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Simple Summary: Pheochromocytomas and paragangliomas are rare neural-crest-derived tumors
with variable prognosis. In an era of tailored treatment strategies, medical imaging plays a crucial
role in the surgeries, image-guided procedures, chemotherapies, immunotherapies, and radionuclide
therapies involved in the diagnosis and treatment of these tumors. Medical imaging helps to confirm
the diagnosis, guide surgical resection, assess metastatic staging, and select patients for specific
therapies. In this step-by-step review, we perform a comprehensive analysis of recent imaging
modalities developed for pheochromocytomas and paragangliomas by covering their content and
terminology as well as discussing the future implications of artificial intelligence.

Abstract: In this comprehensive review, we aimed to discuss the current state-of-the-art medical
imaging for pheochromocytomas and paragangliomas (PPGLs) diagnosis and treatment. Despite
major medical improvements, PPGLs, as with other neuroendocrine tumors (NETs), leave clinicians
facing several challenges; their inherent particularities and their diagnosis and treatment pose
several challenges for clinicians due to their inherent complexity, and they require management by
multidisciplinary teams. The conventional concepts of medical imaging are currently undergoing
a paradigm shift, thanks to developments in radiomic and metabolic imaging. However, despite
active research, clinical relevance of these new parameters remains unclear, and further multicentric
studies are needed in order to validate and increase widespread use and integration in clinical routine.
Use of AI in PPGLs may detect changes in tumor phenotype that precede classical medical imaging
biomarkers, such as shape, texture, and size. Since PPGLs are rare, slow-growing, and heterogeneous,
multicentric collaboration will be necessary to have enough data in order to develop new PPGL
biomarkers. In this nonsystematic review, our aim is to present an exhaustive pedagogical tool based
on real-world cases, dedicated to physicians dealing with PPGLs, augmented by perspectives of
artificial intelligence and big data.

Keywords: pheochromocytoma; paraganglioma; metabolic imaging; radiomic biomarkers

1. Introduction

Pheochromocytomas (PCCs) and paragangliomas (PGLs) are both (PPGLs) rare neural-
crest-derived tumors. Thanks to the latest advances in medical imaging, diagnoses of PPGLs

Cancers 2023, 15, 4666. https://doi.org/10.3390/cancers15184666 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15184666
https://doi.org/10.3390/cancers15184666
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-6306-8008
https://orcid.org/0000-0002-5274-4138
https://orcid.org/0000-0002-1322-0710
https://doi.org/10.3390/cancers15184666
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15184666?type=check_update&version=1


Cancers 2023, 15, 4666 2 of 32

have increased. Although they share the same histological origin, PCCs and PGLs differ
in several aspects, such as functional status, metastatic potential, and risk of recurrence.
Improvements in imaging biomarkers and artificial intelligence over the past few decades
have offered tailored diagnostic and treatment strategies based on a tumor’s genetic and
inherent phenotypic background. This guide provides an innovative image-modality-based
approach to PPGLs management through its review of each imaging modality, the specifics
of each treatment option, and the current imaging reporting systems available to improve
follow-up. Artificial intelligence (AI) has had a major impact on how medical research is
conducted. AI requires large, high-quality datasets to create accurate predictive algorithms.
This is particularly true for rare conditions such as PPGLs. This review aims to summarize
the role of medical imaging in the management of PPGLs, with a special focus on imaging
biomarkers and AI.

2. Epidemiology, Genetics, and Molecular Background: How to Stratify Risk
2.1. Epidemiology and Embryology

PPGLs arise from the adrenal medulla (PCCs) and the extra-adrenal paravertebral
sympathetic ganglia (PGLs) of the thorax, abdomen, and pelvis. Head and neck paragan-
gliomas (HaN PGLs) arise specifically from the parasympathetic structures at the base of
the skull along the glossopharyngeal (CN IX) and vagal (CN X) nerves. The incidence of
diagnosed PPGLs is about 0.2–0.8/100,000 patients/year [1], with a sex ratio close to 1:1,
and a reported PCC/PGL ratio of 80%/20% [2]. The prevalence is reported to be 0.2 to 0.6%
in adults and 1.7% in children with hypertension. Over the past few decades, the annual
age-standardized incidence rates have increased, with a higher age at diagnosis alongside
significantly smaller PCC tumor sizes. This is mainly due to improvements in clinical
practice and targeted screening plasma and urinary free metanephrine/normetanephrine
(M/NM), increased use of imaging studies, and screening of susceptibility-gene-related
carriers [3].

