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Simple Summary: Our study provides an overview of the current state of artificial intelligence
applications in urooncology and explores potential future advancements in this field. With remarkable
progress already achieved, artificial intelligence has revolutionized urooncology by facilitating image
analysis, grading, biomarker research, and treatment planning. We also discuss types of artificial
intelligence and their possible applications in the management of cancers such as prostate, kidney,
bladder, and testicular. As artificial intelligence technology continues to evolve, it holds immense
promise for further advancing urooncology and enhancing the care of patients with cancer.

Abstract: Introduction: Artificial intelligence is transforming healthcare by driving innovation,
automation, and optimization across various fields of medicine. The aim of this study was to
determine whether artificial intelligence (AI) techniques can be used in the diagnosis, treatment
planning, and monitoring of urological cancers. Methodology: We conducted a thorough search
for original and review articles published until 31 May 2022 in the PUBMED/Scopus database.
Our search included several terms related to AI and urooncology. Articles were selected with the
consensus of all authors. Results: Several types of AI can be used in the medical field. The most
common forms of AI are machine learning (ML), deep learning (DL), neural networks (NNs), natural
language processing (NLP) systems, and computer vision. AI can improve various domains related
to the management of urologic cancers, such as imaging, grading, and nodal staging. AI can also
help identify appropriate diagnoses, treatment options, and even biomarkers. In the majority of
these instances, AI is as accurate as or sometimes even superior to medical doctors. Conclusions: AI
techniques have the potential to revolutionize the diagnosis, treatment, and monitoring of urologic
cancers. The use of AI in urooncology care is expected to increase in the future, leading to improved
patient outcomes and better overall management of these tumors.

Keywords: artificial intelligence; machine learning; urooncology; prostate cancer

1. Introduction

Medicine has changed over the decades. Due to better access to medical care, the
number of patients has increased, indicating an increase in data that must be acquired and
processed. Over the years, science has made numerous discoveries that can be applied to
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several medical issues, even in unexpected fields. It is necessary to determine how to apply
these solutions to issues that seem unsuitable and even irrelevant.

The journey of Artificial Intelligence (AI) in medicine began in the 1950s and 1960s
with early attempts at developing machines capable of making decisions and mimicking
human conversation [1]. During the 1970s to 2000s, despite periods of reduced funding
and interest, collaborations among pioneers in AI continued, leading to prototypes like the
CASNET—model for glaucoma consultation. This causal-associational network included
model-building, consultation, and a database, enabling personalized advice for physicians
on patient management. Another milestone was the “backward chaining” AI system called
MYCIN. It used patient information provided by physicians and a knowledge base of about
600 rules to suggest potential bacterial pathogens and recommend antibiotic treatments
adjusted for the patient’s body weight.

The early 2000s saw a revival of interest in Machine Learning (ML) and AI with the
development of the question-answering system Watson by IBM, an open-domain question-
answering system. Watson harnessed the power of DeepQA technology, utilizing natural
language processing and data analysis to generate probable answers from unstructured con-
tent. This breakthrough allowed for evidence-based clinical decision-making by drawing
information from patients’ electronic medical records.

With improved computer hardware and software, digitalized medicine rapidly ad-
vanced, including the use of chatbots like Siri and Alexa. Deep Learning (DL) emerged
as a game-changer, allowing AI systems to classify data autonomously and process large
datasets more efficiently.

Today, AI assists medical professionals in establishing diagnoses, making therapeutic
decisions, and predicting the outcome. It supports every procedure that involves data
processing and knowledge and is used by healthcare professionals in their everyday duties.
Currently, AI can perform all these tasks with the same efficiency as skilled physicians [2].
Sometimes, it can even outperform expert clinicians [3].

AI is capable of a broad range of tasks, including separating cancer cells from healthy
tissue, determining whether lymph node metastases have occurred, discovering biomarkers,
predicting outcomes, and making therapeutic decisions [4]. In this review, we explore AI
applications in urogenital system cancers, drawing from the latest research. Providing a
comprehensive view of urooncology while focusing on individual cancer types, this study
fosters a detailed and integrated understanding of the subject.

2. Materials and Methods

For this narrative review, we conducted comprehensive English-language litera-
ture research for original and review articles published until 31 December 2022 in the
PUBMED/Scopus database. We searched for the following terms, alone or in combination:
artificial intelligence, machine learning, deep learning, neural networks, computer-aided
diagnosis, urooncology, prostate cancer, kidney cancer, testicular cancer, bladder cancer,
and upper tract urothelial carcinoma. We found 249 related articles. The relevant studies
were identified by evaluating the abstracts, and complete articles were obtained in cases
where abstracts were unavailable. Duplicate papers were removed, and the data were
screened to exclude irrelevant works. Case reports, comments, conference papers, com-
mentaries, surveys, and animal studies were all excluded from the full-text publications.
After applying the exclusion criteria, 99 full-text manuscripts were assessed for eligibility
with the consensus of the authors.

3. Definition and Types of AI

Artificial intelligence (AI) is a broad term encompassing computer systems capable of
performing tasks that traditionally require human cognition [5]. It involves programmed
machines that can learn, identify patterns, and establish relationships between inputs
and outputs [6]. Utilizing diverse mathematical and algorithmic methods, AI sits at the
convergence of neurocomputing, statistical inference, pattern recognition, data mining,
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knowledge discovery, and machine learning (ML) [7]. In recent times, AI has emerged as a
powerful tool, making remarkable strides in addressing numerous medical challenges.

Artificial intelligence (AI) encompasses several fields with the common goal of com-
putationally simulating human intelligence:

1. Machine learning (ML) is one of the most important types of artificial intelligence.
This technology involves prediction by identifying patterns in data using mathematical
algorithms. Machine learning includes three methods: deep learning, logistic regression,
and neural network architecture. ML algorithms can help automate the process of detecting
and diagnosing cancer.

Deep learning (DL) predicts using multilayer neural network algorithms inspired by
the neurological architecture of the brain. Deep learning (DL) can automatically extract fea-
tures and assimilate and evaluate large amounts of complex data. Using large amounts of
medical data and state-of-the-art computing technologies, DL can improve cancer diagnosis
and treatment. DL has found widespread application in oncology research, encompassing
early cancer detection, diagnosis, classification, and grading. Additionally, it has been in-
strumental in molecular tumor characterization, predicting patient outcomes and treatment
response, facilitating personalized treatment approaches, automating radiation therapy
workflows, and even aiding in the discovery of new anticancer drugs. Furthermore, DL
plays a crucial role in streamlining clinical trials, revolutionizing how oncology research
and patient care are conducted [8,9].

2. Neural networks (NNs) are increasingly being applied to complex ML data and
include artificial neural networks (ANNs), multilayer perceptrons (MLPs), recurrent neural
networks (RNNs), and convolutional neural networks (CNNs).

Artificial Neural Networks (ANNs) are computational tools inspired by the structure of
the human nervous system. These networks comprise interconnected computer processors,
often referred to as “neurons”, which can process data and represent knowledge through
parallel computations. ANNs consist of multiple layers of neurons, including an input
layer, one or more hidden layers, and an output layer. Each neuron is connected to
others in the network through links, and each link possesses a numerical weight. One
notable aspect of ANNs is their capacity to learn from their experiences in a training
environment, making them adaptive and capable of improving their performance over
time. Thanks to their analytical abilities, ANNs can compare various interactions among
clinical, biological, and pathological variables and identify relationships between these
variables. Researchers actively use ANNs to diagnose, treat, and predict outcomes in
challenging clinical situations [9,10].

