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Simple Summary: This study presents an AI system for the automatic diagnosis of lung cancer
based on lung nodule images from CT scans. Lung cancer is the leading cause of cancer-related
deaths in Taiwan, and early detection can improve the survival rate of patients. The system uses a 3D
interpretable hierarchical semantic convolutional neural network (HSNet) that can recognize different
features of lung nodules, such as calcification, margin, texture, sphericity, and malignancy. The
system achieves better performance than previous methods, with high accuracy and interpretability.

Abstract: Lung cancer is typically classified into small-cell carcinoma and non-small-cell carcinoma.
Non-small-cell carcinoma accounts for approximately 85% of all lung cancers. Low-dose chest
computed tomography (CT) can quickly and non-invasively diagnose lung cancer. In the era of
deep learning, an artificial intelligence (AI) computer-aided diagnosis system can be developed
for the automatic recognition of CT images of patients, creating a new form of intelligent medical
service. For many years, lung cancer has been the leading cause of cancer-related deaths in Taiwan,
with smoking and air pollution increasing the likelihood of developing the disease. The incidence
of lung adenocarcinoma in never-smoking women has also increased significantly in recent years,
resulting in an important public health problem. Early detection of lung cancer and prompt treatment
can help reduce the mortality rate of patients with lung cancer. In this study, an improved 3D
interpretable hierarchical semantic convolutional neural network named HSNet was developed and
validated for the automatic diagnosis of lung cancer based on a collection of lung nodule images.
The interpretable AI model proposed in this study, with different training strategies and adjustment
of model parameters, such as cyclic learning rate and random weight averaging, demonstrated
better diagnostic performance than the previous literature, with results of a four-fold cross-validation
procedure showing calcification: 0.9873 ± 0.006, margin: 0.9207 ± 0.009, subtlety: 0.9026 ± 0.014,
texture: 0.9685 ± 0.006, sphericity: 0.8652 ± 0.021, and malignancy: 0.9685 ± 0.006.

Keywords: artificial intelligence; lung cancer; CT images; neural network; deep learning; interpretable

1. Introduction

Lung cancer is a malignant tumor that grows in the bronchus or alveoli. There are no
obvious symptoms in the early stages, and traditional lung X-rays are generally used for
rapid clinical examination. However, due to their low sensitivity and difficulty in detecting
tumors smaller than 1 cm in diameter, low-dose computed tomography (LDCT) is currently
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considered a more sensitive tool for early detection. According to the National Institutes
of Health, LDCT can reduce lung cancer mortality by 20% compared to traditional X-ray
examinations [1]. If non-small-cell lung cancer can be surgically removed in the first stage,
the 5-year survival rate can reach between 80% and 90%. On the contrary, if it is detected
only at the late stage, the 5-year survival rate drops to only about 10%, and the prognosis
worsens with each stage. Therefore, if there is a method for early detection of lung cancer
and prompt surgical treatment after the lesion is discovered, it can significantly reduce the
mortality rate of patients with lung cancer.

According to the 2020 version of the GLOBOCAN research, 60% of newly diagnosed
lung cancer was found in Asia, and 62% of all deaths due to lung cancer were also in
Asia [2]. Lung cancer in the non-smoking population is increasing worldwide, especially in
East Asia [2]. In Taiwan, the standardized death rate of lung cancer in 2022 was 21.8 per
100,000 population, ranking it as the leading cause of cancer-related mortality in Taiwan. It
accounts for approximately one-fifth of all cancer deaths, with more than half of mortality
patients not having exposure to smoking [2,3]. Early detection of lung cancer is the most
effective mode to improve cancer survival, and LDCT has confirmed the efficacy of lung
cancer screening. Starting in July 2022, Taiwan has provided subsidized LDCT screenings
every two years for people at high risk for lung cancer.

Currently, doctors use LDCT scans to detect lung cancer. Identification of lung cancer
depends largely on the experience of the physician, and inexperienced physicians can make
diagnostic errors or overlook important details. Deep learning models can automatically
process images, and their application to clinical diagnosis and treatment in medical imaging
is rapidly developing. With computer-assisted diagnosis, less experienced physicians can
perform an initial screening.

In lung-cancer-related examinations, using AI models to detect nodules in lung CT
images is a promising method to assist doctors in diagnosis. To alleviate the burden of
manual loading by physicians with a large number of LDCT screenings, the development of
an AI model with interpretable capabilities for computer-aided diagnosis of lung nodules
becomes a crucial research topic [3–6].