2.2. An Endocrine Functional Status

PPGLs belong to the neuroendocrine tumors (NETs) group, and produce, store, and
secrete one or more catecholamines: M/NM and dopamine. This catecholamine-secreting
function is mainly observed in sympathetic-tissue-derived PCCs and PGLs arising below
the head and neck (in 96% and 65% of tumors, respectively), whereas the majority (97%)
of parasympathetic HaN PGLs are nonsecreting [4]. The catecholamine excess explains
the adverse symptoms during initial presentations of NETs (e.g., hypertension, headaches,
sweating, and palpitations) as well as their related acute complications (e.g., renal failure,
intestinal ischemia, heart attack, angina, pulmonary edema, osteoporosis, and patholog-
ical fractures [5–8]). Due to their endocrine function, plasma and 24 h urinary M/NM
measurements are the recommended biochemical tests for PPGLs, both for screening and
follow-up, sometimes completed with 3-methoxytyramine serum evaluation. Therefore,
screening for catecholamine secretion is critical before any biopsy in case of suspected
PPGL, to prevent life-threatening outcomes [9]. However, rare false negatives (small PCCs
and nonsecreting PGLs) and medication-induced false positives (diuretics, b-blockers,
tricyclic antidepressants, renal failure, acute stress, etc.) limit screening performance [10].
Another plasma protein of interest, chromogranin A (CgA), is stored and released along
with catecholamines. Serum CgA levels are elevated in the majority of NETs, including
PPGLs, suggesting that serum CgA may be an alternative for screening and follow-up in the
outpatient setting, even though medication- and non-medication-induced false positives
exist as well. Currently, serum CgA use is limited to preoperative evaluation of NETs
patients with otherwise normal M/NM levels and to postoperative follow-up in patients
with elevated CgA [11,12].
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2.3. Genetic Background: A Prerequisite to Understand Pathology

PPGLs are part of inherited tumor syndromes in 40% of cases. This relatively big
proportion sets them apart from other NETs and has a major impact on the management
of this pathology. More than 20 genes have been identified (such as SDHD, VHL, RET,
neurofibromatosis type 1 NF1), including inherited cancer susceptibility genes [4,13–18].
Comprehensive molecular research has defined four groups with specific pathways de-
pending on the identified mutated driver and fusion genes: c kinase signaling subtype,
pseudohypoxia subtype, Wnt-altered subtype, and cortical admixture subtype [19]. Each ge-
netic underlying mutation has a specific risk of metastatic outcome, multifocal disease, and
familial history. Genetic testing is an essential component of not only patient management,
follow-up, and prognostication, but also for election of an optimal imaging modality [20].
For instance, metastatic risk is low in PCCs (5–10%), high in PGLs (30–35%), and even
higher in the succinate dehydrogenase genetic alterations group (SDHx), such as SDHB
mutations carriers (up to 80% in some series) [21]. SDHB and SDHC mutations have auto-
somal dominant inheritance, at risk of earlier PPGLs (mean age at diagnosis 35–40 years,
lifetime risk 30%), with a less differentiated phenotype, a higher risk of metastatic disease
at diagnosis or during follow-up [7,22–24], and a poorer prognosis [25]. Therefore, early
diagnosis of patients and their relatives is critical in improving overall prognosis. Several
algorithms based on immunohistochemical staining procedures and genetic screening are
currently being implemented in routine practice guidelines [26–28].

2.4. A Potentially Malignant Tumor with Common Sites of Metastases

Despite the latest progress in the understanding of PPGLs, there is still no histological,
molecular, or genetic criteria of malignancy. According to the latest WHO classification [29],
malignancy in PPGLs is only defined by proven distant metastases in nonchromaffin tissues
(mainly bone, lung, lymph nodes, and liver), even if histologic patterns were reported to
be indicative of malignancy, such as small cell or spindle cell patterns [30,31]. In 2017, the
American Joint Committee on Cancer (AJCC) proposed a TNM staging [32] classification
with a prognostic value (worse survival in stage IV) [33]. According to this classification,
the terms “malignant” and “benign” should be abandoned, implying that all PPGLs are
classified as having malignant potential [29,34].

PGL metastases are reported to occur earlier than PCC metastases (median age 36 years
vs. 46 years), with more synchronous metastatic disease at diagnosis (41% vs. 26%) [35]. Ra-
diologists and nuclear medicine physicians must be aware that the most common metastatic
sites are bone (60–70% of metastatic patients), lymph nodes (47%), liver/lung/thorax (38%),
and abdomen/pelvis (32%), with PGL metastases mostly spreading to lymph nodes (67%),
and PCC metastases mostly spreading to the liver (49–57%) [24,36–38].