Convolutional neural networks (CNNs) are widely regarded as the most popular and
effective deep learning architectures. They are particularly adept at handling large and
intricate image data and extracting essential features through convolutional filters. By
adjusting these filters based on learned parameters, CNNs can identify the most relevant
features for specific tasks. The use of CNNs is not limited to image data; they have also
been adapted to analyze non-image data, like genomic data represented in vector, matrix,
or tensor formats [6,9,11]. MLPs, on the other hand, are simpler neural networks that
process input data sequentially through layers, making general predictions but being
susceptible to overfitting [12,13]. RNNs are designed to handle sequential data, capturing
past elements in hidden “state vectors” and making predictions based on current and
previous elements [12]. While some neural network models have already been approved
and accepted in clinical settings, the routine clinical application of neural networks is still
somewhat limited. Nevertheless, their potential for revolutionizing healthcare continues to
grow, especially in fields such as cancer diagnosis and prediction [14,15].

3. NLP systems address a wide range of important clinical and research tasks. NLP is
capable of processing free clinical text and generating structured output. There has been
extensive focus on applying NLP techniques to identify and extract key data (information)
from unstructured text so that it can be transformed into structured data that can later be
analyzed and stored in a database. The steps for extracting information are as follows:
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named entity recognition, relationship extraction, event and temporal expression extraction,
and entity merging and normalization [16].

4. Computer vision, a vital branch of artificial intelligence (AI), empowers computers
and systems to derive valuable insights from digital images, videos, and visual data. By
understanding and interpreting visual input, computers gain the ability to take action
and provide informed recommendations. This field employs advanced deep learning
technologies, particularly convolutional neural networks (CNNs), to process and analyze
visual information. The primary goal of computer vision is to develop algorithms, data
representations, and computer architectures that emulate human-like visual capabilities.
Through computer vision, machines can “see”, observe, and comprehend the world around
them, opening up new possibilities for numerous applications [16].

The discussed subfields of artificial intelligence are presented in Figure 1.
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4. Application of AI in Urological Oncology
4.1. Prostate Cancer

Prostate cancer (PCa) is one of the main causes of cancer-related morbidity and mortal-
ity across the world. It is a complex and diverse disease with various diagnostic methods,
including biopsy, PSA testing, and MRI. The majority of prostate cancer cases are adeno-
carcinomas, originating from luminal or basal epithelial cells in the peripheral regions of
the prostate. Risk factors like family history, ethnicity, age, and obesity contribute to its
variation across populations. Treatment options such as active surveillance, chemotherapy,
radiation therapy, and surgery are tailored to individual tumor characteristics. Under-
standing these factors is crucial for the effective management and treatment of prostate
cancer [17,18].

Given the large increase in life expectancy over the past few decades, it is reasonable
to assume that the number of patients with prostate cancer will grow. Unfortunately, there
are still many uncertainties surrounding the diagnosis and treatment of PCa. Consequently,
it is necessary to develop new methods for managing this condition [19,20].
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4.1.1. Imaging and Diagnosis

AI systems can automate the detection of cases in which prostate cancer is highly
suspected. In a study by Cao et al. [21], the deep learning algorithm FocalNet was trained
using 3T T2-weighted imaging and diffusion-weighted imaging of 553 patients who later
underwent radical prostatectomy. Lesion detection sensitivity vs. the number of false-
positive detections at various thresholds on suspicion scores was used to compare the PCa
recognition rates of FocalNet and radiologists. For clinically important and index lesions,
respectively, FocalNet performed 5.1% and 4.7% worse than radiologists. However, the
differences were not statistically significant (p = 0.413 and p = 0.282, respectively) [21].

Giannini et al. proposed a computer-aided diagnosis (CAD) tool that can help manage
patients suspected of having PCa and determine the target for an MRI-guided biopsy. CAD
is a two-stage system. First, a map of the probability that prostate voxels will develop cancer
is made. Next, to evaluate the sensitivity of the system and the quantity of false-positive
(FP) regions recognized by the system, a candidate segmentation phase is carried out to
highlight questionable areas. In a study by Giannini et al. [22], the area under the curve
(AUC) for a cohort of 56 patients (i.e., 65 lesions) acquired during the voxel-wise phase
was 0.91, and the second stage resulted in a per-patient sensitivity of 97%, with a median
number of FP equal to 3, in the entire prostate sample [22].

CAD’s ability to detect more challenging cancers in the gland’s center may increase
specificity and the radiologists’ level of experience. The objective of Gaur’s study was to
compare the effectiveness of CAD to that of traditional multiparametric MRI (mpMRI)
interpretation in prostate cancer identification. Index lesion sensitivities of CAD were 76%
(p = 0.39) for the whole prostate, 77% (p = 0.07) for the peripheral zone, and 79% (p = 0.15)
for the transition zone compared to those of mpMRI at 79%, 84%, and 76%, respectively [23].

In a study by Pantanowitz et al., an AI-based algorithm was created using samples
of prostate core needle biopsies stained with hematoxylin and eosin. It was trained with
1,357,450 visual patches from 549 slides and tested with 2501 samples internally and with
1627 samples externally. The AUC of the algorithm was 0.997 in the internal test set and
0.991 in the external test set. The AUC for identifying Gleason pattern 5 was 0.971, and
the AUC for differentiating between low-grade (Gleason score 6 or ASAP) cancer and
high-grade (Gleason score 7–10) cancer was 0.941, along with 0.957 for perineural invasion.
This study also provided the first instance of undetected cancer that the algorithm managed
to identify [3].

Wang’s [24] prospective multi-center randomized comparative trial aimed to compare
the prostate cancer (PCa) detection rate using different biopsy methods. Four hundred
patients were divided into three groups: TRUS-guided 12-core standard systematic biopsy
(TRUS-SB), cognitive fused mpMRI-guided 12-core biopsy (mpMRI), and artificial intelli-
gence ultrasound of the prostate (AIUSP)-targeted biopsy. The AIUSP group showed the
highest PCa detection rate (49.6%) compared to TRUS-SB (34.6%) and mpMRI (35.8%). The
detection rate of clinically significant PCa (csPCa) was also highest in the AIUSP group
(32.3%). The overall biopsy core positive rate was significantly lower in the TRUS-SB and
mpMRI groups than in the AIUSP group. These findings suggest that AIUSP may serve as
a promising alternative to systematic biopsy for PCa diagnosis in the future.

Furthermore, Stojadinović et al. demonstrated that AI can predict the risk of PCa and
minimize overdiagnosis and overtreatment. They created a classification and regression
tree (CART) model that, regardless of the prostate specific antigen (PSA) level, could be
applied to patients referred for an abnormal PSA level, a digital rectal examination (DRE),
or both in order to recognize patients with severe prostate cancer (PCa) on prostate biopsy.
The CART analysis was performed using each predictor identified by the univariate logistic
regression analysis. A variety of clinical utility and predictive performance aspects of risk
projections were investigated. The model identified PCa in 92 (41.6%; AUC = 0.833) of
221 patients. To conclude, CART analysis prevents any major PCa from being missed while
reducing unnecessary biopsies [25].
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There have also been attempts to use machine learning for prostate cancer localization
using transrectal ultrasound [26] and classifier ensembles using T2-weighted MRI alone [27].

4.1.2. Gleason Grading

The ability of AI to localize, detect, and grade prostate cancer in biopsy samples can
be comparable to that of prominent prostate pathology experts. Marginean et al. [28] used
698 prostate biopsy samples from 174 patients to train an AI algorithm and then tested it on
37 biopsy sections from 21 patients. AI achieved high accuracy in detecting the cancer areas,
with a sensitivity of 100% and a specificity of 68%. The Gleason patterns were assigned
correctly, with an intraclass correlation coefficient (ICC) of 0.96 for Gleason patterns 3 and 4,
and with an ICC of 0.82 for Gleason pattern 5. Furthermore, the algorithm was comparable
with pathologists in detecting cancer areas (ICC = 0.99). This discovery can undoubtedly
simplify the diagnosis of prostate cancer [28].