Although deep learning models have the ability to produce impressive classification
outcomes, their ‘black-box’ nature makes it challenging to comprehend the derivation
of these results. Consequently, interpreting the reasoning mechanisms of deep learning
models has emerged as a significant area of research. Current XAI (explainable artificial in-
telligence) models can be broadly categorized into three types based on their explainability
techniques [7]: (1) pre-modeling explainability, which focuses primarily on the analysis of
sample trends; (2) explainable modeling, which involves the development of inherently in-
terpretable models; and (3) post-modeling explainability, which mainly pertains to methods
for post hoc inference of model prediction results. Pulmonary nodule images may exhibit
some semantic features such as sphericity, margin, subtlety, texture, and calcification. These
features provide useful information for physicians to diagnose whether the pulmonary
nodules are benign or malignant [8]. Therefore, the ‘Interpretable AI Model’ that this study
aims to develop falls under explainable modeling. Users only need to input the images
of the pulmonary nodule, and the model can simultaneously output these five semantic
features of the images and the predicted category of benign or malignant.

2. Related Work

Computer systems have been applied to medical care as an aid to physicians for a long
time. Computer-aided diagnosis (CADx) can help physicians understand the information
in the images to assist in analysis and evaluation. In 1998, Kanazawa proposed a computer-
aided automatic diagnosis system for lung cancer detection [9]. CAD systems can analyze
various sections extracted from the images and find regions of interest. However, the
feature extraction methods required for CAD systems were mostly manually processed
by radiologists at that time. Although it could detect lesions more easily than a single
inspection method, CAD systems were limited by the time-consuming data preprocessing
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and computational limitations of computer performance, making it difficult to use as a
routine application in clinical practice.

As computer performance improved and optimized algorithms were proposed,
computer-aided diagnosis gradually became a popular topic in medical imaging diag-
nosis research [10,11]. The important purpose of creating a CAD system for classification
is to effectively capture the regions of interest in the image and process the features [12].
Typically, the system is divided into two main tasks. The first task is to detect regions of
interest, which will detect all the required feature blocks from the CT scan images. If all
the feature blocks are recognized, there may be a large number of false positives, so the
second task is to classify the previously detected candidate feature regions as benign or
malignant. This can reduce the large number of false-positive areas generated in the first
task and can further analyze the classified data in detail. In 2015, Devinder Kumar et al.
attempted to establish a CAD system consisting of an autoencoder and a binary decision
tree for the benign and malignant classification of lung nodules using the entire lung CT
slice, with an overall accuracy of 75% [13].

The development of computer-aided lung nodule diagnosis can be roughly divided
into three stages [5]. The initial stage was largely based on traditional image processing
techniques. Later, machine learning methods were introduced to use a small amount
of data to build models. Recently, due to the fact that deep learning can optimize the
training of convolutional neural networks by collecting a large amount of data, the accuracy
of the model has been effectively improved [14–19]. Numerous research works have
demonstrated the many advantages of CNN in lung nodule detection and lung cancer
diagnosis within CT images. First, CNN enables an automated diagnostic and classification
process, thus saving valuable time for medical professionals and improving diagnostic
efficiency. Second, CNN significantly improves diagnostic accuracy. Third, it reduces the
risk of human error in expert judgment.

The research system to apply deep learning to the diagnosis of lung nodules can
be divided into three modules [3]: nodule detection, nodule segmentation, and nodule
classification. The detection module is responsible for the detection and positioning of
nodules, the segmentation module is responsible for drawing the contours of the nodule
voxels, and the classification module mainly predicts whether the nodule belongs to benign
or malignant types. In recent years, many studies have been devoted to applications related
to deep learning. Recently, there have been four review articles on computer-aided lung
nodule diagnosis that can provide readers with further references [3–6].

Training on the entire lung slice may cause confusion in image judgment due to
the loss or blurring of feature details caused by compressed image data or interference
from a large area of the image with too much noise. This may increase the difficulty of
computer vision in lung cancer diagnosis, and misjudgments may further waste the medical
resources required for re-testing. Convolutional neural network models can filter out the
features of interest in the image through feature training and can therefore be applied
to image classification. Cutting out fixed-size feature samples from lung CT images and
training them using convolutional neural networks has gradually become a mainstream
method [20–22], and three-dimensional medical images are also possible to efficiently
compute and analyze. Joshua et al. used the improvised 3D AlexNet with lightweight
architecture for the detection of lung cancer [23].

In 2019, Shen et al. [8] proposed a hierarchical semantic convolutional neural network
(HSCNN) to classify nodules in three-dimensional medical images. The HSCNN model
consists of three parts: a 3D convolutional feature learning model, a low-level classification
task, and a high-level classification task. The model takes in fixed-size three-dimensional
nodule images as input and extracts nodule features in the 3D convolutional feature
learning model. These features are then fed into the low-level classification task, which
predicts five different semantic labels. Finally, the high-level classification task integrates
the nodule features and the semantic features of the five classification tasks to predict
nodule malignancy. Shen et al. (2019) evaluated the HSCNN model using a four-fold cross-
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validation procedure and reported the AUC results for each semantic label. The AUC results
were as follows: calcification, 0.930 ± 0.034; margin, 0.776 ± 0.033; subtlety, 0.803 ± 0.015;
texture, 0.850 ± 0.042; sphericity, 0.568 ± 0.015; and malignancy, 0.856 ± 0.026 [8].

