improvement in Event-Free Survival (EFS) is rather modest [18].
In this review, the state-of-the-art risk-stratified therapy for children with AML other
than Acute Promyelocytic Leukemia (APL) and Myeloid Leukemia associated with Down
Syndrome (ML-DS) will be highlighted, including the historical background and future
perspectives emphasizing risk stratification and molecularly targeted therapies.

2. Prognostic Factors and Risk Stratification in Pediatric AML

Risk stratification is one of the key elements for successful treatment in AML, and its
aim is (A) to assign patients to therapies with sufficient intensity, (B) to avoid excess toxici-
ties by avoiding therapies with unnecessary intensity, and recently, (C) to identify targetable
lesions to incorporate targeted therapies. To properly risk-stratify patients, it is necessary
to predict the treatment failure risk of patients by evaluating various prognostic factors.
Prognostic factors can be subdivided into patient-associated factors (e.g., age, ethnicity)
and disease-related factors (e.g., leukemia-specific cytogenetics/molecular genetics, drug
resistance). Age at diagnosis is prognostic, i.e., the survival rate of children is significantly
better than young adults, and that of young adults is better than older adults. However,
within children < 15 years old, the impact of age difference is not significant [19]. Regarding
ethnicities, analysis of Children’s Oncology Group (COG) studies mainly involving North
America showed that Hispanic and African-American children had significantly worse
OS rates compared to Caucasian children, and that access to chemotherapy, differences
in supportive care, leukemic phenotype, and reduced compliance were unlikely to be
the explanations [20]. There is no data that directly analyzed differences between Asian
children and other ethnicities; however, the literature shows a higher prevalence of t(8;21)
(RUNX1::RUNX1T1)-positive AML in Asian populations (approximately 30% compared to
12–14% of the U.S. or European patients) [1,21,22]. Overall, the impact of patient-associated
factors is not as large as the disease-related factors in children with AML.

2.1. Leukemia-Specific Cytogenetics/Molecular Genetics

Leukemia-associated genetic profiles of 369 patients in the Japanese Pediatric Leukem-
ia/Lymphoma Study Group (JPLSG) trial AML-05 are listed in Figure 1 [22]. The distribu-
tion of genetic profiles is similar to the other groups in the U.S. or Europe except that the
proportion of patients with RUNX1::RUNX1T1 is high in the Japanese cohort, as mentioned
previously [1].

Analyses of clinical trials conducted from the late 1980s to the early 2000s revealed
the prognostic significance of recurrent chromosomal aberrations in AML. In the United
Kingdom (UK) studies MRC-AML10 and MRC-AML12, children with t(8;21)(q22;q22)
(RUNX1::RUNX1T1) and inv(16)(p13q22) (CBFB::MYH11), the core-binding factor (CBF)-
AML, had the best prognosis (80% OS rate), and the patients with chromosome 12 or 5q ab-
normalities, t(6;9)(p23;q34) (DEK::NUP214), monosomy 7, and t(9;22)(q34;q11) (BCR::ABL1)
had the worst prognosis (36% OS rate) [23]. However, the majority (nearly 70%) of the
patients were classified as intermediate risk (56% OS rate), which includes patients with
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normal karyotypes, chromosome 11q23 abnormalities, Acute Megakaryoblastic Leukemia
(AMKL), and others. International collaborative efforts have significantly contributed
to further uncovering the prognoses of certain AML subtypes. One of the first suc-
cesses was the retrospective analysis of chromosome 11q23 abnormalities by the Inter-
national BFM study group (I-BFM) consisting of 11 cooperative study groups in 15 coun-
tries [24]. 11q23 abnormalities or KMT2A gene rearrangements (KMT2A-r) account for
15–20% of pediatric AML, and recent studies have identified more than 100 fusion gene
partners [25]. The 756 patients included in this study showed an “intermediate” prognosis
of 44% EFS and 56% OS rates, but large EFS/OS differences were identified among the
following different translocation partners: t(1;11)(q21;q23) (KMT2A::MLLT11) showed the
best prognosis and t(6;11)(q27;q23) (KMT2A::AFDN), t(10;11)(p12;q23) (KMT2A::MLLT10),
and t(10;11)(p11.2;q23) (KMT2A::ABI1) showed unfavorable prognoses. The other following
I-BFM projects, such as t(8;16)(p11;p13)/CREBBP::KAT6A (intermediate OS, spontaneous
remission in neonatal cases), t(6;9)(p23;q34)/DEK::NUP214 (high-risk of relapse, improved
EFS by HSCT), KIT and RAS mutations in t(8;21) (not associated with a worse outcome),
t(16;21)(p11;q22)/FUS::ERG (extremely poor prognosis), t(16;21)(q24;q22)/RUNX1::CBFA2T3
(favorable outcome), and hypodiploidy (poor prognosis), have also elucidated the clinical
features and prognosis of these relatively rare subsets [26–30].
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Finally, advances in molecular/genetic analyses have revealed many of the prog-
nostic genetic markers in pediatric AML. Among non-DS AMKL (rare in adults, but
4–15% in children), inv(16)(p13q24)/CBFA2T3::GLIS2 (18.4%), KMT2A-r (17.2%), and
t(11;12)(p15;p13)/NUP98::KDM5A (11.5%) formed a poor prognostic subgroup, and mu-
tations of the GATA1 gene that generate the short form of GATA1 (GATA1s; 9.2%) and
t(1;22)(p13;q13)/RBM15::MRTFA (10.2%) formed a good prognostic group [31–33]. Many
of the important genetic prognostic markers were identified among the cytogenetically
“normal” AML (CN-AML; approximately 40% in adult AML and 20% in pediatric AML)
as well. As a poor prognostic marker, internal tandem duplication (ITD) of the FLT3 gene
(FLT3-ITD) is found in approximately 10% of pediatric AML and 20–30% of adult AML and
is also important as a targetable marker [34]. As favorable prognostic markers, a mutation
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of the NPM1 gene that generates cytoplasmic NPM1 (NPM1c) is found in approximately
5–8% of pediatric AML and 20–30% in adult AML, and biallelic CEBPA mutations in ap-
proximately 5% of both pediatric and adult AML [35,36]. Recent studies have revealed that
CEBPA-basic leucine zipper (CEBPA-bZip) mutations are associated with favorable clinical
outcomes regardless of monoallelic or biallelic mutational status (80% of the patients have a
double mutation) [37]. Mutations in IDH1, IDH2, and DNMT3A are found in 7–14%, 8–19%,
and 18–22%, respectively, of adult AML (most frequently seen in CN-AML) [38]. The
prognostic significance of these mutations are not fully established, but all these mutations
are extremely rare in children [39,40]. Many of the newly discovered gene mutations are
less frequent in children. In addition to the already mentioned gene mutations, the TP53
mutation is found in approximately 8% of adult AML, is associated with older age, has
complex and monosomal karyotypes, has a very poor outcome, and has been given a strong
emphasis in recently proposed European LeukemiaNet (ELN) 2022 recommendations, but
it is rarely seen in pediatric AML [41,42]. However, NUP98::NSD1 encoded by cryptic
t(5;11)(q35;p15.5) was discovered in 16.1% of pediatric CN-AML, whereas it was only 2%
of CN-AML in adults [43]. This fusion is associated with high leukocyte count, monocytic
leukemia (M4 or M5 in French-American-British [FAB] classification), FLT3-ITD, and a very
poor prognosis. A recent study analyzing the COG trial cohorts showed poor outcomes of
not only NUP98::NSD1 and NUP98::KDM5A cases but of cases with other NUP98-fusion-
positive AML (unlike NSD1 and KDM5A cases, other NUP98-fusions are typically not
cryptic) [44]. Tandem duplication in the UBTF gene (UBTF-TD) is another example of a
mutation that is predominant in pediatric AML (approximately 4% of newly diagnosed
and 9% of relapsed pediatric AML). This mutation is associated with normal karyotype
or trisomy 8 with co-occurring WT1 mutations or FLT3-ITD and confers an unfavorable
prognosis [45]. International cooperation will become increasingly important to further
identify a subgroup of pediatric AML with prognostic impact, which generally would
include small numbers of patients.