Ström et al. conducted a study in which deep neural networks were trained with
6682 biopsy slides from 976 patients and tested with 1631 samples from 246 men. The
assignment was to determine the occurrence, extent, and Gleason grade of malignant
tissue with the help of AI. The AUC for the AI was 0.997 for differentiating benign and
malignant biopsy slides. Moreover, the cancer length assigned by the reporting pathologist
and predicted by the AI had a 0.96 correlation [29].

Here, the PANDA challenge ought to be mentioned. In this largest histopathology trial,
1290 developers competed to create repeatable AI algorithms for Gleason grading using
10,616 digitalized prostate samples. On external validation sets from the United States
and Europe, the algorithms met expert uropathologists’ agreement levels of 0.862 (95%
confidence interval (CI), 0.840–0.884) and 0.868 (95% CI, 0.835–0.900), respectively. This
indicates that AI tools were capable of identifying and grading cancers with pathologist-
level accuracy, achieving professional reference criteria. Furthermore, it was discovered
that the algorithms missed fewer tumors than the pathologists in the US external validation
set [30].

4.1.3. Nodal Staging

In a study by Hartenstein et al. [31], convolutional neural networks (CNNs) were
trained to establish lymph node status in patients with PCa using only computer tomogra-
phy images. Three CNNs were trained with 68Ga-PSMA-PET/CT imaging of 549 patients,
with 2616 lymph nodes segmented. The CNNs were conducted with an AUC of 0.86. The
expert clinician’s AUC was 0.81, which confirms that CNNs can adequately determine
the lymphatic spread. Moreover, CNNs demonstrated the ability to “learn” since they
predicted the chances of infiltration based on the anatomical regions, which positively
affected their performance [31].

4.1.4. Biomarkers

AI may be valuable in analyzing and verifying potential PCa biomarkers. Green
et al. attempted to determine whether the potential biomarkers Ki67 and DLX2 could be
reliable indicators of PCa progression. First, they investigated the connection between
tumor protein levels of Ki67 and DLX2 in transurethral resected prostatectomy samples and
time to death and metastasis. Artificial neural network (ANN) analysis showed that Ki67,
which was found only in 6.8% of the patients, can be predictive of reduced survival and
increased probability of metastasis (p = 0.025), independent of the PSA level and Gleason
score. Moreover, DLX2 was detected in 73% of the patients, and DLX2 was co-expressed
with high Ki67 levels in 8.2% of the patients. According to ANN, DLX2 is a potential
marker of increased metastasis risk. In conclusion, Ki67 and DLX2 can assist physicians in
identifying patients who need to be actively monitored [32].

As a predictor of the presence of biomarkers, AI is faster and more objective than
manual quantification. Calle et al. [33] tested the AI algorithm to identify anti-Ki67 and
ERG antibodies in 648 samples. Results differed from those of manual detection by only
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5% and were 100% accurate in identifying the positive tumors. Interestingly, the algorithm
was also able to increase its accuracy following each round of adjustments and input from
the training set [33].

AI may also identify promising prostate cancer biomarkers. The genetic algorithm-
optimized artificial neural network (GA-ANN) was developed in order to create a diag-
nostic prediction model and filter potential genes obtained by meta-analysis of the openly
accessible microarray data by RankProd. The expression of three genes was considered.
C1QTNF3 was proven to be significantly correlated with PCa patient recurrence-free sur-
vival (RFS; p < 0.001, AUC = 0.57). This procedure can be used to identify other oncogenes
or biomarkers in various urooncology diseases [34].

Proteomic analysis can also be used to discover possible biomarkers. To explore new
potential proteomic signatures for prostate cancer, Kim et al. [35] created a unique method
that combines targeted proteomics with computational biology. First, they identified
133 different expressed proteins in patients with PCa. Next, using synthetic peptides, they
assessed these proteins in a group of 74 patients. Next, machine learning methods were
used to create clinical predictive models of the diagnosis and prognosis of prostate cancer.
The findings suggest that precise, noninvasive biomarkers can be found via computationally
guided proteomics [35]. Furthermore, AI can predict different indicators, e.g., the 10-year
cancer-specific survival (CSS) and overall survival (OS) of patients with PCa. Two gradient-
boosting models using the data of patients diagnosed with PCa were trained on 7021 cases
and tested on 1755 cases. The accuracy was 0.87 for the CSS and 0.98 for the OS. The ability
of AI to interpret data offers clinicians and patients a new approach for predicting prostate
cancer and its outcome [36].

4.1.5. Treatment

AI can determine the most appropriate treatment plan for patients. Auffenberg et al. [37]
showed AI as a tool that can assist patients with PCa who have just received a diagnosis
by predicting therapy choices on the basis of information from a registry of patients with
comparable conditions. A prospective database of patients with PCa was built using
information from 45 units of the Michigan Urological Surgery Improvement Collaborative
(MUSIC). Then, a random forest machine learning model was applied, which was trained
with a sample containing two-thirds of the patients and evaluated with the remaining
one-third of the patients. The individualized prediction was exact (AUC = 0.81). Patients
can use this online tool to obtain a better understanding of the various treatment options
offered by their physicians, as well as physicians advice to seek a different therapy approach
from their first choice. Indubitably, both sides can benefit from this instrument [37].

To predict and understand late genitourinary (GU) toxicity after radiation therapy in
patients with prostate cancer, Lee et al. [38] used bioinformatics tools and machine learning
techniques on genome-wide data. First, the patterns in genome-wide single-nucleotide
polymorphisms (SNPs) were recognized and gathered. Next, a preconditioned random
forest regression method was used to speculate on the risk on the basis of that data. The
system was tested on 234 patients who had undergone radiation treatment two years
earlier. The patients performed a self-assessment for four urinary symptoms using the
International Prostate Symptom Score. Across the symptoms, the prediction accuracy of
the method varied. It only managed to achieve a significant AUC of 0.70 for the weak
stream endpoint. Nevertheless, as a result of their research, a more accurate predictive
model could be created, and probable biomarkers and biological processes connected to
GU toxicity could be identified [38].

Using megavoltage (MV) pictures for image-guided radiation therapy (IGRT) in
prostate cancer patients would undoubtedly be advantageous. It eliminates the need
for additional equipment and imaging doses. It additionally provides motion data with
treatment beam alignment. For this purpose, Chrystall et al. [39] developed a novel real-
time marker tracking system using a convolutional neural network (CNN) classifier. The
CNN demonstrated high accuracy in identifying implanted prostate markers with an AUC
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of 0.99, a sensitivity of 98.31%, and a specificity of 99.87%. The marker tracking system
achieved sub-millimeter accuracy, making it suitable for real-time applications in IGRT and
providing a promising approach for accurate and efficient treatment.

AI-based treatment planning systems are efficient and save time. In a study by Nico-
lae et al. [40], 41 patients who had received 125I low-dose-rate brachytherapy were divided
into two groups randomly. The treatment of 21 patients was planned using a machine-
learning-based prostate implant planning algorithm (PIPA) system, while the treatment of
the remaining patients was planned using the conventional method. After the radiation
oncologist modified the plan, the first evaluation was carried out by determining the dice
coefficient of the prostate V150% isodose volume between PIPA and the standard method.
Additional comparisons between groups focused on dosimetric results at preimplant and
Day 30, as well as the amount of planning time. Results indicated that the plans of more
patients’ in the PIPA group did not require modification, and compared to the conven-
tional technique (43.13 ± 58.70 min), the planning time for PIPA was significantly shorter
(2.38 ± 0.96 min). In addition, no discernible differences between these two groups were
discovered [40].

Deng et al. showed a similar strategy. Docetaxel, the medication used to treat
metastatic castration-resistant prostate cancer, is only effective in 20% of patients. Al
can accurately divide patients into docetaxel-tolerant and docetaxel-intolerant groups,
which can help select adequate treatment and avoid early therapeutic failure [41].

