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Simple Summary: Skin cancers are common and sometimes difficult to diagnose malignancies that
occur worldwide. Most skin cancers are diagnosed by visual assessment of patient samples obtained
through biopsy. However, due to the lack of well-defined malignancy features, the diagnosis and
classification of skin cancer lesions remain difficult in some cases. To overcome this issue, researchers
have attempted to use molecular information such as genes and proteins and imaging data to improve
skin cancer diagnosis and classification. Therefore, this paper reviews the recent advancements in
large-scale molecular profiling approaches and appraises their limitations and potential for reliable
and reproducible classification and stratification of skin cancers.

Abstract: Skin cancers are common and heterogenous malignancies affecting up to two in three
Australians before age 70. Despite recent developments in diagnosis and therapeutic strategies,
the mortality rate and costs associated with managing patients with skin cancers remain high. The
lack of well-defined clinical and histopathological features makes their diagnosis and classification
difficult in some cases and the prognostication difficult in most skin cancers. Recent advancements
in large-scale “omics” studies, including genomics, transcriptomics, proteomics, metabolomics and
imaging-omics, have provided invaluable information about the molecular and visual landscape of
skin cancers. On many occasions, it has refined tumor classification and has improved prognostication
and therapeutic stratification, leading to improved patient outcomes. Therefore, this paper reviews
the recent advancements in omics approaches and appraises their limitations and potential for better
classification and stratification of skin cancers.

Keywords: skin cancer; molecular classifier; melanoma; basal cell carcinoma; cutaneous squamous-
cell carcinoma

1. Introduction

Currently, clinical data combined with imaging technologies such as digital der-
moscopy, confocal microscopy, multiphoton microscopy and optical coherence tomography
are used to diagnose and observe changes in skin cancers over time [1,2]. Suspected lesions
are subsequently excised for histopathology analysis to confirm or rule out invasive tu-
mors. However, due to the lack of clear-cut discriminatory features, clinical and imaging
false-positive and false-negative diagnoses of skin cancers and their premalignant lesions
are common with undesirable consequences for the patient and the healthcare system [3–7].
For example, the number of benign excisions for every melanoma diagnosis ranges from 3:1
in highly specialist dermatology settings to 8:1 in general dermatology and 30:1 in primary
care [5,6]. Considering non-melanoma skin cancers (NMSCs), cutaneous squamous-cell
carcinomas (cSCCs) are reported to be clinically misdiagnosed as basal-cell carcinomas
(BCCs) and vice versa, with a study reporting 13 out of 154 cases inversely diagnosed [8].

Moreover, it is well recognized that due to considerable morphologic heterogeneity,
the lack of clear-cut features of malignancy and interobserver disagreements, the diagnosis
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of skin cancers can sometimes be complicated by the pathologic assessment of a biopsy.
A 7-year single-center analysis showed that from a total of 936 histologically confirmed
melanomas, 16% were misdiagnosed, of which 46.7% were pigmented nevus, 21.3% were
BCCs, 10.7% were unspecified tumors, 6% were dysplastic nevus and 3.3% were cSCC [9].
Similarly, histopathology assessment fails to correctly identify around 30% of primary
cSCC tumors with no defining histological features that may carry the risk of progression
to regional lymph nodes or distant body organs, while 75% of the lesions identified with
a risk of metastasis do not develop metastasis [10]. A BCC biopsy sample may also lack
aggressive components, and its subtyping is subject to interobserver variation [11]. It is
reported that a maximum of 60.9% agreement can be achieved between punch biopsy
and subsequent surgical excision analysis of primary BCCs, indicating limitations of a
histopathological assessment of punch biopsies [12].

Considering melanocytic skin lesions, a 2017 study also showed that benign nevi
and advanced melanomas had 92% and 72% diagnostic and classification accuracy using
histopathological criteria, respectively. On the other hand, lesions classified in between,
such as dysplastic nevi, melanoma in situ, and early invasive melanoma, were properly
diagnosed in 25%, 40% and 43% of the cases [13].

Since therapeutic interventions in skin cancers are primarily based on a broad clinical
and histopathological diagnosis, their misclassification and misdiagnosis will lead to
ineffective, inappropriate or delayed treatment. Despite recent improvements and access
to novel therapies, such as checkpoint inhibitor immunotherapy and chemotherapy, a
significant number of patients with advanced skin carcinomas die every year, and there is
no personalized platform to stratify and match patients to the most effective therapeutic
agents based on the molecular composition and profile of their tumors [14,15].

2. Classification of Skin Cancers

Skin cancer is a complex and multifactorial disease that involves changes in multiple
levels of biological information, including genes, transcripts, proteins, and metabolites
that produce phenotypic and physical changes on dermoscopy, confocal microscopy, and
histology, as well as clinical manifestations. Changes in the characteristics of each layer of
information, either alone or in combination with other layers provide an opportunity for a
better diagnosis and classification of skin cancers (Figure 1).

At the molecular level, genetic and proteomic changes in skin cancers are numerous
and varied. Changes in the expression, interaction, and other alterations in various genes
and proteins have been associated with skin cancers, including in DNA repair, cell cycle
regulation and tumor suppression [16–19]. On the other hand, metabolites are involved in
various biochemical processes within skin cancer cells, including energy production, sig-
naling and regulation of cellular processes. Changes in the levels, composition, interaction
and structure of metabolites can have profound effects on cellular function and can con-
tribute to the development of various skin cancers including melanoma [20] and cSCCs [21].
Altogether, these molecular changes can lead to alterations in the expression of various
phenotypes, which may contribute to the development and progression of skin cancers.

Histological examination of skin biopsies together with clinical assessment such as
location and size of the lesion, as well as patient demographics and risk factors, remains
the gold standard for diagnosing and classification of skin cancers. Histology can provide
information on the type and stage of skin cancers, as well as the presence of important
features such as mitotic rate, tumor thickness, level of differentiation, depth of invasion,
etc. Classically, melanoma, cSCC and BCCs are understood to evolve from normal skin
cells, progressing through premalignant stages (excluding BCC), before entering the in situ
phase, where the lesions are confined to the epidermis layer of the skin. The accumulation
of additional mutations in carcinogenic genes, sometimes influenced by hereditary factors,
tissue microenvironment and environmental triggers, particularly UV exposure, can propel
the tumor’s advancement. This leads to the invasion of the dermis layer and, subsequently,
the potential spread to nearby lymph nodes and distant organs. Each of these stages exhibits
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distinct clinical and histological characteristics, along with varying levels of survival rates
and treatment responses. A condensed overview of the traditional stages and progression
of cutaneous skin cancers, based on TNM staging and the involvement of key genes in
disease advancement, is depicted in Figure 2 (melanoma) and Figure 3 (cSCC and BCC).
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Figure 1. An overview of different layers of information that can be used to classify skin cancers.
Like other tumors, the initiation and progression of skin cancers involve inherited or acquired
mutations and alterations in genes (genomic) that are subsequently transcribed into RNAs with
various modifications and alterations (transcriptomics). Upon the translation of RNAs, further
changes are introduced in the cell at the protein (proteomics) and metabolite (metabolomics) levels
which eventually permit the emergence of neoplastic properties in normal skin cells, leading to
progression to premalignant lesions and advanced and aggressive carcinomas. Therapeutic agents
will also infer their effects on tumors at these levels by interfering with cell functions. These molecular
alterations are often, but not always, reflected in the tumor cell or tissue phenotype through changes
in their size, shape, color, depth of invasion and microenvironment.