These research findings indicate that using CNN as an assistive tool in lung cancer
diagnosis is viable and holds potential clinical value. However, most prior studies have
developed black-box AI models. In contrast, this study builds upon the transparent HSCNN
white-box model [8] for further improvement and validation, ensuring its reliability and
accuracy in clinical applications.

3. Materials and Methods
3.1. Lung Image Database Consortium Image Collection

The image dataset used in this study is the lung nodule feature image set provided
by Shen et al. [8]. The feature images were extracted from the Lung Image Database
Consortium image collection (LIDC-IDRI) [24], a freely available image dataset collected in
collaboration with eight medical imaging companies and seven academic research centers,
and archived in the Cancer Image Archive (TCIA).

The LIDC-IDRI dataset contains clinical chest CT scan images and related extensible
markup language (XML) files with annotations from four chest radiologists. The dataset
includes a total of 1018 case records involving 1010 different patients, including 8 patients
who underwent different scans for the second time. The scan images are stored in DICOM
format, and the total size of the images is 124 GB. Figure 1 shows CT slice images from the
LIDC-IDRI dataset, and we present two different DICOM medical images of CT slices from
different patients [24]. In the left image, the slice is positioned at −69.36 mm depth, with a
window level of 40 and a window width of 400. In the right image, the slice is positioned
at −182.40 mm depth, with a window level of 30 and a window width of 350.
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Figure 1. CT slice DICOM images [24].

3.2. Our Usage of the LIDC-IDRI Dataset

In this paper, we refer to the approach used by Shen et al. [8] and re-categorize the
six different semantic feature labels mentioned above into two categories, making it easier
to conduct preliminary diagnostic screening using classification prediction labels. The
malignancy category is changed from the original five levels to a negative level ranging
from “Highly unlikely” to “Indeterminate”, and any level above “Moderately suspicious” is
deemed positive. The margin category is categorized as negative for the first to third levels
and positive for the fourth and fifth levels of the original data. Similarly, the sphericity
and texture categories are categorized as negative for the first to third levels and positive
for the fourth and fifth levels of the original data. The calcification category is considered
positive only for the “Absent” category, while all other levels are considered negative. The
categorized labels used in this study are shown in Table 1.
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Table 1. Nodule semantic feature labels in the feature dataset.

Semantic Features Original Level Two Level

Malignancy

1. Highly unlikely

0. Benign2. Moderately unlikely

3. Indeterminate

4. Moderately suspicious 1. Malignant
5. Highly suspicious

Margin

1. Poorly defined

0. Poorly defined margin2.

3.

4.
1. Sharp margin

5. Sharp

Sphericity

1. Linear

0. Lesser roundness2.

3. Ovoid

4.
1. High degree of roundness

5. Round

Subtlety

1. Extremely subtle
0. Poor contrast between
nodule and surroundings

2. Moderately subtle

3. Fairly subtle

4. Moderately obvious 1. High contrast between
nodule and surroundings5. Obvious

Texture

1. Non-solid

0. Non-solid internal density2.

3. Part Solid

4.
1. Solid internal density

5. Solid

Calcification

1. Popcorn

0. Presence of calcification

2. Laminated

3. Solid

4. Non-central

5. Central

6. Absent 1. Absence of calcification

3.3. Interpretable Hierarchical Semantic Convolutional Neural Networks

Based on the network architecture referenced by Shen et al. [8], this study proposes an
improved interpretable network architecture for performance testing, as shown in Figure 2b.
Figure 2a shows the HSCNN model [8], which uses only five semantic-level classification
features after performing a semantic-level classification task to enter a disease-level classifi-
cation task. Furthermore, this study believes that different semantic classification training
should train the features needed for each individual training. Therefore, we attempted to
modify the original shared three-dimensional convolution feature extraction model into
five individual three-dimensional convolution feature extraction models, each connected to
a semantic-level classification task, to investigate whether using different feature extraction
models can increase the predictive ability of the model. We also attempted to deepen the
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network architecture and use a deeper network architecture to obtain more subtle features
for semantic-level classification tasks. Furthermore, we changed the extraction of features
from the dropout layer to extracting features from the activation function layer during
training to reduce the impact of discarded neural element parameters on feature extraction.
This model is called HSNet, and the structure of the model is shown in Figure 2b.
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3.4. Experimental Setup and Evaluation Measures

In this study, we used the TensorFlow 2.7 suite in Python as the platform for our
experiment. The hardware and system configuration consisted of a Windows 10 version
22H2 operating system. We employed an NVIDIA RTX 3060 graphics card and an AMD
Ryzen 3 PRO 4350G 3.80 GHz 8-core central processing unit (CPU) with 32 GB of mem-
ory. The Sklearn package in Python was used to randomly group the data using the
train_test_split function, resulting in four sets of data with equal numbers of samples.
This study will conduct a 4-fold cross-validation and select the best fold for subsequent
diagnostic subtitle training.