Table 1 summarizes the most important studies examining AI applications in prostate cancer.

Table 1. Studies looking at applications of AI in prostate cancer.

Study Objective Algorithm/Method Study Design Results

Cao et al. [21]

Detection of prostate
cancer using 3 T

multiparametric magnetic
resonance imaging

Deep learning algorithm

• development cohort:
427 patients

• evaluation cohort:
126 patients

Detection sensitivity: 5.1% and
4.7% below the radiologists for
clinically significant and index

lesions, respectively

Giannini et al. [22] Setting of the MRI-guided
biopsy target Computer-aided diagnosis

• 56 patients
• 65 lesions Accuracy—97%

Gaur et al. [23] Detection of prostate
cancer using mpMRI Computer-aided diagnosis

• 144 case patients
• 72 control patients

Improved patient-level
specificity (72%) compared to

mpMRI-alone (45%)

Wildeboer et al. [42]

Detection of prostate
cancer using B-mode,

shear-wave elastography,
and contrast-enhanced
ultrasound radiomics

Machine learning • 48 patients
AUC-ROC of 0.75 for detecting

PCa and 0.9 for detecting
Gleason score greater than 3 + 4

Viswanath et al. [27]
Detection of peripheral
zone prostate tumors

using T2-weighted MRI
Computer-aided diagnosis

• 85 prostate cancer
datasets acquired
from across 3
different institutions
(1 for discovery, 2 for
independent
validation)

AUC of 0.744 for detecting PCa

Marginean et al. [28]
Standardization of
Gleason grading in
prostate biopsies

Machine learning and
convolutional neural

networks

• 698 prostate biopsy
sections from 174
patients for training

• 37 biopsy sections
from 21 patients
for test

Sensitivity in detecting cancer
(100%) and identifying the

correct Gleason pattern
(80–91%) depending on the

Gleason pattern, and specificity
(68–98%) depending on the

Gleason pattern.
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Table 1. Cont.

Study Objective Algorithm/Method Study Design Results

Ström et al. [29]
Detection and grading of

prostate cancers in
prostate biopsies

Deep neural networks

• 6953 prostate biopsy
samples from 1063
patients for training

• 1943 biopsy samples
from 391 patients for
evaluations

AUC-ROC of 0.997 in
distinguishing the malignancy,

comparable performance to
expert pathologists in assigning

Gleason grades.

Bulten et al. [30]
Detection and grading of

prostate cancers in
prostate biopsies

Multiparametric
algorithms

• 10,616 digitized
prostate biopsies

Agreements of 0.862 and 0.868
with expert uropathologists

Hartenstein et al. [31] Prostate cancer nodal
staging using CT imaging

Convolutional neural
networks (CNNs)

• 2616 lymph node
samples from 546
patients were
segmented

AUC of 0.95 and 0.86 compared
to an AUC of 0.81 for

experienced radiologists

Green et al. [32] Identification and
validation new biomarkers

Artificial neural network
(ANN)

• 192 tissue
microarrays (TMA)
constructed from
transurethral
resected
prostatectomy
histology samples

High Ki67 is predictive of
reduced survival and increased
risk of metastasis, independent

of PSA and Gleason score.
DLX2 shows increased

metastasis risk and
co-expression with a high

Ki67 score

Calle et al. [33] Automation analysis of
biomarkers Deep learning algorithm

• 648 samples of tissue
microarrays (TMA)

5% variance compared to
manually generated results;

100% accuracy in identifying
positive tumors

Hou et al. [34]
Identification and
validation of new

biomarkers

Genetic
algorithm-optimized

artificial neural network
(GA-ANN)

• Meta-analysis using
RankProd from
microarray data

AUC of 0.953 for diagnostic
accuracy and AUC of 0.808 for

prognostic capability

Auffenberg et al. [37]

Development of a
web-based system to

provide newly diagnosed
men with predicted
treatment decisions

Random forest ML model

• Registry data from
45 MUSIC urology
practices from 2015
to 2017

AUC of 0.81 for personalized
prediction

Lee et al. [38]
Prediction of late GU
toxicity after prostate

radiation therapy

Preconditioned random
forest regression method

• 324 patients at 2
years post-radiation
therapy

Accuracy—70%

4.2. Kidney Cancer

Renal cell carcinoma is a diverse group of cancers with various genetic and molecular
alterations, including clear-cell, papillary, and chromophobe subtypes. Established risk
factors include tobacco smoking, hypertension, and obesity. Renal carcinoma can often
remain clinically silent until reaching an advanced stage. Classic symptoms, such as pain,
haematuria, and flank mass, occur in only a small percentage of cases. Routine imaging
has become instrumental in identifying renal cell carcinoma incidentally. The most crucial
staging technique is computed tomography (CT) of the abdomen. Survival rates are more
favorable when tumors are confined to the kidney. However, renal carcinoma is notoriously
resistant to chemotherapy, making radical nephrectomy the standard treatment [43,44].

Machine learning models and deep learning algorithms are used to diagnose renal
tumors, differentiate benign and malignant renal tumors, and differentiate renal cell car-
cinoma (RCC) types. Table 2 summarizes the research looking at applications of AI in
kidney cancer.
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Table 2. Studies looking at applications of AI in kidney cancer.

Study Objective Algorithm/Method Study Design Results

Santoni et al. [45] Prediction of new cases
of RCC ANN

• Statistics on US
population numbers

24.7% increase in new RCC
cases, rising from 44,400 in 2020

to 55,400 in 2050

Houshyar et al. [46] Development of a surgical
planning aid CNN

• CT images of 319
patients

Median Dice coefficients for
kidney and tumor

segmentation were 0.970 and
0.816, respectively.

Erdim et al. [47]
Distinguishing between
benign and malignant

solid renal masses
ML

• 21 patients with
benign renal masses

• 63 patients with
malignant
renal masses

• 271 texture features
extracted from
CT images

Best predictive performance
with an accuracy of 90.5% and

an AUC of 0.915

Uhlig et al. [48]
Distinguishing between
benign and malignant

clinical T1 renal masses
Random forest algorithm • 48 patients

AUC of 0.83 compared to
radiologists’ 0.68, sensitivity

0.88 vs. 0.80, p = 0.045,
specificity 0.67 vs. 0.50,

p = 0.083

Uhm et al. [49] Differentiation of
RCC types DL

• Dataset of 1035 CT
images from 308
patients containing
five major types of
renal tumors

AUC of 0.855, comparable
diagnostic performance to that

of radiologists

Nikpanah et al. [50]
Distinguishing clear cell

renal cell carcinoma from
renal oncocytoma

Deep neural network
(AlexNet)

• 74 patients with 243
renal masses

Overall accuracy of 91% and an
AUC of 0.9

Tabibu et al. [51] Differentiation of
RCC types CNN

• Histopathological
images from patients
with RCC subtypes

Accuracy of 93.39% for
distinguishing clear cell and

chromophobe RCC from
normal tissue; accuracy of

94.07% for distinguishing clear
cell, chromophobe, and
papillary RCC subtypes

Ding et al. [52] Differentiation grade
of ccRCC CT-based radiomic models

• 14 patients with
ccRCC who
underwent partial or
radical nephrectomy

AUC of 0.826, 0.878, and 0.843
for models 1, 2, and

3, respectively

Kocak et al. [53]
Detection PBRM1

mutations through CT
texture analysis

ANN and RF

• 45 patients with
clear-cell RCC,
among whom 16 had
the PBRM1 mutation

ANN algorithm’s AUC of 0.925,
RF algorithm’s AUC of 0.987

Tian et al. [54]
Screening for kidney

cancer prognosis
biomarkers

RF

• Kidney cancer RNA
sequencing data
from the Gene
Expression Omnibus
(GEO) database

In tumor tissue, RNASET2 and
FXYD5 were found to be highly

expressed, while NAT8 was
observed to be lowly expressed

at both the protein and
transcription levels

Buchner et al. [55] Prediction of the
metastatic RCC outcome ANN

• 175 patient records
with available
follow-up data for a
median of 36 months

95% overall accuracy,
outperforming logistic

regression models
(78% accuracy)
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Table 2. Cont.