2.2. Treatment Response Including Measurable Residual Disease

Assessment of treatment response is regarded as an in vivo method to measure
leukemia drug resistance and is widely used to risk-stratify patients with AML. In the
UK MRC-AML10 study, bone marrow morphological response after initial induction ther-
apy was significantly associated with both OS and relapse rates, and ≥15% bone marrow
blasts after initial induction without favorable genetic abnormalities were allocated to the
poor-risk arm in the MRC-AML12 study [46,47]. In the German BFM studies, analysis of
AML-BFM83 and AML-BFM87 studies showed that residual bone marrow blasts (≥5%)
at day 15 of initial induction were associated with reduced EFS rates and was therefore
included in the risk group definition since the AML-BFM93 study [48]. A similar approach
to risk stratification using morphological bone marrow response was used in other pediatric
AML studies as well after the 1990s.

Although >85% of children with AML achieve morphological remission after one
or two courses of induction therapy, 30–40% of the patients eventually experience overt
relapse. A growing need for more accurate methods to assess treatment response led to the
development of molecular or immunophenotypic determination of Measurable Residual
Disease (MRD) in the late 1990s to early 2000s. Regarding molecular MRD assessment, a
Polymerase Chain Reaction (PCR) approach, and recently a next-generation sequencing
(NGS) approach, targeting certain AML-specific genetic markers (fusion transcripts or gene
mutations) can be taken with a sensitivity of 0.01–0.001% in PCR and 0.01–0.0001% in NGS.
The most problematic issue of molecular MRD is its limited applicability in children, i.e.,
major fusions (e.g., RUNX1::RUNX1T1, CBFB::MYH11, PML::RARA, KMT2A::MLLT3) are
found in less than 40% of children with AML and major gene mutations found in adults
(e.g., NPM1c, FLT3-ITD) are far less prevalent in children. In addition, it is well recognized
that RUNX1::RUNX1T1 and CBFB::MYH11 transcripts may persist in the patient’s bone
marrow while in long-term remission, and because of this, false-positive results may
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come out. The St. Jude Children’s Research Hospital (SJCRH) study in the U.S., which
compared flow-cytometric MRD and molecular MRD, showed discrepant results (only
9.6% of the PCR-positive samples were flow-positive) and that PCR-MRD results did not
have a prognostic impact when flow-MRD was negative [49]. The ELN MRD Working
Party suggests a failure to reach a 3-log to 4-log reduction between the sample at diagnosis
and at the end of treatment in adult patients with CBF-AML would be a relevant marker
for subsequent relapse, but caution is needed whether it could be applied to children as
well [50]. As a consequence, multiparametric flow cytometry (MFC)-MRD is considered
to be the more preferred method for children with AML because of its wide applicability
(>95% of the patients), although sensitivity is potentially lower (0.1–0.01%) than molecular
MRD. Currently, there are two MFC-MRD approaches to target leukemia cells, namely,
the leukemia-associated immunophenotype (LAIP) approach used in many study groups
and the different-from-normal (DfN) aberrant immunophenotype approach used in the
COG studies [51–57]. The LAIP approach is more complicated because it needs to select a
patient-specific antigen combination. In contrast, the DfN approach employs a standardized
panel which could potentially be applied to all patients regardless of the leukemia blast
immunophenotype at diagnosis (i.e., does not require access to the diagnostic specimen)
and has the strength that the method does not rely on the stability of a diagnostic LAIP
during treatment, and therefore, the blasts can be detected even if an immunophenotypic
shift occurs. Whichever approaches are applied, positive MRD at the end of one or two
courses of induction therapies is shown to be the strongest predictor of poor outcomes in
every previously reported clinical trial. Notably, the SJCRH AML02 study using the LAIP
approach and the COG AAML0531 study using the DfN approach both showed the limited
impact of morphological remission status on the negative MRD condition at the end of
initial induction therapy [49,58].