2.5. Prognosis and Prognostic Markers

The 5-year survival rate for cases of malignant PPGLs varies from 50% to 80% [23],
with a metastatic risk reported to be 4–5 times higher in PGLs than PCCs [35,39]. In
addition to genetic status discussed earlier [25], some factors are reportedly associated
with worse survival: male sex, synchronous metastases, larger tumor size (>5 cm), hyper-
secretion, dopamine secretion phenotype, and serum levels of the dopamine metabolite
3-methoxytyramine [24,30,35,39–42]. Ki-67 antigen is a nuclear protein expressed only in
proliferating cells, and it has a high prognostic value in NETs [43]. This antigen has an
unclear prognostic value in PPGLs [30,42,44–46], even though it was recently reported to
be a significant prognostic factor for locally advanced PCCs [47], and significantly higher
in metastatic PCCs [48], with a cut-off of >2–3%.

Several scores are used to better risk stratify patients with PPGLs, based on histological
grade (the PASS Pheochromocytoma scaled score, the GAPP Grading of Adrenal Pheochro-
mocytoma and Paraganglioma score [49,50]), or clinical presentation (the ASES score [51]).
These scores have high negative predictive values (PASS score up to 99% [31,41,52]), but sig-
nificantly different survival rates, requiring validation from multicenter clinical trials [49].
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The majority of histological criteria are applied to postoperative histological samples.
However, preoperative imaging sheds light on poor prognostic factors. For instance, lesions
larger than 5 cm are at higher risk of malignancy [40,53]. Additionally, since the GAPP
score uses histological cellularity as a main prognostic criterion, MRI diffusion sequences
may be a useful alternative for assessing cellularity, although this has yet to be proven [54].

Even if metastatic recurrence risk is higher with locally aggressive tumors, it is
also present in patients with sporadic variants (5-year risk: 1%). Those patients should
also receive lifelong follow-up because of long-term tumor recurrence risk (20-year risk:
6.5%), even if this risk is lower compared to patients with hereditary tumors (20-year risk:
38%) [55].

3. Anatomical Imaging Techniques in Initial Diagnosis
3.1. How to Explore an Indeterminate Adrenal Mass?

Although PCCs may be discovered when working up patients with a catecholamine
syndrome and abdominal pain, they can also be incidental [56]. For example, 4% of
incidentally discovered adrenal masses are proven to be a pheochromocytoma [57]. For
adrenal incidentalomas, the European Society of Endocrinology recommends performing a
clinical exam, biological screening, and conventional imaging (noncontrast CT for adults, or
abdominal MRI otherwise). Benign features on noncontrast CT imaging include attenuation
value <10 Hounsfield units (HU), size <4 cm, and homogeneity. If all criteria are met, no
further imaging is required. Otherwise, a contrast-enhanced CT examination or MRI with
chemical shift imaging is necessary [58,59].

3.2. Additional Value of Contrast-Enhanced Computed Tomography Scan

A contrast-enhanced computed tomography scan (CE-CT scan) assesses washout
characteristics of adrenal masses after enhancement by comparing the attenuation values
at specific times and calculating percentages of absolute and relative washouts (Figure 1).
An absolute enhancement washout ≥60% and relative enhancement washout ≥40% are
96–100% specific for adenoma. False positives are rare but have been reported, such as
lipid-rich PCC [60] or renal metastases with increased washout [61].
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Figure 1. Adrenal contrast-enhanced computed tomography scan washout calculation: a noninvasive
option to assess adrenal mass. Computed tomography examination is performed on a 54-year-old
male patient to evaluate an incidental adrenal mass (white arrow) with a nonenhanced attenuation
value (A) greater than 10 UH (27 UH). Absolute and relative washouts based on arterial (B) contrast-
enhanced and 10 min (C) delayed phases are, respectively, 50% and 32%, and do not favor benign
adrenal adenoma. The final diagnosis after surgery was a sporadic nonsecreting pheochromocytoma.

3.3. Additional Value of Magnetic Resonance Imaging with Chemical Shift Imaging

This magnetic resonance imaging (MRI) technique is an alternative to CE-CT scan,
and takes advantage of adenomas’ high lipid content, which induces variations in signal
intensity (SI) out-phase (op) compared to the in-phase (ip). These values are compared
to the spleen’s to calculate the adrenal lesion-to-spleen ratio (ASR) and adrenal signal
intensity index (ASII). ASR is either calculated in publications as (SIop adrenal mass/SIop
spleen)/(SIip adrenal mass/SIip spleen), to assess remaining signal expected to be inferior
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to 0.71 for the diagnosis of adenoma [62], or as [(SIop adrenal mass/SIop spleen)/(SIip
adrenal mass/SIip spleen) − 1], to calculate percentage of signal loss, expected to be inferior
to −35.9% [63] (Figure 2). ASII is an alternative calculated as (SIip adrenal mass − SIop
adrenal mass)/(SIip adrenal mass) × 100 (signal remaining). Diagnosis of adenoma is
achieved when SII is superior to 16.5% (1.5 T) [64].
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Figure 2. Adrenal-to-spleen magnetic resonance signal ratio calculation to assess adrenal mass. A
40-year-old female patient with multiple endocrine neoplasia type 2A syndrome presents with a
left adrenal mass (white arrow) on computed tomography scan (A). Magnetic resonance imaging is
performed, including gadolinium-enhanced sequence (B) and chemical shift sequences ((C) IN unit
signal values in adrenal mass and spleen parenchyma; (D) OUT unit signal values in same spots),
providing an adrenal-to-spleen ratio with remaining signal of 0.96, which is over the benign adenoma
cut-off (0.71). Surgery confirmed pheochromocytoma.