Imaging features, such as dermoscopy and reflectance confocal microscopy have
also provided important diagnostic and classification information. Dermoscopy is a non-
invasive imaging technique that allows for the visualization of skin lesions at high magnifi-
cation. Reflectance confocal microscopy provides cellular-level imaging of skin lesions and
can be used to distinguish between benign and malignant lesions. Recently, the applica-
tion of artificial intelligence (AI) on dermoscopy and confocal microscopy images of skin
cancers, particularly melanoma, has been shown to perform similarly to and on some occa-
sions better than experienced dermatologists for tumor diagnosis and classification [22–24].
However, the use of AI in skin cancer diagnosis, classification and risk assessment is yet to
be implemented in the clinical setting.

However, skin cancers’ development and progression, resistance to therapy and
changes in the tumor during treatment embody alterations in the genomic, transcriptomic
and proteomic landscape of cancer cells and their microenvironment, which cannot be
grasped by the assessment of tumors using traditional measures such as tumor stages, grad-
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ing and phenotypic presentations alone [25,26]. Therefore, a reliable molecular approach to
tumor classification or “molecular classifier” is needed to overcome these challenges.

Cancers 2023, 15, x FOR PEER REVIEW 5 of 24 
 

 

 

Figure 2. Overview of melanoma development and progression from melanocyte. This figure 

illustrates the sequential stages of melanoma development and progression. Melanocytes, 

sometimes influenced by hereditary gene mutations, tumor microenvironment such as immune 

inactivation and environmental elements, particularly UV exposure, can undergo genetic mutations, 

such as in the BRAF gene. This initiates the formation of premalignant melanoma lesions like nevi. 

As new and additional genetic mutations accumulate, along with post-translational modifications 

and other factors, these lesions may evolve, eventually encompassing the full epidermis layer (Stage 

0 disease). Further genetic changes and alterations in the microenvironment can propel melanoma 

progression, leading to infiltration into the dermis layer (Stages I and II), with the potential for 

metastasis to nearby lymph nodes or distant organs (Stages III and IV). While the classical 

progression and pathogenesis involves distinct stages, some melanomas may deviate and develop 

de novo without progressing through the premalignant lesion stage (indicated by dashed arrow). 

This depiction aligns with the TNM staging system; × indicates inactivation or disruption of the 

immune system. 

Figure 2. Overview of melanoma development and progression from melanocyte. This figure
illustrates the sequential stages of melanoma development and progression. Melanocytes, sometimes
influenced by hereditary gene mutations, tumor microenvironment such as immune inactivation
and environmental elements, particularly UV exposure, can undergo genetic mutations, such as in
the BRAF gene. This initiates the formation of premalignant melanoma lesions like nevi. As new
and additional genetic mutations accumulate, along with post-translational modifications and other
factors, these lesions may evolve, eventually encompassing the full epidermis layer (Stage 0 disease).
Further genetic changes and alterations in the microenvironment can propel melanoma progression,
leading to infiltration into the dermis layer (Stages I and II), with the potential for metastasis to nearby
lymph nodes or distant organs (Stages III and IV). While the classical progression and pathogenesis
involves distinct stages, some melanomas may deviate and develop de novo without progressing
through the premalignant lesion stage (indicated by dashed arrow). This depiction aligns with the
TNM staging system; × indicates inactivation or disruption of the immune system.

Summarizing the clinical, imaging and histological classification of skin cancers is
beyond the scope of the present study. Thus, the purpose of this review is to examine
molecular classifiers in three prevalent types of skin cancers: melanoma, cSCC and BCC.
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Specifically, it will explore the utilization of gene and protein classifiers that have the
potential to assist in diagnosing or predicting clinical behaviors such as prognosis, survival,
metastasis and response to therapy in these skin cancers.
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Figure 3. Overview of cSCC and BCC development and progression from keratinocytes. This figure
illustrates the sequential stages of melanoma development and progression. Cutaneous squamous-
cell carcinoma (cSCC) and basal-cell carcinomas (BCCs) stem from keratinocytes, the principal cells
of the skin. Aberrant keratinocyte growth initiates these skin cancers. Within the skin, basal cells can
differentiate into squamous cells or remain in the basal layer, dividing as basal cells. Like melanomas,
cSCC and BCCs consist of four stages based on the TNM staging system. cSCC’s progression
commences with normal keratinocytes, advancing through premalignant stages like actinic keratosis
and Bowen’s disease. Specific gene mutations drive this process. Factors like UV light exposure,
immune-related concerns including immunosuppression and other environmental influences cause
genomic and proteomic changes, enabling tumor invasion and metastasis to lymph nodes and distant
organs. Notably, less than 0.6% of actinic keratosis cases may progress to cSCC, with approximately
70% of cSCCs originating from actinic keratosis [27]. For BCCs, a similar TNM staging applies, yet
a premalignant lesion is yet to be identified. Mutations in Hedgehog and non-Hedgehog pathway
genes, the immune microenvironment, sun exposure and other factors significantly contribute to
BCC development and progression, constructing the intricate molecular landscape of these skin
malignancies. × indicates inactivation or disruption of the immune system.

3. Molecular Classification of Skin Cancers

Recent advancements in large-scale “omic” studies, including genomics, transcrip-
tomics, proteomics, metabolomics and imaging-omics, have provided invaluable informa-
tion about various human cancers’ molecular and visual landscapes. In combination with
machine learning (ML) approaches, omics have significantly improved our understand-
ing of human tumors, including those arising in the skin, offering limitless potential for
precision medicine and innovations in clinical management [28,29]. Omic analyses have
successfully identified new and unified classes or sub-classes of cancers. The largest of its
kind, a genomic and proteomic study of 3527 specimens from 12 cancer types, including
head and neck SCC, breast cancer and colon cancer, by the Cancer Genome Atlas Research
Network classified the tumors into 11 major subtypes that correlated with the tissue of
origin [29]. For example, distinct cancers such as lung, head and neck, and a subset of
bladder squamous tumors were grouped into one subtype based on their similar level of
TP53 alterations, TP63 amplifications and immune/proliferation pathway gene elevations.

On the other hand, based on their unique molecular composition, bladder cancers were
split into three pan-cancer subtypes. Other studies have also explored various molecular
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classification approaches in tumors such as breast [30], endometrial [31], bladder [32] and
many more cancers, leading to the identification of new molecular classes of the diseases
with distinct outcomes. These refined molecular classifications of tumors facilitated by
omic data provide the potential for improved detection, management and novel therapeutic
strategies.