The original image set consisted of 4252 images [8]. In this study, we used the 4-fold
cross-validation method to randomly split the image set into training and test sets at a
ratio of 3:1. Considering that the number of images in the training set is relatively small,
overfitting may occur during training. To address this issue, we used data augmentation to
generate more training samples from the original training set. Specifically, we randomly
transposed and flipped the three axes of the 3D images, increasing the training data by
six times to improve the predictive generalization ability of the deep learning model after
training. It is worth noting that the test set in this study remained unchanged and was
not expanded. In this study, the proposed AI model underwent a training period of
35.32 h, spanning across 300 epochs. The training process was validated using a 4-fold
cross-validation method.

And will perform classification verification on the test set and use a confusion matrix
to evaluate the classification performance. The confusion matrix can be applied to binary
or multi-class classification performance analysis. After the model makes predictions, each
category is classified separately and organized into a coherent table to provide a display of
data. The classification results of each category can be observed quickly after prediction.
The accuracy of the results will be analyzed using the overall accuracy method, which
divides the total number of correctly classified images by the total number of test images.
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This method can be used as a performance analysis method for feature image classification
by the model after training. This evaluation method can serve as an effective reference for
the results. During the evaluation, the disease-level task classification results of the trained
HSCNN model will be used, and the malignancy semantic label for benign and malignant
classification will be used as the main indicator for model evaluation.

In addition to comparing the test accuracy, the ROC curve method can also be used
as a judging criterion for the screening ability of the classification results to determine the
quality of the classification. The larger the area under the receiver operating characteristic
curve (AUC), the higher the prediction accuracy. The horizontal axis of the ROC curve
chart is the false positive rate (FPR), which represents the ratio of false positive nodules
to all benign nodules that are wrongly predicted as malignant. The lower the FPR, the
more accurately the model can identify malignant nodules. The vertical axis is the true
positive rate (TPR), which represents the ratio of correctly detected malignant nodules to
all malignant nodules. The higher the TPR, the more accurate the model’s judgments are.
At the same time, the individual AUC label of each test group represents the probability
that the classification model can correctly judge positive samples, which is higher than the
probability of judging negative samples when randomly selecting a positive sample. The
higher the AUC value, the higher the classification accuracy.

Accuracy, AUC, sensitivity, and specificity are widely used in medicine to represent
the results of binary classification. Accuracy identifies the correctness of the observation of
different class patterns. Sensitivity is the proportion of positive samples that are correctly
judged, while specificity represents the proportion of negative samples that are correctly
judged. In this paper, accuracy, AUC, sensitivity, and specificity are used as evaluation
indicators for semantic-level classification results.

This study compares the predictive performance of two classifiers to determine
whether there is a statistically significant difference between them. We use Equation (1) to
perform a significant difference test comparison [25], where E1 and E2 represent the error
rates of Model 1 and Model 2, respectively. The q value is represented by (E1 + E2)/2 while
n1 and n2 represent the test set sizes of Model 1 and Model 2, respectively. After a significant
difference comparison, if Ps ≥ 1.96, it can be considered that the test performance between
Model 1 and Model 2 has significant differences with 95% confidence.

PS =
|E1 − E2|√

q(1− q)
(

1
n1

+ 1
n2

) (1)

4. Results
4.1. Effect of Optimization Strategies

In our study, we investigate the impact of optimization strategies on the performance
of the proposed HSNet model. Specifically, we introduce the early stopping strategy to the
training process. This strategy employs a callback method to continuously monitor the
accuracy of the main prediction layer on the test set at each iteration. The early stopping
strategy halts the training process when it observes no further improvement in accuracy.
The primary objective behind this strategy is to prevent overfitting, ensuring that the model
does not excessively adapt to the training data.

It is important to note that the choice of when to stop training, based on this accuracy
metric, can have varying effects depending on the specific task and loss function used.
Therefore, our paper conducts a comprehensive evaluation by comparing test accuracy
using models stopped by the early stopping strategy and models trained for a fixed number
of iterations (e.g., 300 iterations).