2.3. Risk Stratification in Pediatric AML

Current risk stratifications used in most of the pediatric AML studies are based on
combinations of leukemia-specific cytogenetic/molecular genetic abnormalities and MRD-
based treatment response (Table 1). The NOPHO-DBH AML 2012 study (NCT01828489)
by the Nordic Society of Paediatric Haematology and Oncology (NOPHO), Belgium, the
Netherlands, and others are quite unique in that their risk stratification is strongly based
on treatment response. Pediatric AML risk stratification has been focusing on determining
the high-risk subsets of the patients assigned to receive HSCT in the first CR. Importantly,
one should note whether HSCT truly improves the outcome of the high-risk patients. The
outcome of a certain subset of the patients (e.g., FUS::ERG) has not improved by simply allo-
cating the patients to receive HSCT and novel therapeutic strategies are urgently needed for
these patients [59]. In the current genomic era, future risk stratification should focus more
on identifying targetable lesions to incorporate molecularly targeted therapies. Success for
APL using an introduction of All-Trans-Retinoic Acid (ATRA)-combined chemotherapy,
and more recently of ATRA/arsenic trioxide combination therapy, is an ideal model, and
many groups are starting to take this approach, as is the case with FLT3-ITD.
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Table 1. Examples of risk stratification used in recent and ongoing pediatric AML studies.

COG AAML1831 MyeChild 01 NOPHO-DBH AML 2012 JPLSG AML-20

SR

Low Risk 1 (LR1)

• CBF-AML

- MRD@EOI1 < 0.05%
- No KIT exon17 mutations
- No other HR factors

• Mutated NPM1/CEBPA-bZip

- MRD@EOI1 < 0.05%
- No other HR factors

Low risk 2 (LR2)

• Other than LR1 or HR

Standard risk (SR)

• Good-risk abnormalities *

- MRD@EOI2 < 0.1%

• Intermediate-risk abnormalities **

- MRD@EOI1&2 < 0.1%

Intermediate risk (IR)

• Good-risk abnormalities *

- MRD@EOI2 > 0.1%

• Intermediate-risk abnormalities **

- MRD@EOI1 > 0.1% & EOI2 < 0.1%

* Good-risk abnormalities

• CBF-AML
• Mutated NPM1 (no FLT3-ITD)
• CEBPA double mutation (no FLT3-ITD)

** Intermediate-risk abnormalities

• t(9;11): KMT2A::MLLT3
• t(11;19): KMT2A::MLLT1
• Non-poor risk KMT2A-r
• Non-good/poor risk abnormalities

• No high-risk (HR) factors
• MRD/BM blasts@EOI2 < 5%
• SR patients with inv(16)/t(16;16)

receive a reduced number of
consolidation courses

Low risk (LR)

• CBF-AML

- No FLT3-ITD
- MRD@EOI1 < 0.1%

Intermediate risk (IR)

• CBF-AML & FLT3-ITD
• CBF-AML & MRD@EOI1 ≥ 0.1%
• Non-CBF-AML

- No high-risk abnormalities †
- MRD@EOI1 < 0.1%
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Table 1. Cont.

COG AAML1831 MyeChild 01 NOPHO-DBH AML 2012 JPLSG AML-20

HR

• FLT3-ITD allelic ratio > 0.1

- No NPM1/CEBPA-bZip mutation

• FLT3-ITD allelic ratio > 0.1

- Mutated NPM1/CEBPA-bZip
- MRD@EOI1 ≥ 0.05%

• Mutated non-ITD FLT3
- MRD@EOI1 ≥ 0.05%

• RAM phenotype
• Unfavorable abnormalities:

- inv(3)/t(3;3): RPN1::MECOM
- t(3;21): RUNX1::MECOM
- t(3;5): NPM1::MLF1
- t(6;9): DEK::NUP214
- t(8;16): KAT6A::CREBBP (≥90 days old)
- t(16;21)(p11;q22): FUS::ERG
- inv(16)(p13q24): CBFA2T3::GLIS2
- t(4;11): KMT2A::AFF1
- t(6;11): KMT2A::AFDN
- t(10;11): KMT2A::MLLT10
- t(10;11): KMT2A::ABI1
- t(11;19): KMT2A::MLLT1
- 11p15-r: any NUP98 fusion
- 12p13-r: any ETV6 fusion
- 12pdeletion: ETV6 loss
- −5/del(5q): EGR1 loss
- Monosomy 7
- 10p12.3-r: any MLLT10 fusion

• No favorable/unfavorable abnormalities

- MRD@EOI1 ≥ 0.05%

• Intermediate-risk abnormalities **

- MRD@EOI2 > 0.1%

• Good-risk abnormalities *

- MRD@EOC3 > 0.1%

• Poor-risk abnormalities

- inv(3)/t(3;3)/abn(3q26)
- −5/del(5q)
- −7
- t(6;9): DEK::NUP214
- t(9;22): BCR::ABL1
- 12p abnormalities
- t(4;11): KMT2A::AFF1
- t(6;11): KMT2A::AFDN
- t(10;11): KMT2A::MLLT10
- t(5;11): NUP98::NSD1
- t(7;12): MNX1::ETV6
- inv(16)(p13q24): CBFA2T3::GLIS2
- FLT3-ITD (no mutated NPM1, CBF)

• Other poor-risk categories
• Secondary leukemia without good-risk

abnormalities
• Induction failure@EOI1

• MRD/BM blasts@d22 of induction
1 ≥ 15%

• MRD@EOI2 ≥ 0.1–4.9%
• FLT3-ITD without mutated NPM1

• Non-CR @EOI1
• Non-CBF-AML

- No high-risk abnormalities †
- MRD@EOI1 ≥ 0.1%

• Non-CBF-AML

- High-risk abnormalities †

† High-risk abnormalities:

