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Simple Summary: Esophageal squamous cell cancer (ESCC) is an aggressive disease associated with
a poor prognosis. The oxidative stress-related long non-coding RNAs (lncRNAs) play crucial roles
in tumor prognosis. Our study identified seven oxidative stress-related DElncRNAs in the ESCC
and build a prognostic risk model. The model exhibited an excellent ability for the prediction of
overall survival (OS) and other clinicopathological traits using Kaplan–Meier (K-M) survival curves,
receiver op-erating characteristic (ROC) curves, and the Wilcoxon test. Additionally, analysis of
infiltrated immune cells and immune checkpoints indicated differences in immune status between
the two risk groups. Finally, the in vitro experiments showed that PCDH9-AS1 overexpression
inhibited proliferation ability and promoted apoptosis and oxidative stress levels in ESCC cells. In
conclusion, the prognostic model constructed by oxidative stress-related DElncRNAs showed good
performance in predicting the prognosis of patients with ESCC and was of great significance to guide
the individualized treatment of these patients.

Abstract: Esophageal squamous cell cancer (ESCC) is an aggressive disease associated with a poor
prognosis. Long non-coding RNAs (lncRNAs) and oxidative stress play crucial roles in tumor
progression. We aimed to identify an oxidative stress-related lncRNA signature that could pre-
dict the prognosis in ESCC. In the GSE53625 dataset, we identified 332 differentially expressed
lncRNAs (DElncRNAs) between ESCC and control samples, out of which 174 were oxidative stress-
related DElncRNAs. Subsequently, seven oxidative stress-related DElncRNAs (CCR5AS, LINC01749,
PCDH9-AS1, TMEM220-AS1, KCNMA1-AS1, SNHG1, LINC01672) were selected based on univariate
and LASSO Cox to build a prognostic risk model, and their expression was detected by RT-qPCR.
The model exhibited an excellent ability for the prediction of overall survival (OS) and other clini-
copathological traits using Kaplan–Meier (K-M) survival curves, receiver operating characteristic
(ROC) curves, and the Wilcoxon test. Additionally, analysis of infiltrated immune cells and immune
checkpoints indicated differences in immune status between the two risk groups. Finally, the in vitro
experiments showed that PCDH9-AS1 overexpression inhibited proliferation ability and promoted
apoptosis and oxidative stress levels in ESCC cells. In conclusion, our study demonstrated that a
novel oxidative stress-related DElncRNA prognostic model performed favorably in predicting ESCC
patient prognosis and benefits personalized clinical applications.
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1. Introduction

Globally, esophageal cancer (EC) is recognized as one of the most common and lethal
malignant tumors. The latest statistics from GLOBOCAN 2020 reveal a staggering number
of cases, with 604,000 new diagnoses and 544,000 deaths in the same year. According to
these figures, EC ranks as the seventh most commonly diagnosed cancer and the sixth
leading cause of cancer-related deaths [1]. Based on its pathological characteristics, EC is
typically categorized into two main types: esophageal squamous cell carcinoma (ESCC) and
esophageal adenocarcinoma (EAC). ESCC alone accounts for more than 85% of all cases [2].
Despite the availability of multidisciplinary treatments like surgery, chemotherapy, and
radiotherapy [3], the overall effectiveness of current treatment is significantly impacted by
the insidious onset and aggressive nature of ESCC, as well as the absence of highly sensitive
markers, all of which contribute to a grim long-term prognosis [4]. Therefore, there is an
urgent need to identify effective screening methods and develop risk stratification strategies
to improve patient prognosis.

Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that exceed 200
base pairs in length. They play crucial roles in DNA transcription, RNA processing, protein
synthesis, and the regulation of RNA/protein modification [5–8]. Furthermore, lncRNAs
can function as competitive endogenous RNAs and protein scaffolds [9,10]. Mounting
evidence indicates that lncRNAs exhibit abnormal expression patterns in various malignant
tumors, and they are closely associated with tumor proliferation, cell apoptosis, invasion,
metastasis, angiogenesis, genomic instability, and immune evasion [11–14]. Notably, lncR-
NAs are abundantly present, structurally stable, temporally and spatially specific, and
cell-specific. Moreover, they can be detected in diverse human body fluids. These charac-
teristics position lncRNAs as potential disease biomarkers with broad applications in early
cancer diagnosis, monitoring treatment efficacy, and predicting disease recurrence [15].

Oxidative stress refers to an imbalance between oxidation and the antioxidant system,
resulting from the accumulation of free radicals triggered by internal and external stimuli.
This imbalance leads to oxidative damage in tissues and organs [16]. Oxidative stress has
been implicated in various diseases, including Alzheimer’s disease, chronic obstructive
pulmonary disease, cardiovascular disease, and malignant tumors [17–20]. Growing evi-
dence suggests that oxidative stress influences the expression of numerous lncRNAs during
carcinogenesis and that lncRNAs, in turn, modulate oxidative stress by either enhancing or
inhibiting the oxidation/antioxidant system [21]. Therefore, the objective of this study is to
identify and validate a novel prognostic signature of oxidative stress-related lncRNAs to
enhance the prediction of prognosis in patients with ESCC.

In this study, our aim is to identify potentially differentially expressed oxidative stress-
related lncRNAs in patients with ESCC compared to control patients. Subsequently, we
constructed a novel prognostic risk model utilizing these oxidative stress-related lncRNAs,
which can provide valuable prognostic information for patients with ESCC.

2. Materials and Methods
2.1. Data Source

The GSE53625 dataset [22,23] including 179 cancer tissue samples and 179 adjacent
normal tissue samples was acquired from the Gene Expression Omnibus (GEO) based
on the platform, date type, number of samples, the type of tissue, etc. The dataset also
provided comprehensive clinical information for 179 ESCC patients, which is instrumental
for prognostic validation analysis. To identify relevant oxidative stress-related genes, we
retrieved a total of 436 genes from the Gene Ontology (GO) database under the category
“GOBP_RESPONSE_TO_ OXIDATIVE_STRESS” (Go: 0006979).