3.1. Genomic and Transcriptomic Classification in Skin Cancers

Like other tumors, inherited mutations or a gradual accumulation of somatic gene
alterations permit the emergence of neoplastic properties in skin cells, leading to the
progression from normal skin to premalignant lesions, which eventually transform into
advanced and aggressive skin cancers. Germline and somatic mutation analysis of skin can-
cers has been studied extensively in the past few years, providing novel information about
the genome landscape of these lesions and identifying driver genes and critical molecular
players in their initiation and progression [33–37]. A summary of a number of genomic and
transcriptomic analyses identifying novel classes or groups of melanomas, cSCC and BCCs
with the potential to aid in diagnosis of melanoma is presented in Table 1a–c.

Table 1. Summary of genomic, transcriptomic or proteomic analysis in cutaneous melanoma, cuta-
neous squamous-cell carcinoma and basal-cell carcinoma identifying new classes or groups of lesions
with the potential to assist in diagnosing or predicting clinical behaviors such as prognosis, survival,
metastasis and response to therapy.

a. Melanoma

No
Features Attributing to
the Classes/or “Omics”
Analysis Used

Classes Main Findings and
Significance Ref

1

Genetic mutation
information (major
contributor), cumulative
solar damage (CSD) and
histology

1. Pathway I: superficial spreading melanoma
(CSD, BRAF p.V600 mutations)
2. Pathway II: lentigo malignant melanoma
(CSD; NF1, NRAS, non-p.V600E BRAF
mutations)
3. Pathway III: desmoplastic melanoma (CSD;
inactivating NF1, promoting NFKBIE, and
activating MAPK pathway mutations)
4. Pathway IV: spitz melanoma (no CSD; HRAS
mutation, kinase fusions in ROS1, NTRK1,
NTRK3, ALK, BRAF, MET, and RET; CDKN2A
deletion, promoting TERT mutations)
5. Pathway V: acral melanoma (no CSD,
CCND1, KIT, and TERT amplifications; BRAF,
NRAS, and KIT mutations)
6. Pathway VI: mucosal melanoma (no CSD,
copy number variations; KIT and NRAS
mutations)
7. Pathway VII: melanoma arising in congenital
nevi (no CSD (NRAS mutation in large
congenital nevi; BRAF mutation in small to
medium congenital nevi)
8. Pathway VIII: melanoma arising in blue nevi
(no CSD (GNAQ, CYSLTR2, GNA11 and
PLCB4 mutations; copy number aberrations in
SF3B1 and EIF1AX)
9. Pathway IX: uveal melanoma (no CSD,
GNAQ, GNA11, PLCB4, CYSLTR2, BAP1,
SF3B1, and EIF1AX mutations)

Within this classification
framework, reduced
significance has been
attributed to the clinical and
histopathological factors,
underscoring the elevated
prominence of molecular
criteria within the realm of
melanoma classification and
subsequent management of
the tumor. This paradigm
shift highlights the greater
emphasis on discerning and
utilizing molecular markers
to inform the classification
and comprehensive
management of melanoma
cases.

[38,39]
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Table 1. Cont.

a. Melanoma

No
Features Attributing to
the Classes/or “Omics”
Analysis Used

Classes Main Findings and
Significance Ref

2

Whole-exome sequencing,
DNA copy-number
profiling, DNA
methylation profiling and
protein array expression
profiling analysis

1. Mutant BRAF
2. Mutant RAS
3. Mutant NF1
4. Triple-WT (wild-type)

This study introduces a
structured framework for
genomic classification,
identifying four distinct
subtypes determined by the
prevailing pattern of
mutated genes.

[40]

3 Transcriptomic analysis

1. Immune: overexpression of immune-related
genes)
2. Keratin: overexpression of genes associated
with keratins
3. MITF-low: decreased expression of
pigmentation and epithelial expression genes.

Regionally metastatic tumors
in the “immune” subclass
show more favorable and the
“keratin” subclass less
favorable post-accession
survival, suggesting that
transcript expression
analysis will improve patient
stratification.

[40]

4 Genomic analysis

1. Low risk of recurrence-free and distant
metastasis-free survival
2. High risk of recurrence-free and distant
metastasis-free survival

The risk of metastasis can be
accurately predicted in
70% of stage I and II
melanomas using 30-gene
expression analysis, offering
a useful tool for estimating
individual’s risk of
recurrence and for
considering
adjuvant therapy.

[41]

5 Genomic analysis

1. Immune response subtype
2. Pigmentation differentiation subtype
3. Proliferative subtype
4. Stromal composition subtype

There had been significant
differences in mutations
between the subtypes stage
III and IV melanomas
studied, with the
proliferative subtype having
a poor prognosis. Low
expression of defined gene
set associated with immune
response was also found to
be associated with poor
outcome, highlighting the
importance of genome-based
subtype classification for
personalized management
of melanoma.

[42]
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Table 1. Cont.

a. Melanoma

No
Features Attributing to
the Classes/or “Omics”
Analysis Used

Classes Main Findings and
Significance Ref

6 Proteomic analysis
Six clusters of melanomas based on their
distinct proteomic profile showing different
survival.

The study identified that
proteins like TRAF6 and
ARMC10 are linked to
shorter survival, while AIFI1
is linked to longer survival.
In the immunotherapy and
targeted therapy groups,
certain pathways and
processes were linked to
better patient outcomes,
potentially aiding
precision medicine.

[43]

7

Whole-genome,
transcriptome, methylome
and immune cell infiltrate
analysis

1. Class 1: Respondents to anti-PD-1 therapy,
with or without anti-CTLA-4
2. Class 2: Non-respondents to anti-PD-1
therapy, with or without anti-CTLA-4

Analysis of patients with
advanced cutaneous
melanoma undergoing
anti-PD-1 therapy, with or
without anti-CTLA-4 showed
that response to
immunotherapy is associated
with high tumor mutation
burden, neoantigen load,
expression of IFNγ-related
genes, programmed death
ligand expression, low
PSMB8 methylation and
presence of T cells in the
tumor microenvironment. A
combined model involving
tumor mutation burden and
IFNγ-related gene
expression predicted the
response at AUC 0.79.

[44]

8
Whole-exome sequencing
and gene expression
profiling analysis

1. Class 1: Good responders to anti-PD-1
therapy.
2. Class 2: Non-responders to anti-PD-1
therapy.

Using integrative
whole-exome sequencing
and gene expression
profiling analysis, melanoma
patients with PD-L1
upregulation were found to
be good responders to
anti-PD-1 therapy.

[45]

9 Proteomic analysis Classes of melanoma with different levels of
aggressiveness

The expression of proteins
such as nestin and vimentin
could predict melanoma
aggressiveness in different
melanoma subgroups,
allowing risk molecular
stratification.

[46]
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Table 1. Cont.

a. Melanoma

No
Features Attributing to
the Classes/or “Omics”
Analysis Used

Classes Main Findings and
Significance Ref

10 Genomic and
transcriptomic analysis

1. Class 1: increased response to anti-PD-1
therapies
2. Class 2: increased resistance to anti-PD-1
therapies

Cactors such as high BRCA2
gene mutational loads are
associated with increased
response and upregulation of
genes associated with
mesenchymal transition,
extracellular matrix
remodeling and angiogenesis
with increased resistance to
anti-PD-1 therapy in
metastatic melanomas.