3.4. Pheochromocytomas and Paragangliomas: Variable Morphological Characteristics Using
Anatomical Imaging

CT and MR examinations provide important information on preoperative localization
of a tumor, even if their characterization performance may be limited. PPGLs are reported
to have avid enhancement after contrast agent injection and a slow washout. Around half
of PPGLs are reported to be homogeneous and hypointense in T1-weighted (T1-w) and
markedly hyperintense in T2-weighted (T2-w) MRI sequences compared to spleen and
liver, with a possible “salt and pepper” appearance related to flow voids in tumor vessels.
The rest of the PPGLs are more heterogeneous with mixed areas of high and low signal
intensity, which are possibly cystic or swirl-like areas that correspond to hemorrhage or
necrosis on histopathology (Figure 3). However, enhancement patterns and aggressive
features of other solid tumors (i.e., ill-defined contours, heterogeneity, etc.) did not have
any relationship with potential risk of malignancy [62], even if these were predicted by
radiomics (discussed later).
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Figure 3. Different radiological morphologic presentation of pheochromocytomas. (A) Computed
tomography imaging of a large mainly solid left pheochromocytoma (arrow head) in a 63-year-old
female patient suffering adrenergic syndrome (takotsubo syndrome, drug-resistant hypertension).
(B) Axial, coronal, and sagittal computed tomography scan slides of a high-volume left pheochro-
mocytoma with necrotic center (arrowhead) in a 32-year-old female patient with multiple endocrine
neoplasia type 2 syndrome. (C) Axial and coronal computed tomography scan slides of a large, cystic
right pheochromocytoma (arrowhead) in a 47-year-old male patient.

3.5. Head and Neck Parangangliomas: Specific Concerns

HaN PGLs can occur in several common locations: carotid body 60% (angle of contact
with carotid vessels), vagal nerve (osseous involvement of skull base), jugular bulb, and
tympanic (extension to the middle ear) [65].

Multiparametric MRI and MR angiography is the best initial imaging modality in HaN
soft tissue tumors, with sensitivities and specificities in HaN PGLs, respectively, of 90–95%
and 92–99% [66]. MRI protocol should include axial T1-w sequence without fat suppression,
axial T2-w fast spin-echo, and 3D T1-w contrast-enhanced with fat suppression sequence.
By providing a larger anatomic coverage (from aortic arch to skull base) compared to
conventional MRI sequences, contrast-enhanced MR angiography (CE-MRA) and dynamic
contrast-enhanced (DCE) should also be used if there is clinical evidence of PGL (pulsatile
mass, screening in first degree relatives): HaN PGLs demonstrate early initial avid en-
hancement (arterial tumor blush) distinctive from other cervical benign lesions, and shorter
time to peak followed by washout pattern (type-III curve) [67,68]. Diffusion-weighted
imaging (DWI) is also useful in distinguishing HaN PGLs from other benign tumors, with
a relatively lower apparent diffusion coefficient (ADC) (1.17 to 1.25 × 10−3 mm2/s) [67,69].
Even if DCE (based on capillary perfusion) and ADC (based on cellularity) can be con-
sidered MRI biomarkers, no differences in signal were observed between sporadic and
SDHx-related HaN PGLs [69].

CT scan and CT angiography can also be performed for diagnosis and to delineate
anatomic relations, but compared to MRI, CT is mainly useful in assessing the degree of
bone destruction, especially in the skull base.

Conventional arteriography, historically used for diagnosis and localizing HaN PGLs,
is now reserved for embolization in specific cases [70].



Cancers 2023, 15, 4666 7 of 32

3.6. Specific Concern: How to Manage Asymptomatic SDHx Mutation Carriers?

Early detection of PPGLs in first-degree relatives with inherited genetic mutation is
crucial. During childhood, clinical (blood pressure, symptoms) and biological assessment
(M/NM plasma and 24 h urinary measurements) are performed for initial screening along
with MRI to reduce cumulative radiation exposure (HaN, thorax, abdomen, and pelvis)
rather than molecular imaging computed tomography (which should only be performed in
adults) [71]. In cases of negative initial screening, annual clinical follow-up is recommended,
with biologic follow-up every two years and MRI screening every 2–3 years [71].

4. Molecular Imaging Techniques in Precise Diagnosis and Follow-Up

Several molecular imaging techniques are used to diagnose and follow-up PPGLS
(Table S1 Supplementary Material) with specific diagnostic, prognostic, and theranostic
advantages.