2.2. Identification of DElncRNAs

The identification of differentially expressed lncRNAs (DElncRNAs) was conducted
using the R package “Limma” [24]. We set the cutoffs as adj.p.val < 0.05 and |log2fold
change| > 1. To visualize the results, a heatmap was generated using the “pheatmap”
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package, while a volcano plot was created using the “ggplot2” package in R. Furthermore,
a correlation test was performed using the oxidative stress expression matrix and the
DElncRNAs’ expression matrix. The screening of oxidative stress-related DElncRNAs was
based on the following criteria: absolute correlation coefficient (cor) > 0.7 and a p-value
(p) < 0.05.

2.3. Establishment and Validation of the Prognostic Model Using Oxidative Stress-Related
DElncRNAs

Oxidative stress-related DElncRNAs linked to the overall survival (OS) outcome
were discerned through the application of univariate Cox regression analysis. This was
succeeded by the formation of a risk model utilizing Lasso regression analysis, yielding
the ensuing equation: risk score = ∑(Coefi × Expi). The division of the GSE53625 dataset
occurred in a manner that allocated it into distinct subsets, comprising a training set and
a test set, with a ratio distribution of 7:3, correspondingly. Patients in both the training
and test cohorts were categorized into high-risk and low-risk groups, employing the
median risk score as the threshold. The divergence in survival prognosis between these
two groups was assessed using the Kaplan–Meier (K-M) survival curve, utilizing the
R packages “survival” and “survminer”. Additionally, receiver operating characteristic
(ROC) curves were generated to depict the predictive performance concerning the 1-year,
3-year, and 5-year OS using the R package “survivalROC”. Moreover, for ESCC samples
in the GSE53625 training cohort, the Wilcoxon rank-sum test was employed to conduct a
comparative analysis of risk scores across various clinicopathological parameters.

2.4. Establishment and Validation of the Nomogram for the Prognostic Model

Univariate and multivariate Cox regression analyses were performed to identify
independent prognostic indicators for ESCC in the training cohorts. The results of these
analyses were used to establish a nomogram for predicting the 1-year, 3-year, and 5-year
OS of ESCC patients. To evaluate the prognostic value of the nomogram, calibration curves
were plotted.

2.5. Gene Set Variation Analysis (GSVA) Analysis

The GSVA method was employed to estimate the variation in gene set enrichment
based on the expression data from the samples. Specifically, the “GSVA” R package
was utilized to identify the functions and pathways associated with the high-risk and
low-risk groups in the training cohorts. GSVA was performed to explore the enrich-
ment of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways in the high-risk and low-risk groups. The selected reference gene sets, including
c5.go.bp.v7.4.symbols.gmt (biological process, BP), c5.go.cc.v7.4.symbols.gmt (cellular com-
ponent, CC), c5.go.mf.v7.4.symbols.gmt (molecular function, MF), and c2.cp.kegg.v7.4.symbols.
gmt (KEGG), were downloaded from the Molecular Signature Database (MSigDB). A
p-value adjusted for multiple testing (adj.p.val) threshold of less than 0.05 was considered
statistically significant.

2.6. Evaluation of Immune Infiltration and Immune Checkpoint Gene Expression between the
High-Risk and Low-Risk Groups

The degree of immune cell infiltration in the different samples was analyzed using the
CIBERSORT algorithm [25], and the results were visualized with a heatmap. Subsequently,
a comparative analysis was undertaken within the training cohorts to ascertain dissimi-
larities in the levels of immune cell types’ infiltration and the expression magnitudes of
immune checkpoint genes between the high-risk and low-risk groups. The assessment was
performed employing the Wilcoxon test, and statistical significance was established with a
threshold of p-value < 0.05.
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2.7. Tissue Samples and ESCC Cell Lines

A total of 10 pairs of tissue samples, consisting of carcinoma tissue and paracancerous
tissue of ESCC, were obtained from the Pathology Department of Tangshan People’s
Hospital. The paracancerous tissues, located more than 5.0 cm away from the tumor, were
confirmed as normal controls through H&E stains. All procedures were conducted with
the approval of the Hospital Ethics Committee (Approval No.: RMYY-LLKS-2023-097).
Additionally, ESCC tissue microarrays (HEsoS160CS01) containing approximately 80 pairs
of tissue samples were purchased from Outdo Biotech (Shanghai, China).

The human normal esophageal epithelial cell line Het-1A and ESCC cell lines (KYSE-
30, KYSE-150, KYSE-410, TE-1, and Eca-109) were obtained from Meisen Cell (Hangzhou,
China). Het-1A cells were cultured in Endothelial Cell Medium (1001 + 0025 + 1052
+ 0503, ScienCell, San Diego, CA, USA), while KYSE-30 and KYSE-150 cell lines were
cultured in Roswell Park Memorial Institute-1640 Medium (21870076, Gibco, Carlsbad, CA,
USA) supplemented with 10% Fetal Bovine Serum (10099-141, Gibco) and 1% Penicillin-
Streptomycin (15140-122, Gibco). For passaging or subculturing, parietal cells were digested
using 0.25% Trypsin-EDTA (25200-056, Gibco). All cell cultures were incubated in a cell
incubator at 37 ◦C with an atmosphere containing 5% CO2.