Study Objective Algorithm/Method Study Design Results

Barkan et al. [56] Predicting OS for
mRCC patients ML • 322 patients AUC of 0.786 for three-year OS

and 0.771 for five-year OS

4.2.1. Prediction and Detection of Kidney Cancer

The incidence of kidney cancer is increasing every year. In 2020, the number of cases
of RCC registered in the United States was 44,400. Researchers predict that, by 2050, the
number of RCC cases will rise to 55,400. Consequently, several studies are attempting to
counter this trend with new ways to predict and detect kidney cancer. Santoni et al. [45]
attempted to implement an artificial neural network to predict new cases in the population.
They used data such as population index, obesity, smoking prevalence, uncontrolled
hypertension, and life expectancy data in the United States. The study involved collecting
statistics on the US population and assessing how various factors affect the incidence
of kidney cancer. MATLAB R2018 (MathWorks) software was used to implement an
artificial neural network. As per the results, hypertension prevention has the greatest
impact on reducing the incidence of kidney cancer. The study estimated that, by preventing
hypertension, it will be possible to reduce the incidence of kidney cancer by 575 cases per
year by 2030. Other factors had a more limited impact [45]. A group of researchers led
by Houshyar [46] retrospectively analyzed CT images of 319 patients. They created two
separate CNNs. The first CNN focused on localizing the bounding cube of the right and left
kidney hemispheres, while the second CNN focused on segmenting the renal parenchyma
and tumors within each cube. The performance of the CNNs was evaluated in a cohort of
269 patients. The median Sorensen-Dice coefficients for kidney and tumor segmentation
were 0.970 and 0.816, respectively, indicating accurate delineation. Moreover, the Pearson
correlation coefficients between the CNN-generated and human-annotated estimates of
kidney and tumor volumes were 0.998 and 0.993, respectively (p < 0.001), confirming the
reliability of the CNN approach.

These preliminary findings demonstrate the potential of automated deep learning
AI techniques for rapid and precise segmentation of kidneys and renal tumors on single-
phase contrast-enhanced CT scans. Additionally, CNNs can accurately calculate tumor and
kidney volumes, offering valuable assistance in clinical practice [46].

4.2.2. Differentiation of Benign and Malignant Renal Tumors

Distinguishing between benign and malignant tumors is crucial, as benign tumors,
like adiposarcoma (AML) and oncocytoma, are sometimes misclassified as RCC. This
differentiation is essential to avoiding unnecessary medical procedures. Recent advance-
ments in machine learning and deep learning using radiomics have shown promise in
accurately differentiating these tumors [57]. Erdim et al. [47] conducted a study where they
analyzed CT images of benign and malignant tumors, extracting texture features to create a
predictive model with machine learning algorithms. The random forest algorithm, utiliz-
ing five selected contrast-enhanced CT texture features, demonstrated the best predictive
performance with an accuracy of 90.5% and an area under the curve (AUC) of 0.915.

Another study by Uhlig et al. [48] compared the diagnostic accuracy of two expe-
rienced radiologists with the random forest algorithm in evaluating renal masses from
CT imaging. The results showed that the random forest algorithm outperformed the
radiologists in correctly identifying and classifying renal masses.

These findings highlight the potential of machine learning algorithms in accurately
differentiating between benign and malignant renal tumors, providing valuable assistance
in clinical decision-making, and optimizing patient care.
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4.2.3. Differentiation of RCC Types

Radiomics analysis has led to the development of machine learning and deep learning
models to distinguish between the five types of RCC, including oncocytoma, AML, clear
cell RCC, papillary RCC, and chromophobe RCC. CT texture analysis is utilized by ML and
DL algorithms to differentiate various renal masses [43–45]. ML and DL algorithms can
predict nuclear class and identify specific genetic mutations, which affect the prediction of
prognosis, recurrence, and survival outcomes [58].

In their study, Kocak et al. [59] used 275 textural features from CT images to predict
and identify the nuclear class of ccRCC. The machine learning models performed well in
differentiating different forms of renal cell carcinoma (RCC), but their identification of the
three basic types was poor. SVM showed the highest predictive value for nuclear grades
in ccRCC cases (85.1%). Cortico-subcortical CT images provided more texture parameters
than nonenhanced images.

Uhm et al. [49] Uhm et al. developed a dataset of 1035 CT images from 308 patients
containing five major types of renal tumors. They compared the diagnostic performance of
their deep learning model with that of six radiologists. The AI outperformed radiologists
in diagnosing most types of RCC and benign tumors, showing significantly better results in
diagnosing oncocytoma and liposarcoma AML tumors. However, the results were similar
for the diagnosis of clear-cell RCC.

Nikpanah et al. [50] conducted a retrospective study involving 74 patients with 243 re-
nal masses to assess a deep convolutional neural network’s diagnostic efficacy in distin-
guishing clear-cell renal cell carcinoma from renal oncocytoma. MR imaging was performed
before pathologic confirmation, and a deep neural network (AlexNet) was fine-tuned for
this task. The AI system achieved an overall accuracy of 91% and an area under the curve
of 0.9 in distinguishing ccRCC from oncocytoma using fivefold cross-validation. Utilizing
features extracted from 20,000 CT images, Pedersen et al. [60] created convolutional neural
networks that exhibited a remarkable 93.3% accuracy and a specificity of 93.5% in effectively
differentiating oncocytoma from RCC.

A group of researchers led by Tabibu et al. [51] conducted a study that explored
the application of a deep learning method to identify and classify different RCC types,
achieving an impressive classification accuracy of 94.07%. They introduced a novel support
vector machine-based approach to enhance model performance in multiclass classification
(pan-RCC), resulting in a remarkable 93% accuracy in cancer detection. Furthermore, the
researchers utilized morphological features extracted from tumor regions identified by
CNNs to predict survival outcomes for patients with the prevalent clear-cell RCC.

4.2.4. Differentiation Grade of Clear Renal Cell Carcinoma (Fuhrman Grade)

The Fuhrman grading system [61] evaluates nuclear size, shape, and nucleolar promi-
nence, categorizing tumors into four nuclear grades (1–4) based on increasing testicular
size, irregularity, and prominence. This grading system is a robust predictor of distant
metastasis after nephrectomy. Metastasis rates correlate with nuclear grade, with grade
1 tumors exhibiting significantly lower rates compared to grades 2 to 4. Survival outcomes
are also stratified into three categories: grade 1, grade 4, and grades 2 and 3.

Ding et al. [52] illustrated enhanced precision in staging the classification of clear
cell renal cell carcinoma by preoperatively distinguishing between high-grade (Fuhrman
III–IV) and low-grade (Fuhrman I–II) tumors. Their algorithm integration encompassed
six key non-textural features: pseudocapsule, round mass, maximum tumor diameter
(Diametermax), intracellular artery (Arteritumor), tumor enhancement value (TEV), and
relative TEV (rTEV), alongside texture features. Extracted from CT images of the segment
with the largest renal mass area in the corticospinal and nephrographic phases, these
texture features underwent selection through the least absolute shrinkage and selection
operator (LASSO) to calculate a texture score for each patient. In their approach, a lo-
gistic regression model utilizing three iterations—model 1 with all non-texture features,
model 2 with all non-texture features and texture score, and model 3 with only texture
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score—distinguished high-grade ccRCC from low-grade ccRCC during nephrectomy. These
models exhibited strong discrimination in the training cohort, yielding area under the re-
ceiver operating characteristic curve (AUC) values of 0.826, 0.878, and 0.843 for models 1, 2,
and 3, respectively. Notably, a significant difference in AUC was observed between model
1 and model 2.