4.1. Metaiodobenzylguanidine: About the Historical Tracer

Metaiodobenzylguanidine (MIBG) is a noradrenalin analogue with similar metabolic
uptake to catecholamines. Its uptake is mediated by norepinephrine transporters, followed
by vesicular storage using monoamine transporters VMAT type 1 and 2. MIBG is either
labelled with 123I or 131I for metabolic imaging. MIBG scintigraphy has long been the gold
standard for molecular imaging of PPGLs (Figure 4). However, it has several limitations
compared to other types of functional imaging, such as poor spatial resolution and sensitiv-
ity for small lesions due to the detection limits of conventional gamma camera imaging,
reduced specificity due to physiologic uptake in normal adrenal glands, risk of medication
interference, and low uptake in malignant PPGLs. MIBG scintigraphy performance is
reportedly good in PCCs and abdominal PPGLs (Se 74–97%) [72], but tends to be poor in
thoracic and HaN PGLs, which are mostly V-MAT1 negative [73–75]. However, the most
important indication and use of 123I-MIBG with single photon emission computed tomogra-
phy (SPECT/CT) remains assessing eligibility for 131I-MIBG therapy. If positron emission
tomography with computed tomography (PET/CT) is not available, then MIBG is the next
best exam for detection of sporadic PCC. MIBG can also be used to diagnose inherited
PCC or multifocal and/or metastatic PGL or to assess PPGL relapse after a surgery, when
anatomical imaging (CT/MRI) is limited (scars, anatomical distortion, artefacts of metallic
clips) or by preference with a positive baseline exam.

4.2. Contributions of Computed Tomography Using Dopamine and Glucose Analogues

Dopamine D2 receptors are membrane norepinephrine transporters predominantly ex-
pressed in sympathetic structures, which have strong avidity for monoamines [76]. Pretreat-
ment with carbidopa has been shown to increase tracer uptake and increase the sensitivity
of PPGLs detection [77] as well as diminishing the physiological background uptake, allow-
ing for a better tumor/background ratio. Two types of dopamine analogues are routinely
used for PPGLs. 18F-Fluorodopamine (FDA) is an analogue of dopamine that uses nore-
pinephrine transporter-mediated cellular uptake. It has excellent performance for detecting
and localizing PCCs in patients with known disease (Se 98%, Spe 100%) [73], metastatic
PPGLs (MPPGLs) [73,78–80], and HaN PGLs, including SDHx-related tumors [81]. FDA is
of little help in cases of nonsecreting PCCs [82].

18F-dihydroxyphenylalanine (18F-DOPA) is structurally similar to the dopamine pre-
cursor L-DOPA and enters neuroendocrine cells through a large amino acid transporter.
Its lack of uptake in normal adrenal glands (contrary to MIBG) allows for good differen-
tiation between a normal adrenal gland and PCC based on their respective standardized
uptake value (SUV) [83]. With sensitivity and specificity greater than 80%, 18F-DOPA is
reportedly more efficient than MIBG scintigraphy [72,73,84] in detecting PPGLs, especially
if combined with CT/MRI [85,86]. This increased efficiency can be used to better detect
biological catecholamine excess, even in patients taking medications that confound M/NM
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testing [87]. Currently, 18F-DOPA use is recommended for nonmetastatic sporadic and
inherited PCCs except SDHx-related (NF1, RET, VHL, and MAX) [88].
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Figure 4. MIBG imaging in pheochromocytomas and paragangliomas. (A,B) 46-year-old male patient
with neurofibromatosis type 1 syndrome and hypertension resistant to medications with a right
adrenal mass (white arrow) on computed tomography scan (A). 123I-MIBG scintigraphy (B) shows
important uptake in the adrenal mass (orange circles). Adrenalectomy confirmed pheochromocy-
toma, and induced resolution of hypertension. (C,D) 49-year-old female patient with Von Hippel
Lindau syndrome is discovered to have bilateral adrenal masses (white arrow heads) on computed
tomography scan (C) with important uptake on 123I-MIBG scintigraphy (orange circles) (D). Surgery
confirmed bilateral pheochromocytomas. (E–G) 39-year-old female patient with history of cervical
paraganglioma, and biological catecholamine excess, is discovered to have a left adrenal mass (white
arrow head) on computed tomography (E), showing significant uptake on 18F-FDG positron emission
tomography with computed tomography (F) and 123I-MIBG scintigraphy (orange circles) (G). Surgery
provides final diagnosis of pheochromocytoma.