• Monosomy 7
• −5/del(5q)
• inv(3)/t(3;3)
• FLT3-ITD (no CBF)
• t(9;22): BCR::ABL1
• t(4;11): KMT2A::AFF1
• t(6;11): KMT2A::AFDN
• t(10;11): KMT2A::MLLT10
• t(6;9): DEK::NUP214
• t(7;11): NUP98::HOXA9
• t(5;11): NUP98::NSD1
• t(11;12): NUP98::KDM5A
• inv(16)(p13q24): CBFA2T3::GLIS2
• t(16;21)(p11;q22): FUS::ERG
• t(7;12): MNX1::ETV6
• t(10;11): PICALM::MLLT10
• TBL1XR1::RARB

BM, bone marrow; CBF, core binding factor; EOI1/2, end of induction 1/2; EOC3, end of course 3; MRD, measurable residual disease. * Definition of Good-risk abnormalities in
MyeChild01 study. ** Definition of Intermediate-risk abnormalities in MyeChild01 study. † Definition of High-risk abnormalities in JPLSG AML-20 study.
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3. Current Standard Therapy for Pediatric AML
3.1. Chemotherapy

Multi-agent combination chemotherapy is still a mainstay of treating children with
AML. Key drugs are cytarabine and anthracyclines. Similar to adult AML, standard initial
induction chemotherapy in children is based on the “3 + 7” regimen (seven days of low-to-
intermediate dose cytarabine [LDAC] concurrent with three days of anthracyclines), but
a third drug (e.g., etoposide) is often combined although its role is not fully established
(Figure 2). The Japanese group introduced a unique prolonged schedule of induction
therapy “ECM” (12 days in total) in the ANLL91 study in the early 1990s, on the basis
of a high proportion of FAB-M4/M5 subtypes in children and frequent high leukocyte
presentation and expected high efficacy of etoposide against monocytic AML [60]. Since
then, this regimen has been used in the Japanese trials (AML99, AML-05, AML-12, and
the currently ongoing AML-20), and was recently adopted in the NOPHO-DBH AML
2012 study as well [6–8,61,62]. Because of the significant prognostic impact of induction
therapies and the limited number of pediatric AML patients, randomized questions to
improve the outcome of children with AML have been mainly set at induction phases
in the past pediatric AML studies worldwide. However, most of the study questions
raised in the past trials have failed to show the impact on improved survival in pediatric
AML (Table 2), specifically, the role of high-dose cytarabine (HDAC) [8,11,63–65], use of
different types of anthracyclines [13,47,66], and addition of other cytotoxic drugs [10,12,67].
An exception is the addition of gemtuzumab ozogamicin (GO), an anti-CD33 antibody-
drug conjugate (ADC). Cell surface antigen CD33 is expressed in more than 80% of the
patients with AML, which makes this agent an attractive option. A randomized study,
COG AAML0531, showed that the addition of GO 3 mg/m2 to ADE induction (and also to
the second consolidation course) significantly improved the EFS (but not OS) of children
with newly diagnosed AML [9]. Consequently, GO is currently approved by the U.S. Food
and Drug Agency (FDA) for use in this setting and is regarded as a standard of care in the
U.S. In the MyeChild01 study by the UK, Ireland, and France, a dose-finding study of GO
(cohort 1, GO 3 mg/m2/dose on day 4 of initial induction consisting of cytarabine and
mitoxantrone; cohort 2, GO on days 4 and 7; cohort 3, GO on days 1, 4, and 7) is being
conducted (NCT02724163).

Table 2. Evidence for current standard therapy for pediatric AML.

Treatment Factors Summary Specific Data

Induction chemotherapy

Cytarabine doses

Three randomized studies showed that
there is not a clear impact of high-dose
cytarabine in initial induction compared
to low-dose or standard-dose cytarabine.
High-dose cytarabine in the second
induction may improve the outcome.

POG9421 [63] (n = 560): High-dose vs. standard-dose DAT
in initial induction. No difference in CR and EFS.
SJCRH AML02 [11] (n = 230): High-dose vs. low-dose
ADE in initial induction. No difference in day 22 MRD,
EFS, and OS.
JPLSG AML-12 [8] (n = 324): High-dose vs. low-dose ECM
in initial induction. No difference in end-of-induction
MRD, EFS, and OS.
Improved EFS for high-risk patients (n = 310) in
AML-BFM93 by introducing HAM as a second
induction [64]. Better RR, EFS, and OS with second
induction HAM in t(8;21) patients (n = 78) in
AML-BFM98 [65].



Cancers 2023, 15, 4171 9 of 21

Table 2. Cont.

Treatment Factors Summary Specific Data

Anthracyclines Overall, there is no clear evidence for the
best anthracyclines of choice.

MRC AML12 [47] (n = 504): MAE vs. ADE. Use of
mitoxantrone showed decreased RR and improved DFS
over daunorubicin use, but no difference in EFS and OS.
AML-BFM93 [66] (n = 358): AIE vs. ADE. Better day
15 bone marrow blast reduction with idarubicin compared
to daunorubicin, but no difference in EFS and DFS.
AML-BFM2004 [13] (n = 521): ADxE (liposomal
daunorubicin) vs. AIE (idarubicin). No difference in RR,
EFS, and OS.

Addition of other
cytotoxic drugs

No clear evidence of adding cytotoxic
drugs to cytarabine/anthracycline
induction. However, one randomized
study showed the benefit of adding GO
to initial induction and second
consolidation courses. Clofarabine may
spare the use of anthracyclines and
etoposide. Some groups use fludarabine
to enhance the effect of cytarabine (FLA).