[47]

11 Transcriptomic analysis

A total of 687 primary melanoma were
categorized as classes 1 to 6, where classes 1
and 5 were typically thin and nonulcerated,
classes 2 and 4 exhibited thicker characteristics.
Class 3 and 6 tumors were the thickest and
most frequently ulcerated. These six classes
were significantly linked to mutation status:
BRAF mutations were common in classes 1, 5,
and 6, while NRAS mutations were frequent in
classes 2, 3, and 4.

The performance of
transcriptomic signatures in
stage I melanoma showed
similar indicator of
prognosis when compared
with sentinel node biopsy.

[48]

b: Cutaneous squamous-cell carcinoma

No
Features Attributing to
the Classes/or “Omics”
Analysis Used

Classes or Molecular Sub-Groups Main Findings and
Significance Ref

12 Whole-exome sequencing
analysis

The study identified signatures of
well-differentiated (six genes including SULF1,
ZNF528, NRCAM and FAT1) and
moderately/poorly differentiated (16 genes
including TMEM51, GRHL2, ZZEF1 and
GMDS) tumors.

This research elucidates the
intricate molecular makeup
of cSCC, uncovering driver
genes, pathways, and
mechanisms linked to the
formation of
well-differentiated and
moderately/poorly
differentiated tumors.

[37]

13 Targeted genomic analysis This study identifies metastatic cSCC patients
with overall good or poor survival.

Substantiates the connection
between mutations in
chromatin-modifying genes
or mutations involving
chromatin modifiers in
combination with
RAS/RTK/PI3K and
unfavorable outcomes.

[49]

14 Genomic analysis

1. Class 1: patients with low risk of metastasis
2. Class 2: patients with high risk of metastasis
3. Class 3: patients with highest risk of
metastasis

Using a 40-gene expression
test, the risk of metastasis
can be predicted in primary
cSCC patients,
complementing current
staging systems for
high-risk patients.

[50]
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Table 1. Cont.

b: Cutaneous squamous-cell carcinoma

No
Features Attributing to
the Classes/or “Omics”
Analysis Used

Classes or Molecular Sub-Groups Main Findings and
Significance Ref

15 Proteomic analysis Class 1: patients with high risk of metastasis
Class 2: patients with low risk of metastasis

Primary cSCC lesions with
higher levels of ANXA5 and
DDOST proteins is
associated with reduced time
to metastasis. A prediction
model based on these
proteins showed a
classification performance
with an accuracy of 91.2%
and higher sensitivity and
specificity compared to the
existing clinical cSCC
staging systems.

[51]

c: Basal-cell Carcinoma

No
Features Attributing to
the Classesor “Omics”
Analysis Used

Classes Main Findings and
Significance Ref

16 Transcriptomic analysis
1. Class 1: classical BCC
2. Class 2: SCC-like BCC,
3. Class 3: normal-like BCC

Every subgroup exhibited
specific molecular traits,
offering distinct
understanding into the
diverse features of these
lesions. For instance, the
classical BCC subtype
demonstrated heightened
engagement of Wnt and
Hedgehog signaling
pathways, whereas the
SCC-like BCC subtype
displayed enrichment in
genes tied to immune
responses and oxidative
stress. Additionally, the
classical BCC subtype
exhibited marked activation
of metabolic pathways, with
a notable emphasis on fatty
acid metabolism.

[52]

17

Hierarchical clustering analysis of BCC samples
based on RNA expression levels has also found
a mixed cluster of high-risk and low-risk
tumors with moderate upregulation of genes
such as SPHK1, MTHFD1 and BMS1P20 . When
clustering advanced versus non-advanced
BCCs, a third group of lesions with no clear
clustering with advanced and non-advanced
tumors with moderate to highly moderate
upregulation of genes including COL1A1,
COL1A2 and COL3A1 were found.

[53]
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Table 1. Cont.

c: Basal-cell Carcinoma

No
Features Attributing to
the Classesor “Omics”
Analysis Used

Classes Main Findings and
Significance Ref

18 Single-cell and spatial
transcriptomics analysis

The authors identify the tumor nodular, tumor
infiltrative, stroma nodular and stroma
infiltrative areas of interests in BCC, each with a
distinct genomic profile.

This study reveals distinct
gene expression differences
between tumor and stroma
cells in infiltrative and
nodular BCC samples, and
notes that invasive edge
tumor cells exhibit collective
migration phenotype, while
nearby fibroblasts remodel
the extracellular matrix.

[54]

19 Transcriptomic and whole
exome analysis

Class 1: BCCs resistant to vismodegib treatment
Class 2: BCCs sensitive to vismodegib
treatment

The study discovered SMO
mutations in half of the
resistant BCCs,
demonstrating their role in
sustaining Hedgehog
signaling despite SMO
inhibitor (vismodegib)
treatment. These findings
highlight SMO gene
mutations as significant
contributors to resistance.
Consequently, the research
suggests that screening for
genetic mutations in BCC
samples could serve as a
useful method for predicting
drug resistance in patients.

[55]

3.1.1. Cutaneous Melanoma

The approach for classifying cutaneous melanoma is primarily based on clinical and
histopathological criteria. However, genomic and transcriptomic changes alone or in
combination with clinical and histological criteria are increasingly used for staging and
classifying lesions. Genomic profiling of advanced melanoma has improved its diagnosis
and prognosis. For example, molecular testing for BRAF [56], NRAS mutations [18,19] and
immunostainings against P16, PRAME [18], S100, Melan A, Ki67 and MITF proteins [19] are
found to offer excellent potential for the diagnosis of melanoma, which otherwise would
not have been possible using histopathology assessment alone.

Due to their importance for a better and more comprehensive classification, in 2018
the World Health Organization widely incorporated genomic changes into the classification
of melanomas [38]. Based on the study by Elder et al. [38], this updated classification
system recognizes nine evolutionary pathways to melanoma development which includes
superficial spreading melanoma in Pathway I, lentigo malignant melanoma in Pathway II
and desmoplastic melanoma in Pathway III, which all three pathways typically associated
with cumulative solar damage (CSD). Pathways IV to IX which are not associated with
CSD includes spitz melanoma, acral melanoma, mucosal melanoma, melanoma arising in
congenital nevi, melanoma arising in blue nevi and uveal melanoma, respectively. On the
other hand, nodular melanoma is classified to occur in any or most of the above pathways.
Each pathway presents varying levels of mutations in genes such as BRAFV600E, NRAS,
CDKN2A, TP53, PTEN, NF1 and RET [57]. In this classification system, less weight has been
put on the clinical and histopathological criteria, emphasizing the importance of molecular
criteria in melanoma classification and management.
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One of the major studies describing genomic alterations in cutaneous melanomas
(stages II to IV) was conducted by Akbani et al. (2015), leading to the establishment of a
framework for genomic classification and the identification of immune-related prognostic
biomarkers [40]. Using DNA, RNA and protein-based analysis, the authors classified
cutaneous melanomas into four major subtypes based on the pattern of the most preva-
lent significantly mutated genes: mutant BRAF, mutant RAS, mutant NF1 and Triple-WT
(wild type), with each harboring relatively different UV signature, copy-number changes
and structural arrangements [40]. In the same study, clustering analysis of 1500 most
significantly changed transcripts identified three subclasses named as follows: “immune”,
characterized by significant overexpression of immune-related genes; “keratin”, character-
ized by overexpression of genes associated with keratins and “MITF-low”, characterized
by decreased expression of pigmentation and epithelial expression genes. The study found
that there was a significant difference in the survival of patients with regionally metastatic
tumors among the three clusters, with the “immune” subclass showing more favorable and
the “keratin” subclass less favorable post-accession survival. This suggests the relevance of
identified transcript expression subclasses for improved patient stratification.