In PPGLs, increased glucose uptake is not an exclusive marker of tumoral dediffer-
entiation, as it can also be attributed to a specific genetic defect and/or hypoxic-induced
phenotype (HIF) [89]. For example, in VHL patients (including those with nonmetastatic
disease), the HIF pathway can induce a pseudohypoxic metabolic shift that increases anaer-
obic glycolysis, called the Warburg effect [90]. This is responsible for the high glucose
uptake seen in 18F-FDG PET, which does not correlate with tumor differentiation. The use
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of FDG for inherited PPGLs is reportedly able to differentiate between cluster 1 and cluster
2 PPGLs, with higher uptake in cluster 1 PPGLs [91]. Therefore, 18F-FDG PET has poor
sensitivity for detecting nonmetastatic sporadic PCCs (58%), but appears to be as sensitive
as 18F-DOPA and better than MIBG scintigraphy for detecting MPPGLs (82%) [89,92–94]
(Figure 5). Its sensitivity is also reportedly increased in SDHx- and VHL-related PPGLs (Se
92–99%) [93,95], and better than 18F-DOPA in metastatic SDHB PPGLs [95]. Overall, FDG
with PET/CT may be used for most PPGLs, except perhaps for HaN PGLs; however, if
18F-DOPA or 68Ga-SSTa are available, then these tracers would be a better choice for most
of the indications [88].
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Figure 5. MIBG imaging compared to 18F-FDG PET imaging in two patients with metastatic pheochro-
mocytomas. (A,B) Patient 1. MIBG (A) has a lower sensitivity for bone metastases than 18F-FDG PET
(orange circles). (B–D) Patient 2. MIBG imaging shows (C) less sensitivity for both adrenal mass
(orange arrowhead) and liver metastasis (orange circle) as compared to 18F-FDG PET (D).

4.3. Positron Emission Tomography with Computed Tomography Using Somatostatin Analogues

Somatostatin analogues (SSTas) are small regulatory peptides with a high affinity
for cellular somatostatin receptors (SSRs), which carry out hormonal functions such as
inhibition of growth hormone secretion in the pituitary and gastropancreatic systems,
inhibition of tumor growth, and apoptosis activation. NETs usually have a high density of
SSRs, explaining their avidity for SSTa-derived agents. SSR subtypes commonly expressed
in PPGLs are SSR-1 (90%), SSR-2 (70%), and SSR-3 (80%) [96]. SSTas are medically used
in several ways: bound to a radiotracer for functional imaging or to a radionuclide for
peptide receptor radionuclide therapy (PRRT). A potential therapeutic hormonal option,
already used in gastroenteropancreatic (GEP) NETs, is also being assessed in the LAMPARA
study (NCT03946527) for MPPGLs [97]. Octreotide and Pentetreotide are commonly used
in scintigraphy with single photon emitters (Octreoscan) and reportedly have increased
affinity for SSR-2 compared to MIBG, especially for HaN PGLs (Se97%, Spe82%) [98–103].

Radiometal positron emitting tracers, mainly represented by 68Gallium (68Ga) la-
belled with SSTas, are used for PET-CT imaging. These tracers allow for accurate initial
pretherapeutic staging, early detection of relapse, and treatment candidate assessment
for patients with nonresectable NETs (Figure 6). In SDHB-related and sporadic PPGLs,
68Ga-DOTATATE PET/CT provides a 98.6% lesion-based detection rate, significantly higher
than all other imaging modalities [104–106].
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Figure 6. 68Ga-DOTATOC positron emission tomography with computed tomography in malignant
pheochromocytomas and paragangliomas. Patient with metastatic left cervical paraganglioma
(orange arrow) received 68Ga-DOTATOC positron emission tomography imaging prior to 177Lu-
DOTATATE peptide receptor radiotherapy. Metabolic imaging helps to identify several metastases in
lung (orange circle) and bone (orange arrowhead) to validate the indication for therapy, and provides
a pretherapeutic baseline imaging for later comparison.

Therefore, 68Ga-DOTATATE imaging has become the radiotracer of choice in MPPGLs,
HaN PGLs, and SDHx-related PGLs [88] as it is more accurate and less irradiating for
the patient. However, it currently does require a specialized radiopharmacy unit and an
expensive generator, which limits its widespread availability.

4.4. Current Guidelines for Molecular Imaging in Diagnosis and Staging of PPGLs

Initial molecular imaging aims to confirm the diagnosis, guide potential surgical
resection, assess metastatic staging, and select patients for PRRT by choosing an appropriate
modality based on the clinical context. The European Association of Nuclear Medicine
Practice Guidelines [88] were updated in 2019 with an additional focus dedicated to
molecular imaging and theranostics in NETs in 2021, reaching consensus for the use of
68Ga-DOTA-SSTa PET/CT in staging and restaging of suspected extra-adrenal PPGLs [107].