2.8. RNA Extraction and Reverse Transcription Quantitative Polymerase Chain Reaction
(RT-qPCR)

The total RNA was isolated from paraffin-embedded tissues and cells using the
Paraffin Embedded Tissue Total RNA Extraction kit (R310, GeneBetter, Beijing, China) and
Trizol reagent (R011, GeneBetter), adhering to the guidelines provided by the manufacturer.
The quantification and assessment of RNA concentration and purity were conducted using
the SpectraMax QuickDrop (Molecular Devices, Sunnyvale, CA, USA). Subsequently, the
RNA samples were reverse transcribed to synthesize complementary DNA (cDNA), using
the PrimeScript™ RT Master Mix (RR036A, TaKaRa, Otsu, Japan) according to the provided
protocol. Real-time PCR was performed on the QuantStudio 3 System (ThermoFisher
Scientific, Waltham, MA, USA) using the TB Green® Premix Ex Taq™ II (RR820A, TaKaRa).
For the genes CCR5AS, LINC01749, PCDH9-AS1, TMEM220-AS1, KCNMA1-AS1, SNHG1,
and LINC01672, qPCR protocols were executed. These protocols encompassed an initial
denaturation step at 95 ◦C for 30 s, proceeded by 40 cycles of denaturation at 95 ◦C for
5 s, and subsequently, an annealing/extension stage at 60 ◦C for 34 s. The computation
of relative gene expressions was carried out using the 2−∆∆ct method [26], while the
normalization was conducted in relation to the GAPDH gene. The primer sequences for all
the indicated genes are listed in Table 1.

Table 1. Primer sequences.

Targets Forward Sequence (5′→3′) Reverse Sequence (5′→3′)

CCR5AS AACATTTGGTGCCGAAGACC CATGGAGTGAGGGTGAGGAG
LINC01749 GGCCTCTCTTGAAGGGACTT GGCCTGACACACGAATGTTT

PCDH9-AS1 TTTAGGAAAGGAACTATTATCAC GCTTATTATTGCCTATAAACGAC
TMEM220-AS1 AGGGAGCCACTCTGCCCTTGTTT ATGAGGACTGTGAAGCCGAGAAA
KCNMA1-AS1 F: GGGACATTGGGAGGAACAGA ACCAGCAGGGCTAATAGCAG

SNHG1 F: CCTGCAAGCCTCTTGCTTAG TGGGCTGAACATTGCAACAA
LINC01672 F: GGCAAAAACCAGGAGATCCCA GCCATGTCATTAGCCACCAG

GAPDH F: ACCCACTCCTCCACCTTTGA CCACCCTGTTGCTGTAGCCA

2.9. Fluorescence In Situ Hybridization (FISH) Assay

FISH analysis for PCDH9-AS1 expression was performed on the ESCC tissue microar-
ray using the FISH kit (C10910, Ribobio, Guangzhou, China). The FISH probe specific to
PCDH9-AS1, labeled with Cy3, was designed and synthesized by RiboBio (Guangzhou,
China). The procedure involved deparaffinization and pretreatment of the tissue microarray,
followed by protease digestion. The tissue sections were then washed and pre-hybridization
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buffer was added to the unstained tissue sections for 30 min. The PCDH9-AS1 FISH probe
was hybridized in the dark overnight at 37 ◦C. Nucleus staining was carried out using
DAPI (H-1200-10, Vector Laboratories, Burlingame, CA, USA) at room temperature for
5 min. All images were captured and observed under an IX81 fluorescence microscope
(Olympus, Tokyo, Japan).

2.10. Cell Transfection

PCDH9-AS1 was cloned into the pcDNA3.1 (+) vector (V79020, Invitrogen, Carlsbad,
CA, USA) by XIEBHCbio (Beijing, China). Cells were seeded onto 6-well plates and allowed
to reach approximately 80% confluence. Transfection was performed using Lipofectamine®

3000 (L3000015, Invitrogen) according to the manufacturer’s instructions.

2.11. Cell Viability Assay

KYSE-30 and KYSE-150 cells, transfected as described previously, were seeded into
separate wells of a 96-well cell culture dish at a density of 2 × 103 cells/well. Cell viability
was assessed using the Cell Counting Kit-8 (CCK-8) (MF128-01, Mer5bio, Beijing, China).
The CCK-8 reagent was added to the cell supernatant at the indicated time points and
incubated with the cells at 37 ◦C for 2 h. The absorbance of the cells was then measured at
a wavelength of 450 nm using a microplate reader (ThermoFisher Scientific, USA).

2.12. Colony Formation Assay

KYSE-30 and KYSE-150 cells, transfected as described previously, were seeded into
individual wells of 6-well plates at a density of 2 × 103 cells per well and cultured for
7–10 days. After the incubation period, the cells were fixed with methanol for 15 min and
stained with 0.1% (v/v) crystal violet (G1063, Solarbio, Beijing, China) for 15 min. The
colonies containing more than 50 cells were counted, and the average number of colonies
was used to evaluate the cell’s ability to form colonies, which is an indirect measure of
colony-forming capability.

2.13. Flow Cytometry Analysis

At 48 h post-transfection, KYSE-30 and KYSE-150 cells were gathered using 0.25%
trypsin and collected by centrifugation at 1000× g for a duration of 5 min. The staining
procedure involving Annexin V and PI staining was executed in accordance with the manu-
facturer’s guidelines, utilizing the Annexin V-FITC apoptosis detection kit (BD Biosciences,
San Jose, CA, USA). Subsequently, the cells were subjected to flow cytometric analysis
using the BD FACSAria™ II instrument (BD Biosciences, USA).

2.14. Reactive Oxygen Species (ROS) Detection

The intracellular ROS level was measured using the Reactive Oxygen Species (ROS)
assay kit (S0033S, Beyotime, Shanghai, China) following the manufacturer’s instructions.
Briefly, the ROS probe H2DCFH-DA was diluted to a concentration of 10 µM using serum-
free medium. The previously transfected KYSE-30 and KYSE-150 cells were incubated with
1 mL of DCFH-DA working solution in each well, in the dark, for 20 min. Subsequently, the
cells were washed three times with serum-free medium to remove any residual DCFH-DA
that did not enter the cells. Finally, the cells were observed and photographed under an
IX81 fluorescence microscope (Olympus, Japan).