Tian et al. [62] developed a CAD system for Fuhrman classification in ccRCC using
395 whole-mount images. Their model, incorporating 26 features, predicted tumor grade
with 84.6% sensitivity and 81.3% specificity. Their results were significantly related to
overall survival. Holdbrook et al. [63] concentrated on nuclear pleomorphic patterns,
creating a binary CAD system for renal cell carcinoma grading. This system demonstrated
high accuracy (F-score = 0.78–0.83) and predicted survival with similar precision as an
established scoring system based on multigene testing.

A different approach was shown by Wen-Zi [64]. The study utilized deep learning
algorithms to predict the pathological staging and grading of tumors in 878 patients based
on preoperative clinical variables. The proposed models, including BiLSTM, CNN-BiLSTM,
and CNN-BiGRU, achieved impressive accuracy in predicting tumor pathological staging,
with AUC values of 0.933, 0.947, and 0.948, respectively. For tumor pathological grading,
the models yielded AUC values of 0.754, 0.720, and 0.770, respectively.

4.2.5. Genetic Mutation

Li et al. [65] harnessed gene expression, machine learning (utilizing random forest
variable hunting), and Cox regression analysis to construct a risk score model based on
15 genes. This model aimed to predict the survival of ccRCC patients in the Cancer Genome
Atlas dataset (N = 533). Remarkably, the higher-risk group demonstrated significantly
worse prognosis and survival compared to the lower-risk group. A similar pattern was
observed in recurrence-free survival. Interestingly, the risk scores were not correlated with
patient characteristics such as gender or age but were linked to hemoglobin levels and
tumor characteristics like size and grade. Notably, radiation therapy had no influence on the
predictive value of the risk score. Multivariate Cox regression underlined the importance
of the risk score as an indicator of prognosis in ccRCC. Ultimately, this risk score model,
driven by the expression of 15 selected genes, exhibited the ability to predict the survival of
ccRCC patients.

In their research, Kocak et al. [53] employed both an artificial neural network (ANN)
algorithm and a random forest (RF) algorithm to detect PBRM1 mutations through CT
texture analysis. The ANN demonstrated accurate identification of 88% of ccRCCs with a
PBRM1 mutation status, while the RF algorithm showed even higher performance, correctly
classifying 95.0% of ccRCCs with a PBRM1 mutation status.

Machine learning has demonstrated high accuracy in distinguishing CD117 (c-KIT)
oncocytomas from the chromophobe subtype of renal cell carcinoma using the peak early
enhancement rate (PEER), with a 95% accuracy for tumor type classification (100% sensitiv-
ity and 89% specificity) [66].

In their study, Tian et al. [54] investigated mRNA expression profiles in the GSE53757
dataset and their relation to the clinical prognosis of renal cell carcinoma. They developed
a seven-gene independent prognostic model that showed significant correlations with
the prognosis of renal cell carcinoma. The researchers carefully selected renal cancer
differentiation genes from the dataset and performed functional enrichment analysis,
revealing enriched biological functions related to catabolic processes of small molecules,
T-cell activation, and other aspects.

Tian et al. [54] employed RF and SVM models to refine their prognostic model, iden-
tifying seven hub mRNAs through Cox LASSO analysis as robust predictors of kidney
cancer prognosis. Subsequent measurement of these seven genes in kidney cancer and
normal tissue pairs revealed higher expression of RNASET2 and FXYD5 in cancer tissue,
while NAT8 exhibited relatively lower expression. However, no significant differences
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were observed in the expression of EZH2, KLF18A, CDCA7, or WNT7B between tumor
tissue and adjacent tissue.

Tian et al. [54] utilized bioinformatics technology to integrate genomic data and iden-
tify differentially expressed genes (DEGs) associated with renal cell carcinoma prognosis.
Their developed prognostic mRNA model outperformed single mRNA models, effectively
distinguishing patients at high risk of recurrence from those at low risk. The model’s
prognostic performance remained independent of age and stage. The study suggests that
a nomogram combining seven gene signatures can accurately depict the risk level and
overall survival based on the patient’s clinical stage, age, and other factors.

4.2.6. Treatment of Kidney Cancer

In 2003, Kattan et al. [67] published experiments with AI. The authors compared AI
and Cox regression to predict disease recurrence after surgery. In their experiments, Cox
regression models showed better performance. For kidney cancer, they used ANN and Cox
regression to predict behavior (median accuracy of 71% for ANN and 75% for Cox). Khene
and a group of collaborating researchers studied the response of patients to nivolumab
therapy. Nivolumab serves as an effective immunotherapy with checkpoint inhibition in
mRCC [68]. They showed that pretreatment imaging radiomics could accurately identify
those responding to nivolumab. The model could achieve an accuracy of more than 90%
in predicting treatment response [69]. Buchner et al. [55] examined the potential of AI in
predicting the outcome of patients with metastatic renal cell carcinoma who were about
to start systemic therapy. The AI model was trained using data from 175 patients who
had undergone radical or partial nephrectomy of the primary tumor prior to commencing
systemic therapy. The main objective was to predict overall survival at the 3-year mark
based on parameters available at the initiation of first-line therapy. AI was able to achieve
an accuracy of 95%.

The Barkan et al. [56] study aimed to assess the capabilities of emerging AI technolo-
gies in predicting three- and five-year overall survival (OS) for patients with advanced
metastatic renal cell carcinoma (mRCC) undergoing their first-line systemic treatment. The
retrospective analysis included 322 Italian patients treated between 2004 and 2019. An
ensemble of three AI predictive models was developed, outperforming existing prognostic
systems and providing better clinical support for decision-making. The model achieved
high accuracy and specificity, with AUC values of 0.786 and 0.771 for 3-year OS and
5-year OS, respectively. The AI models demonstrate promising potential for enhancing
patient management in mRCC treatment, but larger studies are needed to validate their
effectiveness further.

The objective of Le et al.’s [70] study was to develop and validate predictive models
using machine learning algorithms for patients with bone metastases (BM) from clear
cell renal cell carcinoma (ccRCC) and to identify suitable models for clinical decision-
making. The researchers obtained data from the Surveillance, Epidemiology, and End
Results (SEER) database for 1490 ccRCC-BM patients and collected clinicopathological
information for 42 patients at their hospital. Four ML algorithms (extreme gradient boosting,
logistic regression, random forest, and Naive Bayes model) were employed to predict
overall survival (OS) in ccRCC-BM patients. The patients were divided into training
and validation cohorts for evaluation. The models performed well in predicting 1-year
and 3-year OS, suggesting that ML can be a valuable tool in clinical decision-making for
ccRCC-BM patients.

AI can also be used to assess recurrence risk following surgical resection of RCC.
Khene et al.’s [71] study explored the effectiveness of machine learning models, including
Random Survival Forests, Survival Support Vector Machines, and Extreme Gradient Boost-
ing, in predicting recurrence after surgical resection of nonmetastatic renal cell carcinoma.
Conducted across 21 French medical centers with over 4000 patients, the ML models out-
performed traditional prognostic models in predicting disease-free survival. ML models
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demonstrated higher concordance index values, good calibration, and superior net benefit
in decision curve analysis.

From this research, it can be concluded that artificial intelligence methods are future-
proof. Tests using new technologies can, taking into account predisposing behavioral
factors, not only detect the disease at an early stage but also help actively control predis-
posed individuals. Deep learning methods reduce the waiting time for histopathology
results and can help differentiate types of kidney cancer. With the help of AI, it is possible to
assess the response to gene therapy and, taking into account genetic mutations, to evaluate
prognosis and survival time.