To implement the early stopping strategy, we employ TensorFlow’s callback method,
specifically the ModelCheckpoint callback. This callback is configured to monitor the
‘val_main_prediction_layer_accuracy’ metric and saves model weights whenever an im-
provement in accuracy is detected. The primary aim of this callback is to ensure that we
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capture the model’s best performance during training, thus contributing to the prevention
of overfitting. The accuracy of the malignancy classification in the prediction of Fold 1 was
96.89%, and the confusion test matrix for Fold 1 generated by the prediction is shown in
Figure 3.
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In addition to adjusting the dropout rate, this study further explores the use of
optimization-assisted training other than model parameters. First, we attempted to incor-
porate the optimization of the cyclical learning rate [26]. The cyclical learning rate (CLR)
method sets the learning rate of the model cyclically, varying the training by adjusting the
learning rate between the upper bound (Max_lr) and the lower bound (Base_lr) instead of
monotonically decreasing the learning rate to achieve the best-fitting state of the model.

Next, this study attempted to incorporate stochastic weight averaging (SWA), an
optimizer package in Tensorflow Addons. SWA [27] can assist the stochastic gradient
descent optimizer (SGD) in training. The paper indicated that it could improve the learning
generalization ability. The training of SWA uses the cyclical learning rate, allowing the
SGD optimizer to explore and converge to the optimal solution. The training process is
divided into two stages, during which the model parameters’ weights are averaged at the
end of each epoch. Two models are temporarily stored during the training process: the
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weight of the current epoch training model WSWA and the weight of the previous training
model W. The two weights are averaged and used as the model for the next training
average, with the number of models represented by n, as shown in Equation (2). It can
be understood that weighted averaging is performed with the weights of the model and
the previous training to achieve more accurate convergence, helping the model reach the
optimal solution more quickly. SWA can average multiple weights (W1, W2, W3) to achieve
more accurate convergence, as shown in Figure 6.

WSWA =
WSWA·nmodels + W

nmodels + 1
(2)
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To analyze the effect of incorporating optimization methods in training, Run1 uses the
SGD optimizer for simple training, Run2 uses the Adam optimizer for training, Run3 adds
CLR to adjust the learning rate when using the SGD optimizer for training, Run4 adds CLR
to adjust the learning rate when using the SGD optimizer for training while also using the
SWA optimization method, and Run5 attempts to use the RMSProp optimizer and CLR to
adjust the learning rate. Training results are shown in Table 2.

This paper argues that the use of both the CLR and the SWA optimization methods can
result in better prediction accuracy of the model test set. As shown in Table 2, the results of
the comparative experiment, compared to the original Adam optimizer, training the model
with the SGD optimizer using the CLR method can achieve the best prediction accuracy
of the test set, and incorporating the SWA optimization method can further improve the
predictive ability of the model.
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Table 2. Comparison of parameter adjustment results of HSNet model.

No Iteration Optimizer SWA Test Accuracy

Run1 300 SGD No 96.98%
Run2 300 Adam No 97.08%
Run3 300 SGD-CLR No 97.17%
Run4 300 SGD-CLR Yes 97.65%
Run5 300 RMSProp-CLR Yes 97.18%

After understanding the potential of the optimization methods mentioned above to
improve model training, this paper added CLR and SWA optimization methods and re-
trained the model using the dataset. The prediction accuracy of the test set (Fold1) can reach
97.83%. The changes in accuracy and loss values during 300 iterations of Fold2 + Fold3
used as the training set in this experiment are shown in Figure 7.
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After using the optimization methods mentioned above, it can be seen in Figure 7 that
the training convergence has better accuracy and loss convergence compared to Figure 4.
Similarly, when the results of the Fold 4 validation set are displayed in 300 iterations of
training, the histories of accuracy and loss values are shown in Figure 8.

Cancers 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 8. Validation history of HSNet with CLR and SWA: (1) accuracy, (2) loss. 

4.2. Prediction Performance 
After obtaining the optimal training method, this study conducted four-fold cross-

validation. The deep learning model will use the SGD optimizer from the CLR method 
and the SWA optimization method during training. First, the best weight training model 
was obtained by conducting parameter tests of the early stopping strategy using the vali-
dation set. Second, the accuracy of the prediction of the classification of the malignancy 
label was tested using the test set, as shown in Table 3. 

Table 3. Test accuracy of four experiments using HSNet model. 

No Training Set Validation Set Test Set Test Accuracy 
Exp1 Fold2 + Fold3 Fold4 Fold1 97.84% 
Exp2 Fold3 + Fold4 Fold1 Fold2 96.61% 
Exp3 Fold4 + Fold1 Fold2 Fold3 96.52% 
Exp4 Fold1 + Fold2 Fold3 Fold4 96.43% 

In addition to the test accuracy comparison in Table 3, this study can also draw the 
ROC curve of the true positive rate and false positive rate and judge the quality of the 
classification results by calculating the AUC value. The corresponding AUC values are 
shown in Table 4. As can be seen from the comparison results in Table 4, when judging the 
malignancy of lung nodules, the best results can be achieved using the malignancy se-
mantic label in Fold1 as the test set. 

Table 4. AUC of four experiments using HSNet model. 