2.15. Determination of Lactate Dehydrogenase (LDH) Release

LDH release levels were detected using the Lactate Dehydrogenase Assay Kit (C0016,
Beyotime, Shanghai, China), following the manufacturer’s protocol. KYSE-30 and KYSE-
150 cells were cultured in 96-well plates and transfected as described previously. After the
appropriate incubation period, the culture supernatant was collected, and LDH release
levels were analyzed by measuring the absorbance at 490 nm using a microplate reader.
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2.16. Statistical Analysis

The statistical analyses were conducted using R software 4.1.0 (R Core Team, Auckland,
New Zealand) for Statistical Analysis and Visualization. Additionally, SPSS software
version 17 (SPSS Inc., Chicago, IL, USA) was used for certain analyses. The Wilcoxon test
was employed to compare the differences in the risk score between different groups. Cox
regression analysis was utilized to assess the prognostic power of the prognostic features.
Pairwise comparisons were performed using Student’s t-test. The chi-squared test was
employed to analyze the differences in the proportions of clinical characteristics. A p-value
or, if necessary, an adjusted p-value < 0.05 was considered statistically significant.

3. Results
3.1. Screening Results of DElncRNAs in GSE53625 Dataset

The overall research design of this study is presented in Figure 1. According to the
screening criteria, a total of 332 DElncRNAs were identified in the GSE53625 dataset, com-
prising 137 upregulated DElncRNAs and 195 downregulated DElncRNAs. The volcano
plot and heatmap of the DElncRNAs are displayed in Figure 2A,B. Subsequently, based
on the expression patterns of these 332 DElncRNAs and 436 oxidative stress-related genes,
174 oxidative stress-related DElncRNAs were selected for further analysis using a correla-
tion coefficient cutoff of |cor| > 0.7 and p-value < 0.05.
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3.2. Establishment and Validation of a Risk Model

First, this study classified the included cases (n = 179) into training (n = 126) and vali-
dation (n = 53) sets at a 7:3 ratio. In the training set, 174 oxidative stress-related DElncRNAs
were screened through preliminary univariate Cox analysis (Figure 3A). To prevent overfit-
ting of prognostic features, LASSO regression was applied to analyze these lncRNAs, result-
ing in the identification of seven oxidative stress-related DElncRNAs (CCR5AS, LINC01749,
PCDH9-AS1, TMEM220-AS1, KCNMA1-AS1, SNHG1, LINC01672) significantly associated
with survival (Figure 3B,C). Subsequently, a prognostic oxidative stress-related risk model
was established using these aforementioned lncRNAs. The risk score was calculated using
the following formula: risk score = CCR5AS expression × (−0.049993331) + LINC01749
expression × (−0.000917922) + PCDH9-AS1 expression × (−0.023456133) + TMEM220-
AS1 expression × (−0.068543123) + KCNMA1-AS1 expression × (0.172214585) + SNHG1
expression × (0.05726297) + LINC01672 expression × (0.850776742). In both the training
set and the test set, cases were divided into high-risk and low-risk groups based on the
median of the risk score. The distribution of risk scores and survival status indicated a
higher proportion of deceased individuals with increasing risk scores in both the training
set and the test set (Figure 3D–G).

Furthermore, K-M survival analysis conducted on the training set demonstrated a
significantly shorter OS time for patients in the high-risk group compared to those in the
low-risk group (p < 0.01) (Figure 3H). Similarly, The K-M survival curves revealed a higher
survival probability for the low-risk group in the test set (p < 0.05) (Figure 3I). Additionally,
the AUC values obtained from ROC curve analysis were 0.65, 0.71, and 0.70 for 1-year,
3-year, and 5-year OS, respectively, in the training set (Figure 3J). The corresponding AUC
values for 1-year, 3-year, and 5-year OS in the test set were 0.65, 0.66, and 0.66, respectively
(Figure 3K).
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prognostic oxidative stress-related DElncRNAs. (B,C) cvfit and lambda curves illustrate the applica-
tion of the least absolute shrinkage and selection operator (LASSO) regression using the minimum
criteria. Each line represents one oxidative stress-related DElncRNAs (CCR5AS, LINC01749, PCDH9-
AS1, TMEM220-AS1, KCNMA1-AS1, SNHG1, LINC01672) in subfigure B. (D–G) Distribution of
the risk scores, overall survival status (OS), and risk score in the training and validation datasets.
(H,I) Kaplan–Meier curves demonstrating the survival status and survival time in the training dataset
and validation dataset. (J,K) Receiver operating characteristic (ROC) curve showcasing the potential
of the prognostic oxidative stress-related DElncRNA signature in predicting 1-year, 2-year, and 3-year
OS in the training dataset and validation dataset.

3.3. Construction of the Nomogram

To assess the prognostic value of the constructed prognostic signature, univariate and
multivariate Cox analyses were conducted. The results of the univariate analysis indicated
that the risk score, N stage, and TNM stage were significant predictors of poor OS in ESCC
cases (Figure 4A). Furthermore, the multivariate analysis confirmed the independence of
our constructed prognostic model in predicting ESCC prognosis (Figure 4B). Based on the
multivariate analysis results, a nomogram incorporating the risk score, N stage, and TNM
stage was constructed to predict the 1-year, 3-year, and 5-year OS for ESCC (Figure 4C). The
calibration curve demonstrated good agreement between the predicted and actual patient
outcomes (Figure 4D).