Another study evaluated the accuracy of a gene expression profile (GEP) test in
predicting metastatic risk in cutaneous melanoma patients [41]. Classifying the patients
as either low or high risk, univariate and multivariate analyses of 31 GEP were found to
be significant predictors of recurrence-free and distant metastasis-free survival. The GEP
provided prognostic information to traditional staging and identified 70% of stage I and II
patients who ultimately developed distant metastasis. The study suggests that the GEP test
could be a useful tool for estimating an individual’s risk of recurrence and for considering
adjuvant therapy in cutaneous melanoma patients.

A 2010 genomic study of stage IV melanomas identified four distinct subtypes of the
tumor with different gene signatures related to immune response, pigmentation differen-
tiation, proliferation or stromal composition genes [42]. The authors found a significant
difference in mutations and deletions between the subtypes, with the proliferative subtype
having a poor prognosis compared to the others. The clinical relevance of the subtypes
was validated in an independent cohort of melanoma patients. This study highlights
the importance of genome-based subtype classification for the effective and personalized
management of melanomas.

Genomic analysis has also been able to identify key genetic mutations that can differ-
entiate between melanomas from different body sites. For example, using a high-coverage
whole-genome (WGS) sequencing analysis, distinct gene mutation processes and drivers in-
cluding the landscape of non-coding mutations, paradoxical relationships between telomere
maintenance gene mutations and telomere length have been found across cutaneous, acral
and mucosal melanomas [58]. Cutaneous melanomas were found to be dominated by mu-
tational signatures related to ultraviolet radiation exposure, while structural variants were
responsible for most aberrations in acral and mucosal melanomas. These findings suggest
that cutaneous melanomas are genetically different from acral and mucosal melanomas.

Considering the lack of consistency in melanoma classification using traditional ap-
proaches, and considering the above findings, the development of molecular classifiers
that can be used alone or in combination with clinical and histological parameters has
the potential to be a game-changing paradigm shift in the way we diagnose and manage
melanoma.

3.1.2. Cutaneous Squamous-Cell Carcinoma

Genomic studies have identified important mutational signatures and alterations in
keratinocyte carcinomas, i.e., BCC and cSCC. Using whole-exome and whole-genome
sequencing, important mutational signatures of primary and metastatic cSCC have been
reported in the literature, providing unique resources to determine their biological signifi-
cance for the maintenance and progression of the tumor [37,49]. Genome-wide association
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studies (GWAS) have also reported novel loci involved in cSCC development and ker-
atinocyte differentiation, including those related to the JAK-STAT pathway [59–61].

One study used single-cell RNA sequencing with spatial transcriptomics and multi-
plexed ion beam imaging to define the cellular composition and architecture of cSCC and
identified four tumor subpopulations, three recapitulating normal epidermal states, and a
tumor-specific keratinocyte (TSK) population, a hub for intercellular communication [62].
Another study combined whole-exome analyses from 20 well-differentiated and 20 moder-
ately/poorly differentiated tumors and found 16 genes including TMEM51, GRHL2, ZZEF1
and GMDS with their mutation specific to the moderately/poorly differentiated subtype
and six genes including SULF1, ZNF528, NRCAM and FAT1 specific to the less aggressive
well-differentiated subtype [37].

A study using targeted sequencing of 504 cancer-associated genes in lymph node
metastatic cSCC samples reported a wide spectrum of oncogenic mutations affecting
various genes and pathways. They identified specific mutations in oncogenic drivers (TP53,
CDKN2A, NOTCH1/2) and pathways including RAS/RTK/PI3K, cell cycle and chromatin
remodeling that were correlated with poorer patient outcomes [49]. Researchers have
also identified and developed a 40-gene expression profile test that can predict the risk of
metastasis risk in high-risk cSCC patients. The test which stratifies patients into three risk
classes (low risk, high risk and highest risk of metastasis) can complement current staging
systems for high-risk cSCC patients [50].

Large-scale DNA methylation study of premalignant actinic keratosis (AK) and cSCC
has shown that the two lesion groups share the same methylation patterns resembling
those of cSCC and exhibit features of stem-cell methylomes [63]. Interestingly, based on
the keratin methylation patterns, the study also revealed the existence of two defined
subclasses of AK and cSCC, one resembling healthy skin and the other one resembling
tumor samples. A similar result was also found when the authors investigated TP63 gene
methylation status in the lesions.

In SCCs, most genomic studies have focused on identifying gene biomarkers and
classifiers against the currently accepted histopathological classification, leaving their un-
supervised genomic classification, which has the potential to identify novel and clinically
relevant subtypes, unexplored. Furthermore, the analysis of genomic classification and
clustering has been limited to specific subtypes of tumors, without providing a comprehen-
sive molecular classification and stratification system that covers the entire spectrum of
lesions, including premalignant ones.

Nonetheless, taken together, the available literature described above suggests that
implementation of molecular stratification and stratification techniques in cSCCs is poised
to offer a more refined and accurate modality for discerning the various subtypes of cSCC,
which in turn may lead to a more optimal approach to patient management, ultimately
improving patient outcomes.

3.1.3. Basal-Cell Carcinoma

Genomic and transcriptomic studies in BCCs have provided important information
about its tumorigenesis. These include the identification of novel alleles and genetic muta-
tions [60,64,65] and differentially expressed transcripts associated with tumor proliferation,
migration, and apoptosis [66,67]. A 2015 gene expression study by Jee et al. identified
three classes of BCCs (classical, SCC-like and normal-like BCCs) with distinct molecular
characteristics, providing unique insights into the heterogeneous nature of the lesions [52].
For example, the authors found that the classical BCC subtype showed enriched activation
of Wnt and Hedgehog signaling pathways, while the SCC-like BCC subtype was enriched
with immune-response genes and oxidative stress-related genes. The classical BCC subtype
was found to show prominent activation of metabolic processes, particularly fatty acid
metabolism.