Semantic Test1 Test2 Test3 Test4 
Sphericity 0.926 0.942 0.944 0.905 

Margin 0.954 0.966 0.967 0.965 
Subtlety 0.948 0.963 0.956 0.956 
Texture 0.982 0.978 0.994 0.976 

Calcification 0.990 0.999 0.996 0.992 
Malignancy 0.991 0.980 0.988 0.977 

Table 5 shows the average accuracy, sensitivity, and specificity of different semantic 
labels in four-fold validation, along with their standard deviation (SD). The standard de-
viation is often used to measure the degree of dispersion of numerical values. The size of 

Figure 8. Validation history of HSNet with CLR and SWA: (1) accuracy, (2) loss.



Cancers 2023, 15, 4655 11 of 17

4.2. Prediction Performance

After obtaining the optimal training method, this study conducted four-fold cross-
validation. The deep learning model will use the SGD optimizer from the CLR method and
the SWA optimization method during training. First, the best weight training model was
obtained by conducting parameter tests of the early stopping strategy using the validation
set. Second, the accuracy of the prediction of the classification of the malignancy label was
tested using the test set, as shown in Table 3.

Table 3. Test accuracy of four experiments using HSNet model.

No Training Set Validation Set Test Set Test Accuracy

Exp1 Fold2 + Fold3 Fold4 Fold1 97.84%
Exp2 Fold3 + Fold4 Fold1 Fold2 96.61%
Exp3 Fold4 + Fold1 Fold2 Fold3 96.52%
Exp4 Fold1 + Fold2 Fold3 Fold4 96.43%

In addition to the test accuracy comparison in Table 3, this study can also draw the
ROC curve of the true positive rate and false positive rate and judge the quality of the
classification results by calculating the AUC value. The corresponding AUC values are
shown in Table 4. As can be seen from the comparison results in Table 4, when judging
the malignancy of lung nodules, the best results can be achieved using the malignancy
semantic label in Fold1 as the test set.

Table 4. AUC of four experiments using HSNet model.

Semantic Test1 Test2 Test3 Test4

Sphericity 0.926 0.942 0.944 0.905
Margin 0.954 0.966 0.967 0.965
Subtlety 0.948 0.963 0.956 0.956
Texture 0.982 0.978 0.994 0.976

Calcification 0.990 0.999 0.996 0.992
Malignancy 0.991 0.980 0.988 0.977

Table 5 shows the average accuracy, sensitivity, and specificity of different semantic
labels in four-fold validation, along with their standard deviation (SD). The standard
deviation is often used to measure the degree of dispersion of numerical values. The size of
the standard deviation can indicate whether there is a difference between most numerical
values and their mean value. The results in Table 5 show that the standard deviation of
sensitivity and specificity for four-fold validation are both less than 0.05, and there is no
significant difference from the mean value.

Table 5. Performance of semantic classification using HSNet model.

Semantic Accuracy (SD) Sensitivity (SD) Specificity (SD)

Calcification 0.9873 (0.006) 0.9966 (0.002) 0.9151 (0.041)
Margin 0.9207 (0.009) 0.9584 (0.016) 0.8129 (0.021)
Subtlety 0.9026 (0.014) 0.9290 (0.016) 0.8584 (0.032)
Texture 0.9685 (0.006) 0.9933 (0.002) 0.7889 (0.049)

Sphericity 0.8652 (0.021) 0.8796 (0.038) 0.8638 (0.033)
Malignancy 0.9685 (0.006) 0.9267 (0.029) 0.9823 (0.004)

To assess the significance of model performance improvement, we also trained the
HSCNN model using four-fold training and obtained the best model training weights.
We evaluated the results of both the HSCNN and HSNet models using paired-sample
t-tests. The first group of data is the AUC scores of the four-fold validation of the HSNet
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model, and the second group of data is the AUC scores of the four-fold validation of the
HSCNN model. We validated them using six semantic labels, and the results are shown in
Tables 6–11.

Table 6. Paired-sample t-test of sphericity.

Test Set HSNet
AUC

HSCNN
AUC

AUC
Difference Paired t-Test

Fold1 0.926 0.577 0.349 p = 0.0004
mean difference

0.3207
95% CI

[0.2635, 0.3780]

Fold2 0.942 0.590 0.352
Fold3 0.944 0.640 0.304
Fold4 0.905 0.627 0.278

Table 7. Paired-sample t-test of margin.

Test Set HSNet
AUC

HSCNN
AUC

AUC
Difference Paired t-Test

Fold1 0.954 0.829 0.125 p = 0.0037
mean difference

0.1725
95% CI

[0.1059, 0.2391]

Fold2 0.966 0.739 0.227
Fold3 0.967 0.800 0.167
Fold4 0.965 0.794 0.171

Table 8. Paired-sample t-test of subtlety.