4.5. Future Perspectives in Metabolic Imaging

With regard to the future of SSTa imaging, 18F-SiFAlinTATE is a new PET radiotracer
developed for NET imaging that appears to be a better alternative to 68Ga-labelled SSTa
because of its lower production cost and longer half-life [108]. However, further studies are
needed to better understand its exact role in PPGLs detection and follow-up.

Despite a lack of internalization, SSTr subtype 2 antagonists (called BASS and JR11)
were reported to provide higher tumor uptake and better tumor-to-liver background
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ratios than agonists. Preliminary results show improved imaging of 68Ga-NODAGA-JR11
PET/CT compared to 68Ga-DOTATOC PET/CT in GEP NETs. Using 177Lutetium (177Lu) as
radiotracer, higher tumor doses on PRRT can be obtained with 177Lu-DOTA-JR11 compared
to 177Lu-DOTATE in metastasized NETs [109].

5. Planning a Surgical Treatment: The Role of Imaging

Surgery is intended to be curative for nonmetastatic tumors. Even though there are no
curative treatments for MPPGLs, therapeutic options also exist for cases of symptomatic
and/or progressive disease, such as palliative surgery, systemic therapeutics, image-guided
treatments, and external or isotope-mediated radiotherapy [110]. As we will discuss,
data are scarce and large clinical trials are lacking specifically for PPGLs, because of the
extremely low prevalence of metastatic cases. Instead, some therapeutics have been tested
on heterogeneous NET cohorts, including those originating from different organs, despite
inherent limitations.

5.1. Reminder on Biopsy and PPGLs

Even if radiologists should not biopsy PPGLs, this may occur in cases of alternative
expected diagnosis. We reiterate that 24 h urinary M/NM measurements are critical
before any biopsy of a lesion in an anatomical location suspicious for PPGL, to prevent
life-threatening outcomes [9].

5.2. Curative Surgical Management: How to Prepare a Surgery?

Accurate preoperative staging, performed with both anatomical and molecular imag-
ing, is crucial to identify anatomical risks, assess extent of disease, and discuss surgical
options [44] (Figure 7).
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patient with neurofibromatosis type 1 syndrome.
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For example, with HaN PGLs, Shamblin surgical classification [111] of carotid body
tumors (CBT) is based on extension to carotid vessels. Preoperative imaging criteria based
on CE-CT scan or MRI, such as tumor volume, angle of contact with arterial structures,
presence or absence of fat plane interface between tumor and arterial adventitia, presence
of peritumoral veins, and distance from skull base, were reported to correlate to Shamblin
group [112,113]. These findings and the detection of anatomical variants help in surgical
planning, predicting resection difficulties, and operative outcomes.

In abdominal PPGLs, the laparoscopic approach is usually first because of its many
advantages: minimally invasive, decreased blood loss and morbidity, and faster recovery.
However, open surgery with laparotomy is still required for large tumors or tumors
closely in contact with major blood vessels (interaortocaval PGL or retrocaval tumor
extension) [114] (Figure 8). After complete resection, the risk of recurrence is estimated
to be 5% over 5 years of follow-up (new tumor 22%, local recurrence 23%, metastatic
recurrence 55%) [115]. To improve the early detection of all types of recurrence, annual
follow-up is recommended after surgery of nonmetastatic PPGL for at least 10 years after
complete resection, or lifelong if there are other high-risk factors (young age, large tumor,
PGL, genetic disease) [116,117].
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Figure 8. Anatomical imaging to prepare curative surgical project with vascular risks. Zuckerkandl
organ paraganglioma (orange circle) in a 44-year-old female patient presenting direct contact with
major blood vessels (aorta: orange arrow and inferior cava vein: orange arrowhead).

5.3. Palliative Surgery: The Debulking Strategy Concept

A cytoreductive surgical approach can be used for MPPGLs, to improve symptoms of
catecholamine excess or resect a mass in a critical anatomical location [118,119]. Palliative
surgery in MPPGLs was reported to significantly improve median OS (148 months versus
36 months), even in patients with nonsecreting tumor [119]. Furthermore, surgery could
enhance the concentration of radionuclides in remaining metastatic sites, reducing tumoral
burden prior to PRRT.

6. Imaging Guided Therapeutic Options

Percutaneous ablation of adrenal tumors, PPGLs, and metastases (mainly in bones and
liver) is a minimally invasive treatment option with short-term efficacy [120,121]. There is
increasing interest around ablative therapies mostly as a palliative treatment due to their
ability to reduce tumor burden and catecholamine excess in MPPGLs [122,123]. For instance,
the early diagnosis and treatment of bone metastases is a therapeutic challenge, as more
than 72% of affected patients will suffer from skeletal-related events (pathological fracture,
severe pain, spinal cord compression) responsible for the loss of independence or a poor
quality of life [38]. Several studies report improvements in metastases-related symptoms,
pain, and prevention of skeletal-related events (SRE) with percutaneous cementoplasty,
osteosynthesis, or thermal ablation [124].
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6.1. Thermal Ablation Techniques for Percutaneous Tumor Destruction