Exome and RNA sequencing analysis of infiltrative BCCs, a subtype of the lesion asso-
ciated with poorer clinical outcomes, identified distinct molecular pathways and somatic
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mutations that lead to this tumor subtype. The study found that while infiltrative BCCs
carry classical UV-induced mutational signatures, they display specific RNA expression
profiles related to integrin and Wnt signaling [68]. The analysis of 13 BCC-related genes
also found that superficial BCCs are significantly associated with PTCH1 and NOTCH1
mutations, with NOTCH1 mutations being more frequent in lesions located on the trunk
compared to the head/neck and extremities. The study provides further insights into the
molecular alterations distinguishing between superficial and nodular BCCs [69]. Investi-
gating superficial, nodular and morpheiform BCCs using cDNA microarrays, it has been
reported that these BCC subtypes exhibit significant variation in gene expression patterns,
particularly in genes associated with the MAPK pathway. Morpheiform BCCs were found
to have unique upregulation of genes involved in response to DNA-damage stimulus,
consistent with their more invasive phenotype [70]. Hierarchical clustering analysis of
BCC samples based on RNA expression levels has also found a mixed cluster of high-risk
and low-risk tumors with moderate upregulation of genes such as SPHK1, MTHFD1 and
BMS1P20. When clustering advanced versus non-advanced BCCs, a third group of lesions
with no clear clustering with advanced and non-advanced tumors with moderate to highly
moderate upregulation of genes including COL1A1, COL1A2 and COL3A1 were found [53].

Single-cell and spatial transcriptomics analysis have also been explored to highlight
the molecular heterogeneity of BCC tissues in terms of tumor–stroma interactions at the
invasive front of the tumor. Using single-cell RNA sequencing (scRNA-seq) transcrip-
tomes and digital spatial profiling of infiltrative and nodular BCC samples, Yerly et al.
(2022) identified 86 and 52 differentially expressed genes in the tumor and stroma, respec-
tively [54]. The authors were also able to categorize the tumor nodular, tumor infiltrative,
stroma nodular and stroma infiltrative areas of interests in BCCs based on their gene
expression profiles. They also found that tumor cells at the invasive edge exhibit a collec-
tive migration phenotype, while nearby cancer-associated fibroblasts have extracellular
matrix-remodeling features.

The above studies collectively suggest that BCC subtypes, as well as BCC regions in the
same tumor from the same patient, exhibit molecular distinctions, and gaining insight into
their genomic profiles and using them as molecular classifiers could aid in their improved
management and clinical decision making.

3.2. Proteomic Classification in Skin Cancers

Proteomic analysis has been successfully employed to identify novel proteins and
molecular differences that can discriminate between skin cancer subtypes, allowing clini-
cians to make informed curative or therapeutic decisions [46]. Unlike genes and transcripts,
proteins are directly related to cell and tissue phenotypes [28,71]. Therefore, proteomic
classification can provide a more comprehensive understanding of the molecular landscape
of cancer, beyond what genomic analysis alone can offer. Proteins are the effectors of cellu-
lar function, and their activities are regulated by various post-translational modifications,
such as phosphorylation, acetylation and glycosylation. These modifications can greatly
affect protein function and contribute to cancer development and progression. Here, we
summarize recent studies with a focus on the classification and stratification of melanoma,
cSCC and BCC lesions at the proteome level. Also, a summary of the novel classes or
groups of skin cancers with the potential to aid in their diagnosis is presented in Table 1a–c.

3.2.1. Cutaneous Melanoma

In melanocytic lesions, mass spectrometry-based proteomics has shown the potential
to perform better than histopathology in addressing diagnostic and classification questions,
particularly the challenging lesions such as atypical Spitzoid melanoma [72] and congenital
melanocytic nevus with proliferative nodules [73]. Also, comparing malignant melanoma
with benign nevus, a proteomic-based model has shown an overall validated accuracy
of 93% in classifying the lesions [74]. While the study’s findings may not be clinically
significant due to the apparent differences in lesion size, depth of invasion and other
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morphologic changes between the two lesion groups, nonetheless, it shows the proteomics’
great potential for successful molecular classification of intermediate lesions as well.

One of the recent and most comprehensive proteomic studies of primary and metastatic
melanoma was conducted by Betancourt et al., where more than 15,500 protein isoforms
covering 65% of the total human proteome were quantified [75]. This study used histopatho-
logically classified tumors to identify proteomic changes between the lesion groups, show-
ing a very heterogeneous intertumoral and intratumoral disease. In this study, hierarchical
clustering analysis using metastatic samples from four distinct body sites in the same
patient identified different biological processes implicated in lesions from different sites.
This study did not perform unsupervised classification analysis to investigate how pro-
teomic data could classify the lesions based on their molecular landscape across the entire
melanoma samples. The large number of samples in this study and the extensive proteome
coverage provide a unique opportunity to investigate melanoma proteomic classification.

In another proteomic study using formalin-fixed paraffin-embedded (FFPE) tumor
samples, the researchers identified six clusters of melanoma lesions using an unsuper-
vised hierarchical protein clustering [43]. They found that proteins such as TRAF6 and
ARMC10 were upregulated in clusters with shorter survival, while proteins like AIFI1 were
upregulated in clusters with longer survival.

3.2.2. Cutaneous Squamous-Cell Carcinoma

CSCC lesions, as well as their precursors, actinic keratosis (AK) and Bowen’s disease
(BD) have been the subject of extensive proteomic investigation [16,17,28,51,76]. Studies
have revealed protein biomarkers of AK, BD and cSCCs with different levels of tumor dif-
ferentiation. It has been reported that differential expression of proteins exerting decreased
apoptosis is associated with AK and cSCC lesions, while BD lesions are over represented
by proteins associated with DNA damage repair pathways. On the other hand, proteins
associated with alternatively spliced FGFR2 and Rho guanosine triphosphatase signaling
are characteristics of cSCCs with different levels of tumor differentiation. Proteomic studies
have also identified associations between cSCC lesion types and biological processes such
as apoptosis and DNA damage repair.

While most of the studies use histopathology diagnosis as the basis for biomarker
discovery analysis, interestingly, one study utilizing proteomic data as an independent
classifier/clustering factor had identified primary and metastatic cSCC samples that were
potentially miss-classified by histopathology assessment [76]. Another proteomic study
comparing metastasizing and non-metastasizing primary cSCC lesions found that the
expression of ANXA5 and DDOST proteins was associated with reduced time to metas-
tasis [51]. Furthermore, a prediction model based on these two proteins showed better
classification performance, with an accuracy of 91.2%, higher sensitivity and specificity
compared to the existing clinical cSCC staging systems.

3.2.3. Basal-Cell Carcinoma

In BCCs, histology-guided proteomic studies have suggested heterogeneous and
chemically graded aggressive tumor islands [77], indicating the need for its molecular
classification. Combining single-cell and spatial transcriptomics analysis has also been
explored to highlight the molecular heterogeneity of BCC tissues in terms of tumor–stroma
interactions at the invasive front of the tumor. Using single-cell RNA sequencing (scRNA-
seq) transcriptomes and digital spatial profiling of infiltrative and nodular BCC samples,
Yerly et al. (2022) identified 86 and 52 differentially expressed genes in the tumor and
stroma, respectively [54]. Then, the authors were able to categorize the tumor nodular,
tumor infiltrative, stroma nodular, and stroma infiltrative areas of interests in BCCs based
on their gene expression profiles. They also found that tumor cells at the invasive edge
exhibit a collective migration phenotype, while nearby cancer-associated fibroblasts have
extracellular matrix-remodeling features.
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Despite all the developments, however, molecular classification and stratification
approaches have focused mainly on advanced lesions, leaving the early and intermediate
precursors with overlapping clinical and histopathological features mainly unaccounted
for. Nonetheless, the results from omics studies show the potential for a molecular classifier
across all stages of skin cancers that can be used alone or in combination with the clinical
and histopathology criteria to stratify patients more accurately and reliably.