MRC-AML10 [67] (n = 359): DAT (6-thioguanine) vs. ADE
(etoposide). No difference in CR, RR, DFS, and OS.
COG AAML1031 [10] (n = 1097): Randomization to add
bortezomib to each standard chemotherapy course failed
to improve EFS and OS.
COG AAML0531 [9] (n = 1022): ADE + GO (3 mg/m2) vs.
ADE. Improved EFS (but not OS) and reduced RR in
GO arm.
SJCRH AML08 [12] (n = 262): Clofarabine + HDAC vs.
high-dose ADE. No difference in EFS and OS.
DB-AML-01 [16] (n = 112): Patients with t(8;21) or day
15 marrow blasts ≥ 5% received FLA + liposomal
daunorubicin as second induction.

Post-induction chemotherapy

Number of courses

A number of chemotherapy courses
range from 4 to 6 (including induction) in
recently conducted pediatric AML
studies. Two retrospective analyses show
benefit of an additional chemotherapy
course for a subset of LR patients.

MRC-AML12 [47] (n = 270): 4 vs. 5 courses. No survival
benefit for a 5th course of chemotherapy.
Combined analysis of COG AAML0531 and AAML1031
studies [68] (n = 923) showed higher RR and lower DFS
(but not OS) in a subset of LR patients who received
4 courses compared to those who received 5 courses.
In the JPLSG AML-05 study [6] (n = 154), a reduction to
5 from 6 courses in the AML99 study (n = 89) resulted in
increased RR in CBF-AML patients.

Addition of other
cytotoxic drugs

No clear evidence of adding cytotoxic
drugs to cytarabine/anthracycline
chemotherapy. However, one
randomized study showed the benefit of
adding GO to initial induction and
second consolidation courses.

COG AAML0531 [9] (n = 1022): MA + GO (3 mg/m2) vs.
MA (second consolidation course). Improved EFS (but not
OS) and reduced RR in GO arm.
NOPHO-AML2004 [69] (n = 120): Addition of GO
(5 mg/m2/dose on days 1 and 21) vs. no further therapy
following the end of consolidation chemotherapies. No
improvement in EFS and OS.
COG AAML1031 [10] (n = 1097): Randomization to add
bortezomib to each standard chemotherapy course failed
to improve EFS and OS.

Maintenance therapy
No clear role of maintenance therapy.
Major study groups no longer use
maintenance therapy.

LAME89/91 [70] (n = 268): Maintenance therapy was
introduced in LAME89 and randomized to receive or not
receive maintenance in LAME91. No difference in EFS
and OS.
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Table 2. Cont.

Treatment Factors Summary Specific Data

Central nervous system-directed therapy

CNS-directed therapy
Most groups usually include intrathecal
therapy (ITT) in every chemotherapy
course, but it is not evidence-based.

Previous AML-BFM studies included prophylactic CNS
irradiation, due to the BFM-AML87 study results that the
patients without CNS irradiation showed an increase in
marrow relapses (not CNS relapses) compared to
irradiated patients, but stopped since 2009 [18].

Abbreviations: BFM, Berlin-Frankfurt-Münster; COG, Children’s Oncology Group; DB, Dutch-Belgian; LAME,
Enfant Leucemie Aigue Myeloblastique; JPLSG, Japanese Pediatric Leukemia/Lymphoma Study Group; MRC,
Medical Research Council; NOPHO, Nordic Society of Paediatric Haematology and Oncology; SJCRH, St. Jude
Children’s Research Hospital; ADE, cytarabine + daunorubicin + etoposide; ADxE, cytarabine + liposomal
daunorubicin + etoposide; AIE, cytarabine + idarubicin + etoposide; AM, cytarabine + mitoxantrone; CNS,
central nervous system; CR, complete remission rate; CBF, core-binding-factor; DAT, daunorubicin + cytarabine
+ 6-thioguanine; DFS, disease-free survival rate; EFS, event-free survival rate; FLA, fludarabine + cytarabine;
GO, gemtuzumab ozogamicin; HAM, high-dose cytarabine + mitoxantrone; MAE, mitoxantrone + cytarabine +
etoposide; MRD, measurable residual disease; OS, overall survival rate, RR, relapse rate.

Post-induction chemotherapies, namely, consolidation or intensification courses, are
provided to all the patients who have achieved morphological CR to further consolidate the
remission status. Drugs used are almost the same as induction chemotherapies, consisting
mainly of cytarabine (generally includes HDAC) with or without anthracyclines and/or
other additional drugs. Many of the questions regarding post-induction chemotherapies
remain unsolved (Table 2), including the number of chemotherapy courses [6,47,70] and
the addition of other cytotoxic drugs. Regarding the role of GO in post-induction therapy,
COG AAML0531 showed the benefit of adding GO in a second consolidation course with
HDAC and mitoxantrone (also in initial induction) [9]. However, the addition of GO
(5 mg/m2/dose on days 1 and 21) at the very end of consolidation chemotherapies failed
to improve both EFS and OS in the NOPHO-AML2004 study [71]. Currently, the Japan
Children’s Cancer Group (JCCG) is evaluating the role of GO in post-induction phases
by randomizing the intermediate-risk and high-risk patients to receive three additional
courses of GO (3 mg/m2/dose)-combined or non-combined consolidation chemotherapy
(jRCTs041210015) [62]

Unlike the treatment of ALL, maintenance therapy is not a part of the standard of
care for AML [72]. However, maintenance therapy using targeted drugs, including FLT3
inhibitors, might offer a benefit [73].