3.4. Association of the Risk Score and Clinicopathological Traits

We conducted an analysis to assess the association between the risk score and clinical
characteristics, including gender, T stage, N stage, and TNM stage. The results obtained
from the Wilcoxon test demonstrated that the risk score showed significant differences
among different stages (stage 2 vs. stage 3, p < 0.05), T stages (T3 vs. T4, p < 0.05), and
N stages (N0 vs. N1, p < 0.05). However, no significant difference in the risk score was
observed between genders (female vs. male, p > 0.05). (Figure 5).
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Figure 4. Construction of a nomogram for OS prediction in ESCC. (A,B) Univariate (A) and multivari-
ate (B) Cox regression analysis of prognostic clinical indicators. (C) Nomogram to predict the 1-year,
3-year, and 5-year OS rates in ESCC patients. (D) Calibration curve used to evaluate the accuracy of
the nomogram model at 1-year, 3-year, and 5-year time points.
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shows the association between the risk score and clinical stage (A), T stage (B), N stage (C), and
gender (D). The “•” represents outliers. NS p > 0.05 and * p < 0.05.

3.5. GSVA between High-Risk and Low-Risk Groups

To explore the functional and pathway differences between high-risk and low-risk
groups, we performed GSVA. In terms of BP, ESCC samples in the high-risk group exhibited
enrichment in “epithelial cilium movement involved in determination of left-right asymme-
try” and “regulation of Wnt signaling pathway planar cell polarity pathway”. Conversely,
samples in the low-risk group showed enrichment in “positive regulation of granulocyte-
macrophage colony stimulating factor production” and “antimicrobial humoral immune
response mediated by antimicrobial peptide” (Figure 6A). The CC analysis indicated that
“prespliceosome” and “npbaf complex” were enriched in the high-risk group samples,
while “cornify envelope” and “sperm plasma membrane” were enriched in the low-risk
group samples (Figure 6B). In terms of MF, the high-risk group exhibited enrichment in
“glycerophospholipid flippase activity” and “DNA secondary structure binding”, whereas
the low-risk group showed enrichment in “interleukin 1 receptor binding” and “structural
constituent of skin epidermis” (Figure 6C). Furthermore, the high-risk group demonstrated
enrichment in the KEGG gene sets “mismatch repair” and “spliceosome”, whereas the
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low-risk group exhibited enrichment in “Olfactory transduction” and “Toll-like receptor
signaling pathway” (Figure 6D).
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3.6. Correlations with Immune Microenvironment

To investigate the capacity of our risk model to portray the immunological milieu
within the tumor microenvironment (TME) of ESCC, we utilized the CIBERSORT algorithm
to compute the infiltration scores of distinct immune cell populations. Subsequently, we
scrutinized the variations between the high-risk and low-risk groups. Analysis using
the CIBERSORT approach unveiled that the low-risk group exhibited elevated levels of
immune cell infiltrations, including activated mast cells and neutrophils, compared to
the high-risk group (p < 0.05) (Figure 7A,B). Additionally, we evaluated the expression
differences of immune checkpoints between the two risk groups. The results demonstrated
that immune checkpoints, such as BTNL2, CD70, CD86, CTLA4, ICOSLG, LAG3, LAIR1,
NRP1, TNFRSF14, and TNFRSF8, were significantly upregulated in the high-risk group
(p < 0.05). Conversely, the high-risk group exhibited lower expressions of CD274, CD80,
HHLA2, and KIR3DL1 compared to the low-risk group (both p < 0.05) (Figure 7C).
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3.7. The Oxidative Stress-Related DElncRNA Validation in ESCC

Next, we examined the expression levels of the seven oxidative stress-related DElncR-
NAs. We assessed their expression in various cell lines, comparing them to the human
normal esophageal epithelial cell line Het-1A. As depicted in Figure 8A, LINC01749,
PCDH9-AS1, TMEM220-AS1, and KCNMA1-AS1 exhibited relatively lower expression
levels in ESCC cell lines (KYSE-30, KYSE-150, KYSE-410, TE-1, and Eca-109) compared to
Het-1A. Conversely, SNHG1 and LINC01672 demonstrated relatively higher expression
levels. However, there were no significant differences in the expression levels of CCR5AS
between the two groups. To further verify the expression of these biomarkers, we used
qRT-PCR to compare gene expression levels in carcinoma tissue and paired paracancerous
tissue from 10 ESCC patients. The clinical samples showed similar expression trends to
those found in the cell lines (Figure 8B). Except for CCR5AS, the expression levels of the
other six oxidative stress-related DElncRNAs were completely consistent with the results
obtained from data mining. These findings further validate the accuracy of the aforemen-
tioned bioinformatics research. Based on its higher fold change, we selected PCDH9-AS1
for subsequent functional assays.

3.8. Loss of PCDH9-AS1 Predicted Unfavorable Prognosis of ESCC Patients

To assess the clinical significance of PCDH9-AS1, we performed FISH experiments
to examine its expression levels in tissues. The results demonstrated a significantly lower
average fluorescence intensity of PCDH9-AS1 in cancer tissues compared to paired adja-
cent non-cancerous tissues (Figure 9). Subsequently, we divided ESCC cancer tissue into
low-expression and high-expression groups based on the median value of PCDH9-AS1
expression, with 40 cases in each group. We further investigated the association between
PCDH9-AS1 expression levels and clinical pathological features. The results revealed a
significant correlation between PCDH9-AS1 expression and the clinical staging of ESCC
patients, while no correlation was observed with gender, age, pathological grading, lymph
node metastasis, or tumor staging (Table 2). These findings suggest that PCDH9-AS1 may
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function as a tumor suppressor, and its low expression is indicative of poor prognosis in
ESCC patients.
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Figure 8. Verification of the expression levels of the seven oxidative stress-related DElncRNAs in
cell lines and tissues. (A) Relative expression of the seven oxidative stress-related DElncRNAs in the
normal human esophageal epithelial line Het-1A and ESCC cells (KYSE-30, KYSE-150, KYSE-410,
TE-1, Eca-109). (B) Relative expression of the seven oxidative stress-related DElncRNAs in 10 pairs of
carcinoma tissue and paracancerous tissue of ESCC. NS p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001,
and **** p < 0.0001.
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Figure 9. Immunofluorescence analysis of PCDH9-AS1 expression in carcinoma tissues and para-
cancerous tissues of ESCC. (A) Representative images (magnification 200×). DAPI was used for
nuclear staining. (B) Quantitative map of the relative fluorescence intensity for 80 pairs of carcinoma
tissue and paracancerous tissue of ESCC. **** p < 0.0001.