4. Molecular Classifier for Therapeutic Stratification in Skin Cancers

Most patients with locally advanced or metastatic skin cancers who would not ben-
efit from surgery or radiotherapy are treated with systemic therapies such as checkpoint
inhibitor immunotherapy, chemotherapy and epidermal growth factor receptor (EGFR)
inhibitors. While these therapies have changed the therapeutic landscape of skin malig-
nancies, resistance to treatment remains challenging [14,15]. Currently, there is no reliable
tool or guideline to suggest which patients would respond to this therapy and will there-
fore have longer disease-free survival. The development of resistance to therapy involves
changes in the molecular landscape of tumor cells and the tumor microenvironment. There-
fore, there is a critical need to develop molecular classifiers that can predict therapeutic
responses, either alone or in combination with clinical and histological parameters. This
will help match patients with the most effective therapy, and therefore, improve patient
outcomes. In this context, we present a brief overview of recent molecular studies that
have successfully identified subtypes of skin cancers based on their therapeutic responses.
Also, a summary of recent molecular analyses in melanoma, cSCC and BCCs identifying
novel classes or groups of lesions with the potential to predict clinical behaviors such as
prognosis, survival, metastasis and response to therapy, is presented in Table 1a–c.

4.1. Cutaneous Melanoma

Similarly, primary and secondary resistance to immunotherapy in melanoma is also
widespread, with only 22% of melanoma patients responding to ipilimumab and 40–45%
to PD-1 immune checkpoint inhibitors [78]. In cutaneous melanomas, especially in the
metastatic subtypes, proteomic classification has helped predict anti-PD-1 [46] or tumor
infiltrating lymphocyte (TIL)-based immunotherapy outcomes in patients [46]. Proteomic
analyses have also revealed site-specific response mechanisms to MAPK inhibitors in
metastatic melanomas, suggesting site-specific treatments for increased efficacy and im-
proved patient outcome [79]. Likewise, genomic and transcriptomic profiling has identified
factors such as high BRCA2 gene mutational loads associated with increased response
and upregulation of genes associated with mesenchymal transition, extracellular matrix
remodeling and angiogenesis with increased resistance to anti-PD-1 therapy in metastatic
melanomas [47]. Another study also demonstrated metastatic melanomas’ genomic hetero-
geneity in response to immune checkpoint blockade with higher CD8, CD45RO and PD-1,
classifying the lesions into three responding groups [80].

In addition, transcriptomic analysis of stage I melanoma has been used to identify six
classes of the lesion that can predict outcomes in patients, particularly those undergoing
immunotherapy [48]. The reported transcriptome signatures in this study had shown to
provide prognostic values comparable to that provided by sentinel node biopsy.

In a proteomic study comparing between primary and metastasis samples and clinical
stages, and within immunotherapy and targeted therapy subgroups, the upregulation of
the VEGFA-VEGFR2 pathway, RNA splicing, increased activity of immune cells, extracel-
lular matrix and metabolic pathways were found to be positively associated with patient
outcome [43]. The study highlighted the potential of proteomic profiling as an independent
indicator of patients’ response to therapy and survival.

Despite all these findings, further research is needed to develop and clinically validate
a more comprehensive molecular tool that could be used to predict all melanoma patients’
responses to therapy.



Cancers 2023, 15, 4463 17 of 24

4.2. Cutaneous Squamous-Cell Carcinoma

Response to therapy in advanced cSCC patients remains poor. For example, 50%
of advanced cSCC patients will not respond to the systemic therapy, those who respond
will develop resistance over time [26] and 63% of the response to immunotherapy lasts
only 16 weeks [81]. Patients with metastatic cSCC treated with EGFR inhibitor cetuximab
obtains a complete response of 67% over 25 months, while those treated with cisplatin
obtain a complete response of 17–22% over 14.6 months [81,82]. In addition, up to 12% of
cSCC patients receiving systemic therapies develop Grade 3 or higher toxicities (severe
and undesirable adverse events requiring hospitalization) [14,15]. Radiation therapy is also
used as an alternative primary treatment for patients with metastatic cSCC who are not
eligible for surgery. Veness and colleagues [83] reported that patients treated at Westmead
Hospital (Sydney, Australia) between 1980 and 2000 for metastatic cSCCs, showed a 5-year
local-regional recurrence and disease-free survival rates of 20% and 73% for surgery and
radiotherapy, respectively. However, research in cSCC for developing a reliable molecular
classifier to suggest which patients would respond to therapy and will therefore have longer
disease-free survival is still lacking. Considering the high rate of resistance to therapy
in advanced cSCCs, the development of molecular classifiers to stratify responding and
non-responding tumors is highly desirable.

4.3. Basal-Cell Carcinoma

Good outcomes are observed when BCCs are diagnosed and treated early using current
approaches such as Mohs micrographic surgery, radiotherapy and chemotherapy [84].
However, some BCCs do not respond to therapies, develop recurrence or progress to locally
advanced and metastatic stages, and become difficult to treat [84].

Researchers have attempted to develop models for predicting response to treatment in
BCCs to improve patient outcomes. For example, the initial response rate to Vismodegib, a
small-molecule inhibitor, is about 50% in advanced and metastatic BCC [84]. A study on
BCC patients who had received vismodegib found that a 20% reduction in tumor size after
3 months of treatment can predict an 82.76% chance of complete response, while a 67.7%
reduction after 6 months can predict a 95.42% chance of complete response in patients [85].
This indicates that response to therapy is likely subject to the molecular composition of
an individual patient’s tumor which can be exploited to develop useful tools to predict
patients’ response to therapy.

Also, studies have identified biomarkers of resistance to Methyl-aminolevulinate
photodynamic therapy (MAL-PDT), an effective treatment for the BCC [86]. It was found
that patients with positive p53 immunostaining are 68.54 times more likely to respond to
MAL-PDT therapy. A genomic sequencing study looking into genetic alterations leading to
resistance to Hedgehog pathway inhibitors in BCC found that the majority of the resistant
cases had Smoothened (SMO) gene mutations [55]. The study concluded that testing BCC
samples for genetic mutations can be used as biomarkers to identify patients who are likely
to develop drug resistance.

The above findings suggest that the development of a clinically validated comprehen-
sive molecular classifier can be a powerful tool in predicting BCC patients’ response to
therapy. Such a classifier can help clinicians select the most appropriate treatment for a
patient based on the genetic and molecular characteristics of their disease.

Altogether, the above findings on melanoma, cSCC and BCC lesions suggest that
the development of clinically validated molecular classifiers can be a powerful tool in
predicting patients’ responses to a different therapy. Such a classifier can help clinicians
to select the most appropriate treatment for a patient based on the genetic and molecular
characteristics of their disease, facilitating precision medicine in skin cancer management.