As mentioned previously, there is no clear evidence for the best anthracyclines of
choice in AML chemotherapy. However, when comparing cumulative doses of different
anthracyclines, the equivalence ratio is an issue, particularly in terms of late cardiotoxicity
risks. For mitoxantrone and idarubicin, the ratio of 1:4–5 has been generally used for
doxorubicin-equivalent doses. Recently, Feijen et al. reported a higher mean mitoxantrone
conversion ratio of 10.5 (ratio of 0.5 for daunorubicin) based on cardiomyopathy risk
assessment of the 28,423 childhood cancer survivors from the Childhood Cancer Survivor
Study (CCSS), St. Jude Lifetime (SJLIFE), and Dutch Children’s Oncology Group (DCOG)-
LATER study cohorts [69]. This data should be taken cautiously because the survivors
included in this study were treated quite a long time ago (mostly between the 1960s and
late 1990s) with various disease backgrounds (not only AML), and there have been no
reports on increased cardiotoxicities from the UK or the Japanese group that had used
mitoxantrone in their AML protocol since the late 1990s. The risk of late cardiotoxicity is
something one should take into account for choosing kinds and doses of anthracyclines.
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Because the principle AML therapy has been systemic therapy, the need for local
therapy, including central nervous system (CNS)-directed therapy, is not clear. Most groups
usually include intrathecal therapy (ITT) with cytarabine with or without methotrexate and
corticosteroids in every chemotherapy course, but it is not evidence-based. In fact, adult
AML studies generally do not include ITT. However, it is well recognized that children with
AML (compared to adults) possess features with a higher risk of CNS disease and/or CNS
relapse, such as higher leukocyte count at diagnosis and a higher prevalence of monocytic
leukemia [74].

3.2. Hematopoietic Stem Cell Transplantation

The anti-leukemia effect of allogeneic HSCT relies on the cytotoxic effect of condition-
ing therapy and the immunological graft-versus-leukemia (GVL) effect by donor-derived
cytotoxic immune cells; an approximately 60–70% DFS rate and 10–15% treatment-related
mortality (TRM) is expected if transplanted in first or second CR [74]. Despite its poten-
tial risk of both acute and late toxicities, HSCT still plays an important role as a curative
post-remission therapy for children with AML, although its indication is restricted to the
high-risk subset (Table 1) [75]. Historically, both total body irradiation (TBI)-based and
non-TBI-based (usually busulfan-based) myeloablative conditioning (MAC) were used
in HSCT for children with AML. However, unlike ALL, both pediatric and adult studies
(mainly retrospective studies) have shown similar or better results in favor of non-TBI-
based conditioning for transplanting children with AML in terms of both efficacy and
toxicity [76–78]. Therefore, intravenous busulfan (IV-BU)-based MAC is currently con-
sidered as standard; IV-BU in combination with melphalan and/or cyclophosphamide is
generally used. Reduced-intensity conditioning (RIC) is an attractive option for children
with AML, particularly in terms of reducing risks of late effects. Several retrospective analy-
ses showed comparable outcomes between MAC and RIC, but an adult phase 3 randomized
study for AML and MDS by the Blood and Marrow Transplant Clinical Trials Network
(BMT CTN) demonstrated statistically significantly better relapse-free survival (RFS) in
MAC [79–81]. BU-based MAC and RIC were randomly compared in children with AML in
the MyeChild01 study, currently awaiting results.

4. Novel Therapy for Pediatric AML

The outcomes of recently conducted pediatric AML studies are listed in Table 3. EFS
ranges from 45% to 63% and OS from 65% to 80% [6–17]. As further improvements in
outcomes for children with AML by conventional approaches are unlikely, the introduction
of effective novel therapies to the current standard AML therapy would be a key solution.
Several new classes of agents currently under development will be discussed.
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Table 3. Comparison of recently completed pediatric AML studies.

Study
(Years of
Accrual)

No. of
Patients

Risk
Group/

Treatment
Arm

Cumulative Anthracycline Doses
No. (%) of

Patients
Treated

with CR1
HSCT

EFS, %
OS, %
(Years)

References

Daunorubicin Mitoxantrone Idarubicin Others

JPLSG
AML-05
(2006–2010)

443
LR – 25 20 –

46 (10) 54 (3)
73 (3)

Tomizawa
et al., 2013 [6]
Hasegawa
et al., 2020 [7]IR/HR – IR:55/HR40 IR:20/HR:10 –

JPLSG
AML-12
(2014–2018)

359

CBF SR – 40 20 –
40 (11) 63.1 (3)

80.3 (3)
Tomizawa
et al., 2018 [8]nCBF-

SR/HR – nCBF-SR:55
HR:40

nCBF-SR:20
HR:10 –

COG
AAML0531
(2006–2010)

1022
No HSCT 300 48 – –

157 (15) 53.1 (3) *
69.4 (3) *

Gamis et al.,
2014 [9]HSCT 300 – – –

COG
AAML1031
(2011–2016)

1097
LR 300 48 – –

85 (8) 45.9 (3)
65.4 (3)

Aplenc et al.,
2020 [10]HR 300 – – –

SJCRH
AML02
(2002–2008)

230
No HSCT 300 20 * or 50 – –

59 (26) 63.0 (3)
71.1 (3)

Rubnitz et al.,
2010 [11]HSCT 300 – – –

SJCRH
AML08
(2008–2017)

262
HD-ADE 300 36 – –

81 (31) 52.9 (3) **
74.8 (3) **

Rubnitz et al.,
2019 [12]Clo + Ara-C 150 36 – –

AML-
BFM2004
(2004–2010)

611
ADxE – SR:20/HR:40 14 DNX: 240

NA 55 (5)
74 (5)

Creutzig et al.,
2013 [13]AIE – SR:20/HR:40 50 –

AIEOP
AML2002/01
(2002–2011)

482 – – 50 60 – 141 (29) 55 (8)
68 (8)

Pession et al.,
2013 [14]

NOPHO
AML2004
(2004–2009)

151 – – 30 48 – 22 (15) 57 (3)
69 (3)

Abrahamsson
et al., 2011 [15]

DB-AML-01
(2010–2013) 112

AM – 30 36 –
NA 52.6 (3)

74.0 (3)
De Moerloose
et al., 2019 [16]FLA-DNX – – 36 DNX: 180

ELAM02
(2005–2011) 438

SR 80 60 – AMSA: 300
119 (27) 57 (4)