3.9. Overexpression of PCDH9-AS1 Attenuates ESCC Cell Proliferation and Promotes Apoptosis
and Oxidative Stress Level

To investigate the functions of PCDH9-AS1 in ESCC, a PCDH9-AS1 pcDNA3.1(+)
vector was constructed (pcDNA3.1-PCDH9-AS1), resulting in the upregulation of PCDH9-
AS1 (Figure 10A). Subsequently, both the CCK8 assay and colony formation assay re-
vealed that PCDH9-AS1 overexpression repressed cell proliferation compared to the control
group (pcDNA3.1) (Figure 10B,C). Nevertheless, the flow cytometry assay demonstrated
that PCDH9-AS1 overexpression significantly increased the apoptosis level of ESCC cells
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(Figure 10D). Considering that an increase in ROS and LDH levels is a characteristic re-
sponse to oxidative stress, we further explored the impact of PCDH9-AS1 upregulation
on these parameters in ESCC cells. Our results indicated that PCDH9-AS1 overexpression
promoted the production of ROS (Figure 10E) and significantly elevated LDH levels, as
determined by an LDH assay kit (Figure 10F).

Table 2. Correlation between PCDH9-AS1 expression and clinicopathological parameters of
ESCC patients.

Characteristic n PCDH9-AS1 Level
p-Value

Low (n = 40) High (n = 40)

Gender
Male 56 30 26 0.3291

Female 24 10 14
Age (years) #

≤60 33 19 14 0.2958
>60 46 21 25

Histological grade
I + II 65 34 31 0.3902

III + IV 15 6 9
Lymph node metastasis

Negative 41 18 23 0.2634
Positive 39 22 17

Tumor Stage #

T1 + T2 9 1 8 0.0714
T3 + T4 27 12 15

Clinical stage #

I + II 19 4 15 0.0258
III + IV 28 15 13

# The totals may not correspond to the sum of the individual numbers due to missing data.
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Figure 10. The effect of PCDH9-AS1 overexpression on ESCC cells. (A) Relative expression level of
PCDH9-AS1 after transfection with the corresponding pcDNA 3.1 (+) vector. (B–D) Cell proliferation
ability (B), colony formation ability (C), and apoptosis level (D) in the PCDH9-AS1 overexpression
and control groups. (E,F) Oxidative stress level evaluated by detecting ROS (E) (green, magnifica-
tion 200×) and LDH (F) levels in the PCDH9-AS1 overexpression and control groups. * p < 0.05,
** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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4. Discussion

The survival rate for esophageal cancer patients at the 5-year mark is currently low,
ranging from 10% to 30% [27]. However, early detection and timely treatment have the po-
tential to significantly increase the 5-year survival rate to over 80% [28]. Consequently, there
is a growing emphasis on the identification of robust and sensitive predictive models for
early diagnosis and prognosis, including those based on ferroptosis-related genes, immune
genes, fibroblast-related features, immunohistochemical features, and metabolites [29–33].
Persistent oxidative stress is a prominent characteristic observed throughout tumor de-
velopment and has been identified as a double-edged sword in tumor progression and
cancer treatment [34]. Recent studies have highlighted the involvement of oxidative stress
in ESCC. For instance, a Caspase-8 variant activates Nrf2 through SQSTM1 phosphoryla-
tion, resulting in the suppression of oxidative stress levels and exerting a pro-tumorigenic
effect in ESCC [35]. Depletion of IFI6 leads to mitochondrial dysfunction and endoplasmic
reticulum stress, which culminate in the accumulation of reactive oxygen species and
inhibition of ESCC progression [36]. Additionally, Liu et al. constructed a prognostic model
pertaining to oxidative stress in ESCC based on the integration of data from the TCGA,
GTEx, and GEO databases. This model aims to predict the prognosis of ESCC patients and
carries considerable clinical significance [37]. Consequently, the development of oxidative
stress-related biomarkers is crucial for predicting the prognosis of ESCC patients. Owing
to their diverse array and intricate spatial configurations, lncRNAs possess the capacity
to regulate expression at multiple levels, including transcription and translation [38]. Nu-
merous studies have demonstrated, under long-term or short-term oxidative stress, that
the expression levels of lncRNAs are dysregulated. For example, in gastric cancer, DNA
damage response induced by oxidative stress can promote the binding of H3K27ac and
CREBBP, thus facilitating the expression of lncRNA NORAD [39]. In cholangiocarcinoma,
oxidative stress can also upregulate the expression of lncRNA H19 and lncRNA HULC [40].
On the other hand, lncRNAs can affect the levels of oxidative stress in tumor cells through
various mechanisms. For instance, in hepatocellular carcinoma, LINC01134 recruits the
transcription factor SP1 to the p62 promoter to activate the antioxidant pathway of p62 [41];
lncRNA GABPB1-AS1 interacts with GABPB1 to inhibit its translation, leading to decreased
PRDX5 expression and ultimately impaired antioxidant capacity of cells [42]. Additionally,
the crosstalk between lncRNAs and oxidative stress can modulate various cancer-related
signaling pathways such as p53, NF-κB, Nrf2, AKT, EGFR, FOXO3, Keap1, PTEN, and
Wnt [43,44]. In our study, we successfully established a prognostic risk signature based on
seven oxidative stress-related DElncRNAs, which exhibited high accuracy in predicting OS.
These seven prognostic oxidative stress-related lncRNAs are closely associated with the
TME and immunotherapy in ESCC. Furthermore, we conducted preliminary investigations
into the anti-cancer role of PCDH9-AS1 in ESCC and found that its overexpression may
attenuate ESCC cell proliferation, promote apoptosis, and induce oxidative stress.