4.3. Bladder Cancer

Bladder cancer is a prevalent malignancy affecting both men and women, with the
most common type being transitional cell carcinoma arising from urothelial cells in the
bladder. Its primary symptoms include hematuria and lower urinary tract issues. Thanks
to advanced imaging and diagnostic tools, bladder cancers are now more likely to be
detected in their early stages. About 75% of cases are non-muscle-invasive and treated with
transurethral resection of the tumor, while the remaining have invaded deeper layers or
formed metastases, necessitating radical cystectomy [72–74].

4.3.1. Diagnosis

Cystoscopy is considered the gold standard for diagnosing and monitoring non-
muscle-invasive bladder cancer (NMIBC). However, this procedure is not a perfect test. In
addition to being user-dependent, white-light cystoscopy can also have various limitations;
small tumors, carcinoma in situ, and other nonobvious lesions in certain anatomic locations
can be easily missed. Due to the increasing number of different upgrades, such as blue-light
cystoscopy (BLC) and artificial intelligence, the procedure is becoming more accurate [75].

Various researchers of AI methods have evaluated the effectiveness of machine learn-
ing in overcoming human mistakes and ensuring that diseases are not missed. Some of
the main algorithms used to improve cystoscopic diagnosis in addition to survival and
prognosis prediction in bladder cancer are convolutional neural networks (CNNs), multi-
layer perceptrons (MLPs), support vector machines (SVMs), and genetic algorithms (GAs).
Ikeda et al. [76] aimed to support the cystoscopic diagnosis of bladder cancer using a
convolutional neural network. They created a CNN-based tumor classification. The trained
classifier dataset consisted of 2102 cystoscopic images (1671 images of normal tissue and
431 images of tumor lesions). Its effectiveness was evaluated using test data (87 tumor
images and 335 normal images). In the result, 78 images were true positives, 315 were true
negatives, 20 were false positives, and nine were false negatives (i.e., sensitivity was 89.7%
and specificity was 94.0%). Eminaga et al. [77] applied the same kind of AI technology,
creating various deep CNN models and assessing them using the F1-score. The greatest
F1-score, 99.52%, was obtained for the XCeption-based model. Other models that could
identify all cystoscopic images with bladder were based on ResNet50 and the harmonic
series concept, which achieved F1-scores of 99.48% and 99.45%, respectively.

The multilayer perceptron (MLP)-based method, presented by Lorencin et al. [78],
uses image resizing and a Laplacian edge detector for the preprocessing of input images.
The method provides an alternative strategy for diagnosing bladder cancer. AI was trained
with the data of 1997 and 986 images with and without bladder cancer, respectively. Results
were encouraging, with an AUC value of up to 0.99. Hashemi et al. [79] applied the local
binary pattern (LBP) method to extract the features in bladder cystoscopy images. Then,
they used the MLP neural network to train and evaluate the classifier for images from a
bladder cystoscopy. In order to enhance the performance of this method, the researchers
applied an adaptive learning rate and a genetic algorithm. The simulated results revealed
a significant 7% reduction in error and improved convergence speed compared to other
competing methods. The findings underscore the immense potential of deep learning for
accurately diagnosing cystoscopic images.
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4.3.2. Metastasis Detection

A particularly important thing in determining the patient’s condition is to confirm
the presence of metastases in the lymph nodes. In Gresser et al.’s [80] study, a radiomics
signature was developed using machine learning to detect lymph node metastases in blad-
der cancer patients who underwent radical cystectomy with lymphadenectomy. Out of
1354 patients screened, 391 with pathological nodal staging were included and divided
into training and test cohorts. Radiomics features were extracted from each lymph node,
and an ML model was trained using histopathology labels. Manual and automated lymph
node segmentations were compared to radiologist assessments for detecting metastases.
The results showed that the radiomics-based analysis using manual lymph node segmenta-
tion achieved an AUC of 0.80, while the fully automated approach achieved an AUC of
0.70. Combining the manually segmented radiomic signature with radiologist assessment
improved the AUC to 0.81.

In Wu et al.’s [81] study, researchers developed a lymph node metastases diagnostic
model (LNMDM) using whole slide images and assessed the clinical impact of an artifi-
cial intelligence-assisted (AI) workflow. The LNMDM was developed using data from
998 bladder cancer patients who underwent radical cystectomy and pelvic lymph node
dissection. The model demonstrated high diagnostic sensitivity, with an area under the
curve (AUC) ranging from 0.978 to 0.998 in five internal validation sets. Comparisons
between the LNMDM and pathologists showed that the model outperformed both junior
and senior pathologists in detecting lymph node metastases. AI assistance improved sensi-
tivity for pathologists, enhancing diagnostic accuracy. Notably, the model identified tumor
micrometastases that had been missed by pathologists in some cases.

Another study [82] aimed to develop and validate a machine-learning-based approach
using [18F]FDG PET/CT criteria to accurately identify pelvic lymph node involvement in
patients with muscle-invasive bladder cancer (MIBC). The study consisted of 173 patients.
The developed machine-learning-based combination of criteria, which included features
from pelvic lymph nodes and the primary bladder tumor, showed comparable diagnostic
performance (AUC = 0.59) to the consensus of experts (AUC = 0.64) in the validation set.
The interrater agreement was also good (K = 0.66) for both the machine-learning approach
and the experts.

4.3.3. Prediction and Prognosis

Machine learning algorithms can be used to improve more than just cystoscopy. The
other aspects of bladder urooncology where artificial intelligence may be employed are the
prediction and prognosis of mortality, postcystectomy recurrence and survival, and therapy
response. Deep learning systems (DLSs) are also being developed for clinical cytology in
order to detect the malignant potential of urothelial carcinoma cells.

Wang et al. [83] employed a least squares support vector machine (SVM) to predict
the 5-year overall and cancer-specific mortality of patients who underwent radical cys-
tectomy. The model achieved an accuracy of over 75% in this prognostic prediction. [4].
To predict the prognosis over the next 5 years using various combinations of image, clini-
cal, and spatial features, Gavriel et al. [84] proposed an ensemble system that consists of
ML-based algorithms. The method demonstrated a 71.4% accuracy in correctly identify-
ing patients who experienced unfavorable outcomes and succumbed to muscle-invasive
bladder cancer (MIBC) within a 5-year timeframe. This value is impressive considering
that it is significantly higher than the 28.6% of the TNM staging system, the current clinical
gold standard.

4.3.4. Disease Progression and Chemotherapy Efficacy

ML-based algorithms and models have been used in several articles to identify genes
that can potentially foretell the recurrence or future progression of disease. Slides from
patients with MIBC were marked with immunofluorescence (IF) and then applied to
measure the tumor buds. In this way, the efficacy of neoadjuvant chemotherapy was
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evaluated, and the patients who did not respond to the therapy were identified, with the
aim being to stop the treatment midway in such patients to avoid the harmful effects of
chemotherapy [4,85–87]. Nojima et al. [88] developed a DLS to detect high-grade urothelial
carcinoma (HGUC) cells in urine cytology specimens using a pretrained VGG16 model.
The DLS demonstrated exceptional performance when trained on high-power field images
of both malignant and benign cases. It accurately diagnosed invasive UC lesions with an
AUC of 0.8628 and an F1-score of 0.8239. Moreover, it successfully identified high-grade
UC lesions with an AUC of 0.8661 and an F1-score of 0.8218.

The results indicated that the DLS exhibited the potential to more accurately deter-
mine the malignant potential of tumors compared to classical cytology. Considering this
possibility, along with improvements in prognosis and prediction, urologists may be better
able to develop therapeutic strategies that will ultimately benefit patients.

Table 3 summarizes the studies examining the use of AI in bladder cancer.