73 (4)
Petit et al.,
2018 [17]IR/HR – 60 – AMSA: 300

Abbreviations: AIEOP, Associazione Italiana di Ematologia e Oncologia Pediatrica; BFM, Berlin-Frankfurt-
Münster; COG, Children’s Oncology Group; DB, Dutch-Belgian; ELAM, Enfant Leucemie Aigue Myeloblastique;
JPLSG, Japanese Pediatric Leukemia/Lymphoma Study Group; NOPHO, Nordic Society of Paediatric Haema-
tology and Oncology; SJCRH, St. Jude Children’s Research Hospital; AM, cytarabine + mitoxantrone; AMSA,
amsacrine; Ara-C, cytarabine; Clo, clofarabine; CR1, first complete remission; CBF, core-binding-factor; DNX,
daunoxome; EFS, event-free survival rate; FLA-DNX, fludarabine + cytarabine + daunoxome; HR, high-risk;
HSCT, hematopoietic stem cell transplantation; IR, intermediate-risk; LR, low-risk; NA, not available; OS, overall
survival rate, SR, standard-risk. * GO arm. ** Clo + Ara-C arm.

4.1. FLT3 Inhibitors

FLT3 is a transmembrane ligand-activated receptor tyrosine kinase that is normally
expressed by hematopoietic stem or progenitor cells and plays an important role in the
early stages of both myeloid and lymphoid lineage development. An extracellular ligand
binds and activates FLT3, promoting cell survival, proliferation, and differentiation through
various signaling pathways, including PI3K, RAS, and STAT5. Mutations of the FLT3
gene are found in approximately 30% of newly diagnosed adult AML cases (25% as ITDs
and 10% as point mutations in the tyrosine kinase domain [TKD]) [38]. Frequencies in
children with AML are lower, i.e., ITDs are found in 10% and TKD mutations in 6% of
the cases [34]. Both FLT3-ITD and TKD mutations constitutively activate FLT3 kinase
activity, resulting in proliferation and survival of AML. The presence of FLT3-ITD, not
FLT3-TKD, is associated with poor outcomes both in children and adults with AML. FLT3
inhibitors are molecular-targeted agents that inhibit FLT3 signaling and are of two types.
Type I inhibitors (midostaurin, gilteritinib) bind the FLT3 receptor in both the active and
inactive conformational state of the FLT3 kinase domain, either near the activation loop
or the ATP binding pocket, and are active against both ITD and TKD mutations. Type
II inhibitors (sorafenib, quizartinib) bind specifically for the inactive conformation in a
region adjacent to the ATP-binding domain. As a result of this binding affinity, type II FLT3
inhibitors prevent the activity of only ITD mutations but do not target TKD mutations. In
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terms of development history, midostaurin and sorafenib belong to the first generation,
which was identified to have an FLT3 target among the various compounds with multi-
targets. Quizartinib and gilteritinib belong to the second generation, which was originally
designed to target FLT3, and therefore, more FLT3-specific compared to the first-generation
inhibitors. Midostaurin is not active when used as monotherapy, but was developed
for use in combination therapy [82]. Sorafenib, quizartinib, and gilteritinib all showed
approximately 50% response rate for relapsed/refractory AML as monotherapy [83–85].
Each drug has specific toxicities, such as skin rash in sorafenib and QTcF prolongation in
quizartinib for example. Current development of FLT3 inhibitors is focused on combination
chemotherapy. In the QuANTUM-First trial, a randomized phase 3 study for newly
diagnosed FLT3-ITD positive adult AML on a quizartinib combination, the addition of
quizartinib significantly improved EFS and OS, and toxicities were comparable between
the two arms [86]. Pediatric development of FLT3 inhibitors is lagging behind compared
to adults. However, in the COG AAML1031 study, children with newly diagnosed high
allelic ratio FLT3-ITD positive AML were eligible for receiving sorafenib combined therapy,
and improved EFS was observed for the 72 children who took sorafenib compared to the
76 children who did not [71]. Table 4 shows the ongoing FLT3 inhibitor trials for children
with AML.

Table 4. Going FLT3 inhibitor trials in children with AML.

Trial
(ClinicalTrials.gov

Identifier)
Regimen Key Eligibility Phase

(No. Patients) Current Status

Novartis
(NCT03591510) Midostaurin + chemo Children (3 mo–17 yo)

FLT3-mutated AML
Phase 2
(n = 23)

Recruiting
33 sites: US, Austria, Czechia,
Germany, Greece, Italy,
Poland, Russia, Slovenia,
Turkey, Jordan, Japan, Korea

COG AAML1831
(NCT04293562) Gilteritinib + chemo

Children (2 yo–21 yo)
FLT3-ITD (AR > 0.1)+ AML
FLT3-TKD + AML

Phase 3 Recruiting

Astellas
(NCT04240002) Gilteritinib + chemo Children, AYA (6 mo–21 yo)

r/r FLT3-ITD + AML
Phase 1/2
(n = 97)

Recruiting
19 sites: US, Canada,
Germany, Italy, Spain, UK

Daiichi
Sankyo/ITCC/COG
(NCT03793478)

Quizartinib + chemo Children, AYA (1 mo–21 yo)
r/r FLT3-ITD + AML

Phase 1/2
(n = 65)

Recruiting
36 sites: US, Canada,
Belgium, Denmark, France,
Italy, Netherlands, Spain,
Sweden, UK, Israel

Abbreviations: COG, Children’s Oncology Group; ITCC, Innovative Therapy for Childhood Cancer; AR, allelic
ratio; AYA, adolescents and young adults; FLT3-ITD, internal tandem duplication of FLT3 gene; FLT3-TKD,
tyrosine kinase domain mutation of FLT3 gene; r/r, relapsed/refractory.