We initially identified differentially expressed lncRNAs between the cancer group and
the normal group. Subsequently, we performed correlation analysis between these lncR-
NAs and oxidative stress-related genes and selected lncRNAs that exhibited associations
with oxidative stress. Through univariate Cox and LASSO regression analyses, we iden-
tified seven DElncRNAs that were significantly associated with prognosis and oxidative
stress: CCR5AS, LINC01749, PCDH9-AS1, TMEM220-AS1, KCNMA1-AS1, SNHG1, and
LINC01672. Using these seven lncRNAs, we constructed a risk model for predicting the
prognosis of ESCC patients. To enhance the prediction of ESCC prognosis, we integrated
the risk score and clinical features into an integrated column chart. Among the seven
lncRNAs, CCR5AS, LINC01749, PCDH9-AS1, and TMEM220-AS1 were identified as low-
risk factors, while KCNMA1-AS1, SNHG1, and LINC01672 were identified as high-risk
factors. Several of these lncRNAs in the risk model have been reported to play significant
roles in different cancers, such as CCR5AS, LINC01749, TMEM220-AS1, KCNMA1-AS1,
SNHG1, and LINC01672. Notably, PCDH9-AS1 was identified as a lncRNA associated
with prognosis and oxidative stress for the first time in this study. Previous bioinformatics
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investigations have demonstrated the prognostic value of CCR5AS and LINC01749 in
melanoma and ESCC, respectively [45,46]. In liver cancer, TMEM220-AS1 functions as a
competitive endogenous RNA by regulating the miR-484/MAGI1 axis to inhibit tumor pro-
gression [47]. Additionally, studies by Ma et al. have shown that KCNMA1-AS1 is highly
expressed in epithelial ovarian cancer (EOC) and is negatively correlated with prognosis.
KCNMA1-AS1 promotes EOC cell proliferation and migration, inhibits apoptosis, and
contributes to the occurrence and development of EOC [48]. SNHG1 is an oncogenic gene
that has been validated by numerous cancer researchers. For example, SNHG1 promotes
ESCC cell proliferation and invasion by regulating the Notch signaling pathway [49]. In
bladder cancer, SNHG1 promotes tumor cell proliferation and inhibits apoptosis by regu-
lating PPARγ ubiquitination [50]. LINC01672, also known as lncRNA NMR, is significantly
upregulated in ESCC and serves as a key regulatory factor in promoting tumor metastasis
and drug resistance [51]. Interestingly, we observed that KCNMA1-AS1 was downregu-
lated in ESCC compared to non-tumor samples, but it still functions as a “risk” lncRNA
in ESCC, potentially regulating oxidative stress in conjunction with other genes to impact
tumor progression. Our findings broadly align with these studies, and the identification
of these oxidative stress-related lncRNAs provides valuable insights into ESCC and the
identification of potential therapeutic targets.

Next, we performed GSVA analysis on high-risk and low-risk groups. ESCC samples
in the high-risk group exhibited enrichment in aspects such as “regulation of Wnt signaling
pathway planar cell polarity pathway”, “DNA secondary structure binding”, “mismatch
repair”, and “spliceosome”, whereas the low-risk group showed enrichment in aspects such
as “positive regulation of granulocyte-macrophage colony stimulating factor production”,
“an-timicrobial humoral immune response mediated by antimicrobial peptide”, “inter-
leukin 1 receptor binding”, and “Toll-like receptor signaling pathway”. Consultation of the
literature revealed that several pathways mentioned above are involved in tumor progres-
sion. For instance, lncRNA DGCR5 increases its stability by directly binding with SRSF1,
which can regulate MCL-1 alternative splicing, thereby affecting ESCC progression [52].
LncRNA HOTAIR may promote malignant progression of liver cancer by downregulating
SETD2 expression and phosphorylation levels, leading to the suppression of DNA damage
repair [53]. Moreover, Rebernick et al. indicated a negative correlation between the high
expression of GM-CSF and survival rates in esophageal cancer patients [54]. Su et al.
found that ESCC patients with high TLR3 expression have longer overall survival and
their high expression is associated with immune cell infiltration and activation of apoptotic
pathways [55]. Thus, we inferred that the prognostic lncRNAs obtained in this study may
participate in the regulation of ESCC through mechanisms involving alternative splicing,
DNA mismatch repair, GM-CSF production, the Toll-like receptor signaling pathway, and
more. This provides a new theoretical foundation for further investigating the potential
molecular mechanisms of these genes in ESCC. An increasing body of research suggests
a strong correlation between oxidative stress and tumor immunity. For instance, Zhao
et al. demonstrated that PRAK plays a vital role in regulating antioxidant stress in Th17
cells, and its intervention significantly improves the glycolytic metabolism of Th17 cells,
thereby enhancing the anti-tumor immune response mediated by Th17 cells [56]. Further-
more, CD4+ T cells have been shown to modulate tumor metabolism, leading to increased
TNF-α-dependent oxidative stress and subsequent tumor cell death [57]. However, limited
research has been conducted on the direct relationship between oxidative stress and im-
mune cell infiltration in ESCC. In this study, we divided the GSE53625 dataset into training
and testing sets. Using the median risk scores derived from the training set as a threshold,
we classified both the training set and test set samples into high-risk and low-risk groups.
We observed a significant decrease in the infiltration of activated macrophages and neu-
trophils in the high-risk group compared to the low-risk group. Interestingly, Zhuge et al.
demonstrated a positive correlation between high densities of neutrophils, macrophages,
and dendritic cells and improved survival in ESCC patients [58]. Additionally, Liu et al.
divided the ESCC patients into two groups and reported a higher median survival time in
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the first group. Similarly, the infiltration levels of neutrophils, plasma cells, and activated
macrophages were higher in the first group compared to the second group, indicating
a positive correlation between the infiltration levels of these cells and patient survival,
which is consistent with our findings [37]. However, conflicting perspectives exist among
scholars. Luo et al. indicated that increased neutrophil infiltration within the tumor is an
independent adverse prognostic factor in ESCC [59]. Mao et al. found that the expression
level of MMP12 positively correlates with the infiltration levels of activated macrophages
and M0 macrophages, and high MMP12 expression is significantly associated with poor
prognosis in ESCC patients [60]. These discrepancies may be attributed to the phenotypic
and functional plasticity of neutrophils and macrophages. Cellular factors and epigenetic
signals within the tumor microenvironment can induce the polarization of neutrophils into
anti-tumor N1-type tumor-associated neutrophils or pro-tumor N2-type tumor-associated
neutrophils [61]. Activated mast cells can release various active factors, chemokines, and
cytokines that exert diverse functional roles in tumor development. Factors such as IL-8,
VEGF, PDGF, NGF, SCF, and histamine promote tumor growth, while IL-1, IL-6, TNF-α,
and fibroblast proteases inhibit tumor growth [62]. Therefore, we speculate that the seven
oxidative stress-related lncRNAs identified in this study may influence the polarization and
function of various cells in the tumor immune microenvironment, thereby impacting the
prognosis of ESCC patients through mechanisms such as inducing antibody-dependent cel-
lular cytotoxicity, exerting direct cytotoxic effects, activating anti-tumor adaptive immunity,
and secreting tumor-suppressive factors. Furthermore, compared to the low-risk group,
the high-risk group exhibited higher expression of immune checkpoint genes, including
BTNL2, CD70, CD86, CTLA4, ICOSLG, LAG3, LAIR1, NRP1, TNFRSF14, and TNFRSF8.
However, further research is required to determine whether inhibitors targeting these
checkpoints can serve as promising anti-tumor drugs for ESCC.