Table 3. Studies looking at applications of AI in bladder cancer.

Study Objective Algorithm/Method Study Design Results

Ikeda et al. [76]

Improvement of the
quality of bladder cancer
diagnosis by supporting

cystoscopic diagnosis
using AI

Convolutional neural
network (CNN)

• 1671 cystoscopic
images of
normal tissue

• 431 cystoscopic
images of
tumor lesions

AUC-ROC of 0.98 in
distinguishing normal and

tumor tissue

Eminaga et al. [77]

Exploration of the
potential of AI for the

diagnostic classification of
cystoscopic images

Convolutional neural
network (CNN)

• 18,681 cystoscopic
images from
479 patients

CNN achieved F1 scores of
99.52%, 99.48%, and 99.45%

Lorencin et al. [78]

Investigation of the MLP
implementation possibility

for the detection of
urinary bladder cancer

Multi-Layer Perceptron
(MLP)

• 1997 images of
bladder cancer

• 986 images of
noncancer tissue

AUC of up to 0.99

Wu et al. [81] Development of LNMDM (AI-assisted workflow • 998 patients AUC from 0.978 to 0.998

Girard et al. [82]

Developing criteria to
identify pelvic lymph
node involvement in

MIBC patients

ML-based combination
of criteria

• 129 MIBC patients
for training

• 44 patients for test

AUC of 0.59 in diagnostic
performance compared to the

experts (AUC = 0.64)

Gavriel et al. [84]

Development of an AI tool
for predicting the 5-year

prognosis of
MIBC patients

ML-based algorithms • 78 patients
71.4% accuracy in classification

of patients who succumbed
to MIBC

Nojima et al. [88]

Developing DLS as a
diagnosis support tool for

clinical cytology in
urinary cytology

Deep Learning System
(DLS)

• Cytology images
from Papanicolaou-
stained urinary
cytology glass slides
obtained from
232 patients.

AUC of 0.9890 and an F1 score
of 0.9002

4.4. Upper Tract Urothelial Carcinoma (UTUC)

Upper tract urothelial cancer (UTUC), a specific type of urothelial cancer, occurs in the
ureter and renal pelvis. It is a relatively rare cancer, accounting for 5–10% of all urothelial
carcinomas. A significant number of UTUC tumors are invasive at the time of diagnosis,
and the 5-year cancer-specific survival rates for advanced stages are low. The standard
treatment for high-risk UTUC is radical nephroureterectomy (RNU) with bladder-cuff
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removal. However, kidney-sparing surgery (KSS) is gaining popularity to preserve renal
function, akin to managing parenchymal renal cancer. Neoadjuvant chemotherapy shows
potential benefits for high-risk UTUC patients [89].

Currently, the gold standard for UTUC diagnosis and conservative treatment is flexible
ureteroscopy (URS). URS allows for a thorough examination of the urinary system tissue,
identification of tumors, assessment of their size, and biopsy of suspicious lesions [90].
The procedure is performed with the assistance of an endoscopic camera to provide visual
guidance [91].

Similar to other endoscopic procedures, in this procedure, too, artificial intelligence
can be used to enhance the outcomes.

Primary research on this subject, presented by Lazo et al. [92], provided an automated
method based on convolutional neural networks to produce an accurate segmentation of
the hollow lumen. The described method included an ensemble of four parallel CNNs
(U-Net-based, Mask-RCNN, and two modifications of the former ones) to process both
single-frame and multi-frame data simultaneously. Using a unique dataset of 11 recordings
(2673 frames) that were gathered from six patients and manually annotated, they evaluated
the proposed method, which outperformed earlier state-of-the-art techniques with an F1-
score of 80%. Although the results demonstrated that the ensemble model may successfully
enhance hollow lumen segmentation in ureteroscopic images, the development of the
submitted method might further the UTUC finding, particularly if it works effectively even
when there is limited visibility, occasional bleeding, or specular reflections.

4.5. Testicular Tumors

Testicular cancer is a prevalent solid malignancy affecting young adult men, and its
occurrence has been on the rise globally. Testicular cancer accounts for about 1% of newly
diagnosed cancers in men globally and is most common in men aged 14 to 44 in Western
countries. Cryptorchidism, a birth defect where one or both testicles are not in the scrotum,
is a significant risk factor for testicular cancer, increasing the risk nearly fivefold. Other
potential risk factors include hypospadias and a low sperm count. The precursor lesion
to malignant testicular germ cell tumors is germ cell neoplasia in situ (GCNIS). Germ cell
tumors (GCT) constitute the majority of testicular cancers and are divided into seminoma
and nonseminoma subtypes. Seminomas are homogeneous tumors of embryonic germ
cells, while nonseminomas comprise various histologic subtypes. Advances in testicular
cancer management have led to remarkable success, with a cure rate exceeding 70% for the
first metastatic solid tumor [93,94].

Lymphovascular invasion (LVI) holds significant prognostic value, particularly in
stage 1 non-seminomatous tumors and germ cell tumors of the testis. LVI refers to tumors
found within endothelium-lined lymphatic or vascular channels. To automate the identi-
fication of suspected LVI areas in digital whole-slide images of testicular tumors, Ghosh
et al. [95] developed an artificial intelligence algorithm using deep learning. They trained
the algorithm with 184 histology slides stained with hematoxylin and eosin (H&E) from 19
patients with testicular germ cell tumors. The algorithm successfully identified areas of
potential LVI in a validation set of 118 whole-slide images from 10 patients, with a preci-
sion of 0.68 for suitable areas and 0.56 for definite LVI areas. This proof-of-concept study
demonstrates the feasibility of an artificial intelligence tool that aids reporting pathologists
in highlighting areas for potential LVI assessment [95].

Distant metastasis in testicular cancer patients, beyond non-regional lymph nodes
and lungs, presents a significant concern. Ding et al. addressed this issue by developing a
machine learning (ML) algorithm to predict the risk of patients with germ cell testicular
cancer (GCTC) progressing to the M1b stage, enabling early intervention. The predictive
model was constructed using data from 4323 GCTC patients obtained from the Surveillance,
Epidemiology, and End Results (SEER) database. Six ML algorithms were utilized to build
the model, demonstrating high accuracy, stability, and computational efficiency. These
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promising results have valuable implications for clinical decision-making and provide a
potential tool for timely interventions in GCTC patients [96].

Linder et al. [97] developed a deep learning approach to identify and count tumor-
infiltrating lymphocytes (TILs) in primary testicular cancer patients. They analyzed H&E-
stained whole slides from 113 patients and found a significant association between low TIL
numbers and disease recurrence. A higher TIL density was correlated with a lower clinical
tumor stage, seminoma histology, and absence of lymphovascular invasion at presentation.

Baessler et al. [98] used ML-based CT radiomics to distinguish between malignant
and benign lymph nodes in patients with retroperitoneal LN metastases from NSTGCT,
aiming to reduce overtreatment in young patients. The model achieved an accuracy of 81%,
a sensitivity of 88%, and a specificity of 72%.

Another study [99] compared custom-designed and commercial ANNs for staging
testicular cancer using pathological parameters. The custom ANN outperformed the com-
mercial ANN (92% vs. 80% accuracy), highlighting the importance of individual network
refinement by investigators, which currently limits widespread commercial adoption of
these methods.

5. Conclusions

Less than 20 years after the dawn of computing, AI has been applied to clinical
decision-making. However, only recently, with the development of machine learning, has
it been integrated into clinical practice. AI methods for analyzing big data cohorts seem
more precise and exploratory than conventional regression statistics. Additionally, they
provide specific health behavior predictions. Each artificial intelligence method has features
that make it effective for various tasks. Understanding the basics of AI approaches and
their potential, especially the flexibility of certain systems, will enable these innovative
methods to be developed further and play a significant role in urologists’ work with patients
with cancer.
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