Test Set HSNet
AUC

HSCNN
AUC

AUC
Difference Paired t-Test

Fold1 0.948 0.823 0.125 p = 0.0002
mean difference

0.1293
95% CI

[0.1110, 0.1475]

Fold2 0.963 0.817 0.146
Fold3 0.956 0.830 0.126
Fold4 0.956 0.836 0.120

Table 9. Paired-sample t-test of texture.

Test Set HSNet
AUC

HSCNN
AUC

AUC
Difference Paired t-Test

Fold1 0.982 0.847 0.135 p = 0.0005
mean difference

0.1642
95% CI

[0.1325, 0.1960]

Fold2 0.978 0.801 0.177
Fold3 0.994 0.826 0.168
Fold4 0.976 0.799 0.177

Table 10. Paired-sample t-test of calcification.

Test Set HSNet
AUC

HSCNN
AUC

AUC
Difference Paired t-Test

Fold1 0.990 0.946 0.044 p = 0.0049
mean difference

0.0418
95% CI

[0.0241, 0.0594]

Fold2 0.999 0.969 0.030
Fold3 0.996 0.940 0.056
Fold4 0.992 0.955 0.037
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Table 11. Paired-sample t-test of malignancy.

Test Set HSNet
AUC

HSCNN
AUC

AUC
Difference Paired t-Test

Fold1 0.991 0.987 0.004 p = 0.0469
mean difference

0.0040
95% CI

[0.0001, 0.0079]

Fold2 0.980 0.976 0.004
Fold3 0.988 0.987 0.001
Fold4 0.977 0.970 0.007

Tables 6–11 show the statistical significance of the improvements from the HSNet
model compared to the HSCNN model. The null hypothesis is that there is no difference in
the average AUC score between the two models. Compared to the results of the HSCNN
model in Tables 6–11, the HSNet model proposed in this study obtained a significant p-
value of less than 0.05 on five semantic labels, namely, sphericity, margin, subtlety, texture,
and calcification. Therefore, the null hypothesis is rejected, and it can be considered that
the HSNet model has a better semantic label prediction ability than the HSCNN model.
Consequently, it is believed that when training the malignancy of nodules with the HSNet
model, it can better improve the predictive capacity of other semantic features. This finding
is of great significance for aiding in the medical diagnosis.

Table 12 shows that the use of the HSNet model proposed in this study for classification,
with 95% confidence, results in significantly better classification prediction capability than
the HSCNN model [8].

Table 12. Significance test of performance between HSNet and HSCNN [8].

Semantic HSCNN [8]
AUC (SD)

HSNet
AUC (SD) Ps Value

Calcification 0.930 (0.034) 0.994 (0.004) 7.717
Margin 0.776 (0.033) 0.963 (0.005) 12.798
Subtlety 0.803 (0.015) 0.956 (0.005) 10.835
Texture 0.850 (0.042) 0.983 (0.007) 11.084

Sphericity 0.568 (0.015) 0.929 (0.016) 19.182
Malignancy 0.856 (0.026) 0.984 (0.006) 10.877

Table 13 presents a performance comparison of 15 research articles related to the
classification of benign versus malignant pulmonary nodules sourced from the relevant
literature for the years 2015–2023. These studies are listed according to seven indicators,
including publication year, author, dataset, type of model, ACC, SEN, and AUC. This
compilation provides a comprehensive overview of the state-of-the-art methodologies
in the field. The data presented in bold in the table represent the best results. Due
to variations in data quantities and verification methods in different studies, making
meaningful comparisons becomes challenging. Nevertheless, the method proposed in this
study continues to demonstrate outstanding performance.

This study uses the optimized method mentioned above to train model weights for
image prediction. Figure 9 shows the results of the actual label and the predicted label in
the images of the nodules using the proposed HSNet model. Figure 9a shows the predicted
results of two benign nodules in the test set, labeled as N1 and N2, respectively. Figure 9b
shows the predicted results of two malignant nodules labeled as P1 and P2, respectively.
The three images on the left show the axial, sagittal, and coronal views of the nodule image,
respectively. The axial view is a section constructed by the left, right, front, and back of
the human body. The sagittal view divides the human body into left and right parts. The
coronal view is a section divided into front and back parts along the longitudinal axis of the
human body. By examining the sections, we can determine if the location of the nodule cut
is correct and observe the symptoms from different angles to further prevent misdiagnosis
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when assisting doctors in diagnosis. The table on the right shows the original label and the
predicted results of the images.

Table 13. Performance comparison of state-of-the-art methods for lung nodule classification.