In this study, we constructed a prognostic model based on seven lncRNAs associated
with ESCC patient prognosis. By computing the patients’ risk scores, we predict their
prognoses, wherein patients in the high-risk group exhibit poorer outcomes. Prognostic
models hold the potential to anticipate the trajectory of patients’ future developments,
enhancing comprehension of disease progression. Furthermore, we performed an indepen-
dent prognostic analysis and developed a nomogram model grounded in the risk score and
clinical features of the samples. This model transforms risk score, N stage, and TNM stage
into scores to predict patient survival rates at 1, 3, and 5 years, offering clinical utility. Simi-
larly, immune infiltration-related analyses also provide valuable insights for incorporating
immune therapy into the treatment of ESCC patients and assessing immunotherapeutic
efficacy. In summary, the oxidative stress-related prognostic model we constructed for
ESCC patients using bioinformatics methods presents novel directions and targets for ESCC
treatment and prognosis enhancement. However, the effectiveness and clinical applicability
of this model necessitate further validation. Furthermore, we conducted an assessment
of the expression levels of the seven identified oxidative stress-related DElncRNAs in
both cells and tissues, and their expression patterns corresponded with the predictions
generated by the previous bioinformatics analysis. Notably, the functional phenotypic
analysis of PCDH9-AS1 revealed a significant suppression of cancer cell proliferation when
PCDH9-AS1 was overexpressed. Moreover, it was found to enhance apoptosis and elevate
oxidative stress levels. These findings suggest that PCDH9-AS1 acts as a positive factor
for the prognosis of ESCC patients and exerts regulatory effects on tumor development
through mechanisms associated with oxidative stress.

Nevertheless, it is important to acknowledge the limitations of this study. Firstly,
the risk model for oxidative stress-related DElncRNAs was constructed using data solely
obtained from the GEO database, which may introduce potential bias. To ensure the
robustness and generalizability of the findings, it is necessary to validate the findings
using external datasets and larger clinical cohorts. Secondly, although we conducted
RT-qPCR experiments to assess the expression levels of all seven lncRNAs in 10 clinical
samples and five ESCC cell lines, the sample size remains relatively small. Therefore, future
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studies should expand the sample size to enhance the statistical power and reliability of the
results. Lastly, the underlying mechanisms by which these lncRNAs influence oxidative
stress and how oxidative stress impacts the progression of ESCC remain unclear. Further
investigations are needed to elucidate the intricate relationship between lncRNAs, oxidative
stress, and ESCC.

5. Conclusions

This study aimed to identify seven DElncRNAs (CCR5AS, LINC01749, PCDH9-AS1,
TMEM220-AS1, KCNMA1-AS1, SNHG1, and LINC01672) associated with oxidative stress
and develop a risk model and nomogram for accurate prognosis prediction in patients
with ESCC, which offers novel approaches for predicting and improving the prognosis
of ESCC patients, thereby providing new avenues for ESCC treatment. Additionally, the
study investigated the relationship between the risk model and the immune environ-
ment. Immune-related analyses, particularly those involving immune checkpoints, furnish
theoretical support for the application of immune therapy. Concurrently, novel insights
were gained into the role and potential mechanisms of a specific long non-coding RNA,
PCDH9-AS1, in regulating the development of ESCC. Our research findings establish a
new theoretical foundation for exploring the roles of lncRNAs and oxidative stress in ESCC,
presenting fresh targets for ESCC treatment. Moreover, we will persist in investigating
the roles of these prognostically relevant lncRNAs, delving into their potential molecular
mechanisms. As our study unfolds, we anticipate gaining a deeper understanding of
these mechanisms and their implications. In conclusion, these findings have important
implications for prognosis prediction, diagnosis, and treatment of esophageal squamous
cell carcinoma in clinical practice.
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