4.2. BCL2 Inhibitors

B-cell/CLL lymphoma-2 (BCL-2) family proteins regulate the intrinsic apoptosis
pathway by integrating diverse pro-survival or pro-apoptotic intracellular signals. In AML,
increased expression of BCL2 family proteins in leukemic blasts has been reported, and
the majority of AML stem cells express aberrantly high levels of BCL2 and are dependent
on BCL2 for survival. Furthermore, high expression of BCL2 has been associated with an
inferior response to chemotherapy and poor survival among patients with AML. Venetoclax,
a selective small-molecule BCL2 inhibitor, has been shown in preclinical studies to induce
apoptosis in malignant cells that are dependent on BCL2 for survival. However, the
single-agent venetoclax has had only modest activity in AML. Through downregulation of
myeloid-cell leukemia 1 (MCL1) and induced expression of the pro-death proteins NOXA
and PUMA, azacitidine or cytarabine synergistically inhibits the pro-survival proteins
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MCL1 and BCL-XL, thereby increasing the dependence of leukemia cells on BCL2. In
fact, venetoclax combined with azacytidine or in combination with LDAC significantly
prolonged the survival of adult patients with AML unfit for standard chemotherapy [87,88].
In the SJCRH phase 1 study for children with relapsed/refractory AML, venetoclax in
combination with LDAC or HDAC was tested, and 360 mg/m2 venetoclax in combination
with HDAC with or without idarubicin was determined to be the recommended phase
2 dose [89]. The overall response was 69%. Febrile neutropenia and invasive fungal
infections were observed in 16% of the patients and one treatment-related death was
observed. However, the treatment was tolerable overall. Currently, a phase 3 trial of
venetoclax in combination with fludarabine, cytarabine, and GO for children with relapsed
AML is ongoing (NCT05183035). This study is conducted as one of the sub-studies of
PedAL/EuPAL initiatives, a global precision medicine master clinical trial that will test
multiple targeted therapies simultaneously at various clinical sites, mainly in the U.S.
and Europe.

4.3. Menin Inhibitors

KMT2A-r AML accounts for 20–25% of pediatric AML. Recently, the updated retro-
spective study by the I-BFM was published; notably, nearly 50% of the patients failed the
therapy even if their MRD was negative after the second induction [90]. Menin inhibitors
are the most attractive class of agents for leukemia with KMT2A-r. Menin is a product of
the MEN1 tumor suppressor gene, which binds to the rearranged KMT2A complex and
leads to the upregulation of leukemogenic genes (such as HOX and MEIS1), and thus to
the subsequent development of acute leukemia. Menin inhibitors have shown selective,
profound single-agent activity in KMT2A-r PDX models [91]. Menin inhibitors are poten-
tially active against other subtypes of AML, such as NPM1c and NUP98-rearranged AML.
NPM1c AML accounts for 20–30% of adult AML and 6% of pediatric AML and is generally
associated with good prognosis. NPM1-coding protein nucleophosmin shuttles between
the nucleus and cytoplasm during the cell cycle and is involved in diverse cellular pro-
cesses, such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone
assembly, cell proliferation, and regulation of tumor suppressors TP53. However, mutated
NPM1 (NPM1c) persists in the cytoplasm, and although the mechanism is not clear (but
presumed to be a loss of function), NPM1c is associated with upregulation of HOX genes
in a menin-dependent manner [92]. NUP98-rearranged AML accounts for less than 1% of
adult AML and 7% of pediatric AML and is associated with unfavorable outcomes. It is
known that NUP98 fusion proteins interact with KMT2A chromatin complexes and pro-
mote leukemogenesis. Inhibition of menin-KMT2A impairs leukemogenic gene expression
and disrupts chromatin binding of menin, KMT2A, and NUP98 fusion proteins in mouse
models [93]. Given the strong preclinical rationale justifying the use of menin inhibitors as a
novel class of targeted therapy in acute leukemias, multiple clinical trials with these agents
are in progress. The Syndax trial AUGMENT-101 is an industry-initiated first-in-human
phase 1 clinical trial of the oral menin-inhibitor product revumenib (SNDX-5613) for both
adults and children with relapsed/refractory acute leukemia with KMT2A-r or NPM1c [94].
Because revumenib is a substrate of cytochrome P450 3A4 (CYP3A4), two parallel dose-
escalation cohorts, one without (Arm A) and one with (Arm B) strong CYP3A4 inhibitors,
were conducted. There were no discontinuations or deaths due to treatment-related adverse
events. Dose-limiting toxicities were asymptomatic grade 3 prolonged QTc in both arms.
Notably, differentiation syndrome was observed in 16% of the patients. Overall response
rate was 59%, and 73% of the patients achieving CR/CRh were MRD negative. Other
menin inhibitor trials in children are also in progress.

4.4. Others

In addition to the cell signaling inhibitors against FLT3, BCL2, and menin, examples
of novel therapies of interest for pediatric AML are immunotherapies (e.g., ADC, bispecific
antibodies/T-cell engagers, chimeric antigen receptor T-cells [CAR-T]) targeting CD123
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(expressed in nearly all AML subsets and leukemia stem cells), CD33, FLT3, or FOLR1
(targeting CBFA2T3::GLIS2 fusion-positive AML), checkpoint inhibitors, cell-signaling
inhibitors targeting MEK (NRAS and KRAS mutations are among the most common
mutations in pediatric AML), and epigenetic modifiers (e.g., DNA methyltransferase
inhibitors, histone deacetylase inhibitors, IDH1/IDH2 inhibitors) [95]. Finally, owing
to the limited number of patients within each AML subgroup with a specific targetable
disease, international cooperation (e.g., the PedAL/EuPAL initiatives) is crucial for effective
drug development.

5. Conclusions and Future Directions

A quarter century of global efforts on clinical trials have contributed to improved
outcomes for children with AML but are still tentative. Refinement in risk stratification
based on leukemia biology and MRD, as well as the introduction of emerging novel
therapies to contemporary therapy, through international collaboration, would be a key
solution for further improvement in outcomes.
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