5. Multi-Omics Classifier in Skin Cancers

It is well documented that the emergence of neoplastic properties in normal skin cells,
tissue, and microenvironment results from changes in one or multiple layers of information
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from genes to transcripts, proteins and eventually phenotypes. On many occasions, using
single data sources such as genes, proteins or imaging and clinical-histological patterns
to build predictive and classification models is unreliable. Some clinical features of skin
cancers are related strongly to histological features (tumor stages, for example), whereas
others are associated with genomic, transcriptomic or proteomic alterations. Therefore,
with advances in machine learning (ML) approaches and multi-modality data integration
algorithms, “multi-omics” classification and prediction models have increasingly become
popular in the past few years.

Deep learning models for multi-class classification have been found to outperform
classification accuracy in cancers when only a single omic data is used [87]. Integrative
analysis of omics data has identified previously unexplored subtypes of complex and het-
erogenous lesions such as ovarian and breast cancers, that are associated more significantly
with the clinical outcomes than the established TCGA classification [88,89].

Considering skin cancers, the integration of WGS with transcriptome and methylome
profiling has been able to classify melanoma patients and predict with up to 80% sensitivity
in the validation set if one would respond to anti-PD-1 with or without anti-CTLA-4
therapy [44]. Furthermore, project HOPE (High-tech Omics-based Patient Evaluation) has
used integrative whole-exome sequencing (WES) and gene expression profiling analysis
to stratify melanoma patients who are considered to be good responders to anti-PD-1
therapy [45]. In a recent study involving single-cell RNA sequencing combined with spatial
transcriptomics and multiplexed ion beam imaging, four distinct tumor subgroups of
primary cSCC (basal, cycling, differentiating keratinocyte populations and tumor-specific
keratinocyte population) were identified, uncovering the lesions’ spatial heterogeneity [62].

Although not in cutaneous melanoma, integrative clustering (iCluster) analysis of ge-
nomic, epigenomic and transcriptomic data in uveal melanoma has successfully identified
four molecular subtypes of the lesion, each with a distinct multi-omics landscape, indicat-
ing its usefulness for accurate patient stratification and improved patient outcome [90].
In skin cancers, particularly melanoma, ML analysis of the imaging data (dermoscopy
and histology images) has provided promising classification accuracy when comparing
different lesion subtypes [91–93]. However, the combined ML analysis of imaging data
together with other omic datasets has not been attempted in skin cancers. Combining
artificial intelligence (AI)-generated data from hematoxylin and eosin (H&E) images of
glioma and adenocarcinoma tumors with the genomic and/or proteomic data is reported to
outperform the clinical prognosis approach [94,95]. This suggests that integrated analysis
of imaging, genomic and proteomic data can also provide a useful source of information
for the development of standardized multi-omics models for a reproducible and precise
diagnostic and classification system in skin cancers.

Taken together, the above finding suggests that, in skin cancers, where accurate and
effective diagnosis and therapeutic decisions are critical, a multi-omic classifier offers the
potential to address the issues with current clinical and histopathological diagnostic and
classification approaches.

6. Challenges and Opportunities with Molecular Classifiers

Given the challenges associated with the current clinical and histological classification
and stratification of skin cancers, it is imperative to develop a reliable classification system
that considers the molecular changes occurring in the lesions. There is growing evidence
from cancers such as lung cancer [96], colorectal cancer [97,98], breast cancer [99] and
leukemia [100] that molecular classifiers can significantly improve the identification of
high-risk patients and can predict survival and therapeutic response compared with the
conventional staging and stratification. Supported by the literature reviewed in this paper,
molecular classifiers in skin cancers also have the potential to identify new classes of tumors
that behave differently at the clinical levels based on the use of a robust set of biomarkers.
This will provide clinicians with a standardized standalone or complementary tool that
can predict the likelihood of recurrence, metastasis and response to therapy, allowing



Cancers 2023, 15, 4463 19 of 24

for personalized treatment approaches beyond established guidelines. Such pragmatic
molecular classification tool has the potential to be used routinely in guiding surveillance
and treatment tailored to specific subtypes of skin cancers.

Despite the available evidence, the development and implementation of robust molec-
ular classifiers in skin cancer, significant challenges still exist. Advancements and successes
in single-omics and multi-omics classifiers in cancers, including skin cancers, its clinical
translation and implementation remain in infancy. The development of reliable molecular
classifiers, especially multi-omics classifiers, requires large-scale and consistent datasets for
data pooling to develop and validate the ML models [101]. There is no question that skin
cancers are highly heterogenous, requiring comprehensive representation of all possible
clinical and histological subtypes, different body sites, different geographical locations,
times of biopsies, medications used, different ethnicity, history of treatment, tumor size and
many more [101]. Overcoming these challenges will require a large-scale, multidisciplinary
approach that includes independent validation and assessment in clinical trials to ensure
the widespread use and effectiveness of the classifiers.

Additionally, the majority of molecular classifier studies have focused on a subset of
advanced skin cancers with benign and early lesions where the outcome for early detection
and management has largely been missed. For an inclusive and clinically useful molecular
classification analysis, it is of utmost importance that samples encompassing premalignant
lesions as well as early, intermediate and advanced lesions from across the carcinogenic
process are included in the omics analysis.

For the diagnosis, classification and stratification of skin cancers, histopathology as-
sessment of the excised lesion is often used as “ground truth” for final decision makings.
For this reason, most omics studies have used supervised analysis approaches against
histopathology as the gold standard to assess and define molecular classes. However, due
to the lack of defined histological features in some cutaneous malignancies, the establish-
ment of a final classifiers to be used as a reference to train ML classifiers can lead to the
development of a flawed classifier system [102]. Therefore, the development of molecular
classifiers approaches independent or partially independent of histopathology diagnosis
may provide better and more clinically relevant information about the tumors’ behavior,
response to therapy and overall outcome.

In addition, while there has been notable progress in the development and implemen-
tation of ML approaches for classification problems, there is more to be done to overcome
the challenges that may limit the potential of unsupervised and multi-omics classifications
for clinical implementation in complex and heterogeneous tumors. One of the main issues
associated with the current mathematics and ML approaches is their performance and
scalability attributed to the intrinsically large datasets in terms of features and samples that
will require methods with the ability to decipher the intricate signals connecting different
data modalities to clinically relevant problems [103,104]. Also, reviewed in a paper by Cai
et al., data integration in multi-omics classification approaches produces only moderate
to low consistency that needs to be mitigated [104]. The authors have also highlighted
the issues with missing genuine biological relationships by using surrogate variables to
describe variations between samples and recommend a gene-centric dynamic modelling
approach in future multi-omics data integration.

7. Conclusions

In conclusion, recent advancements in omics approaches and the available evidence
outlined in this paper indicate that molecular classifiers will allow for better classification
and stratification of skin cancers beyond classical clinical and histological parameters, and
that the multi-omics classifiers offer advantages by observing changes in the tumors at
multiple layers of information.
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