Year Author Dataset Model ACC (%) SEN (%) AUC (%)

2023 Our Method LIDC-IDRI 3D-White Box 96.85 92.67 98.40
2023 Zhang and Zhang [28] LUNA16 3D-Black Box 92.75 - -
2022 Halder et al. [29] LIDC-IDRI 2D-Black Box 96.10 96.85 99.36
2022 Donga et al. [30] LIDC-IDRI 2D-Black Box 95.67 91.00 -
2021 Zhang et al. [31] LUNA16 3D-Black Box 92.40 87.00 -
2020 Agnes et al. [32] LIDC- IDRI 2D-Black Box - 81.00 94.40
2020 Liu et al. [33] LIDC-IDRI 3D-Black Box 90.60 83.70 93.90
2020 Xia et al. [34] LIDC-IDRI 3D-Black Box 91.90 91.30 -
2020 Ali et al. [35] LIDC-IDRI 2D-Black Box 96.69 98.10 99.11
2019 Shen et al. [8] LIDC- IDRI 3D-White Box 84.2 70.5 85.6
2019 Al-Shabi et al. [36] LIDC-IDRI 2D-Black Box 88.46 88.66 95.62
2019 Al-Shabi et al. [37] LIDC-IDRI 2D-Black Box 92.57 92.21 93.15
2018 Dey et al. [38] LIDC-IDRI 3D-Black Box 90.40 - 95.48
2017 Nibali et al. [39] LIDC-IDRI 2D-Black Box 89.90 91.07 94.59
2016 Shen et al. [40] LIDC-IDRI 3D-Black Box 87.14 77.00 93.00
2015 Kumar et al. [13] LIDC-IDRI 2D-Black Box 75.01 83.35 -
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5. Discussion

The main purpose of this article is to develop a three-dimensional neural network
model (HSNet) using interpretive three-dimensional lung CT images. This model can be
used in a computer-aided diagnosis system to automatically identify lung cancer on CT
images. The model is trained separately for five different semantic labels with distinct 3D
feature extraction networks, with the aim of increasing the prediction accuracy of the model
for each individual label. To optimize the HSNet model for six classification labels, several
optimization methods were implemented, including cyclic learning rate, early stopping
strategy, random weight averaging, and adjustment of model parameters. These methods
were employed to refine the model’s performance and improve its ability to accurately
classify lung cancer.

The results of this study indicate that the optimized HSNet model significantly im-
proved the accuracy of malignant nodule testing from 93.22% to 97.84%, effectively im-
proving the success rate of discriminating between benign and malignant nodules and
improving the classification ability of the model for five different semantic labels. Com-
pared to the results of Shen et al. [8], this paper demonstrated that using the proposed
HSNet model to extract different features for each semantic label significantly increased the
AUC values for each classification task. This confirms our hypothesis that training different
semantic feature labels separately can increase the model’s prediction accuracy for each
individual label in semantic-level classification tasks.

Regarding the automatic generation of medical diagnostic reports from CT images, the
HSNet model, trained with semantic models using image features, was used for automatic
diagnosis report generation. After evaluation using various assessment indicators, the sim-
ilarity rate of the generated reports exceeded 90%. The results demonstrated that utilizing
the proposed model’s features for training and generation improved the accuracy of subtitle
evaluation by more than 20% compared to using the HSCNN model for generation. This
validates the interpretation ability of the HSNet model after optimizing various semantic
labels for the generation of reports.

This study has several limitations. The semantic labels of this study, as shown in
Table 1, do not include certain imaging features that are highly relevant to malignant lung
nodules, such as nodule size, shape, and location. Additionally, metadata such as sex, age,
or family history are not included. The original semantic features had five or six levels, but
to overcome data sparsity, they were converted into binary category labels, which can result
in the loss of significant semantic information. Lastly, the malignancy label in the LIDC
dataset is derived from manual radiological annotations and not pathological examinations.
We also do not have data available to compare the nodule features over time. Thus, we can
apply our results to the Lung Imaging Reporting and Data System (Lung-RADS), which is
the most popular classification of lung cancer screening. These limitations can be improved
by modeling large clinical annotated data sets. Therefore, the topic of model optimization
remains to be investigated in the future.

6. Conclusions

The HSNet model proposed in this study utilizes the characteristics of nodules, in-
cluding edge, sphericity, subtlety, texture, and calcification for semantic classification, and
finally predicts the possibility of malignancy of nodules. By obtaining different features
through various semantic labels, the classification ability of each label is improved. After
adjusting various parameters and methods through different training strategies, such as
cyclic learning rate and random weight averaging, the HSNet model achieves the best ac-
curacy on the test set outside the training process. Furthermore, the semantic feature labels
of the model are used to automate the generation of diagnostic reports. Computer-aided
diagnosis is expected to assist doctors in the preliminary examination and the generation of
diagnosis reports. In addition to the model’s classification prediction, a more interpretable
explanation method is provided to assist in the judgment.
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In future research, in addition to exploring different architectures of multimodal deep
learning models, there is a need for a deeper understanding of the impact of various
parameters and optimizations on the model. It is also anticipated that a larger amount of
image data will be used to investigate the generalization ability of the model’s predictions.
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