Among various thermoablation techniques currently used [125–127], radiofrequency
ablation (FRA) is a widespread technique [128,129] based on frictional heating, and results
in coagulative necrosis [130]. This procedure is frequently used on local oligometastatic liver
ablations in NETs [131], including MPPGLs, where it reportedly improved hypertensive
symptoms and metastasis-related pain [123,132]. However, based on multidisciplinary
discussion, this technique is reserved for oligometastatic lesions. The expected pattern
of imaging changes on follow-up is a larger lesion on CT scan at 3 to 6 months (safety
margin of ablated tissue), followed by a shrinkage of the remaining RFA-treated area with
a possible remaining scar [131]. Some authors consider necrosis achieved if the lesion has
no significant enhancement (<10 UH) on 6-month follow-up CT [132].

6.2. Transarterial Chemoembolization for Liver Metastases

Several studies have expressed interest in using transarterial chemoembolization
(TACE) on the hepatic lesions of NETs to improve both OS and symptoms [133]. In MPPGLs,
TACE is expected to benefit hypertension, tumor size, and plasma M/NM levels [134–137].
The usual protocol involves use of mitomycin C or epirubicin, with tumor shrinkage expected
in the following months [134].

6.3. Transarterial Embolization with Polyvinyl or Ethylene Vinyl Alcohol (Onyx)

In HaN PGLs, polyvinyl or Onyx embolization are preoperative or palliative options
that reduce blood flow to jugulo-tympanic and vagal PGLs [138], with tumor volume
stability reported to be achievable in 75% of cases at long-term follow-up [139]. For carotid
body PGLs, Onyx embolization reduces blood loss and operative time, although it can
make surgical dissection more difficult [140].

6.4. Percutaneous Ethanol Injection

This imaging-guided technique was reported as an alternative to surgery in benign
PCC by inducing necrosis and reducing tumor size [141]. It is also of interest in treating
metastases [122]. However, there is a clear need for comparative studies and further data
to assess its benefit on OS.

6.5. External Radiotherapy: Local Control and Symptoms Improvement

For HaN PGLs (temporal bone, carotid body, and/or glomus vagal) and intratho-
racic PGLs, radiotherapy (RT) is an alternative to surgery, especially in cases of extensive
spread when tumor resection would present neural and vascular risk. Surgical resection
of jugular and vagal PGLs generates significantly more cranial nerves palsies and major
complications with less tumor control compared to radiotherapy, suggesting that surgery
should be considered only for selected cases [142,143]. In MPPGLs, external beam radiation
therapy (EBRT) is also useful in obtaining local control and improving symptoms [144,145].
Anatomical imaging (especially head and neck MRI) and molecular imaging are crucial
to adapt the radiation field to limit radiation-induced complications (xerostomia, neural
deficits, osteonecrosis), and for post-treatment follow-up. Expected findings on imaging are
growth control (mainly progression control, or reduction in size) and decrease in vascularity
rather than tumor elimination [144].

7. Systemic Therapies: Impact of New Therapeutics in Imaging Management

Several concepts support the use of systemic therapies for PPGLS. These therapies are
intended to have an antiprogression effect (as chemotherapy), a symptomatic effect (by
managing catecholamine excess with metyrosine and other antihypertensive medications),
and pain reduction. Several types of systemic therapies exist for PPGLs [32,117,146].
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7.1. Cytotoxic Therapies

The classic cytotoxic chemotherapies cyclophosphamide, vincristine, and dacarbazine,
known as the CVD-protocol, can be used to treat PPGLS. They tend to decrease cate-
cholamine excess and reduce tumor and lymph node size in 30 to 70% of patients [147–150].
The clinical benefit to overall survival in MPPGLs is unclear, even if research has reported
longer mean survival in responders (3.8 years) compared to nonresponders (1.8 years) [148].
Alternatives to the CVD-protocol are now first-line treatment options, such as temozolo-
mide, which provides a significantly longer progression-free survival (PFS) in SDHB-
mutated MPPGLs compared to other MPPGLs [151]. As with other NETs, assessing treat-
ment response to cytotoxic drugs using anatomic imaging with RECIST is limited by the
slow-growing behavior of PPGLs. Therefore, a decrease in size is rarely achieved in NETs,
even for patients with the best survival rates [151–154]. Radiologists should be aware that
contrast medium injection protocols could interfere with tumor size measurements [152],
thus biasing image interpretation [155]. Since assessing a metabolic response is important
and could be better detected with metabolic imaging, it is likely this imaging modality
could be more suited to therapy monitoring [156].

7.2. Targeted Therapies

Several targeted therapies, such as tyrosine kinase inhibitors (TKI) and interferon
alpha biotherapy [157], are also in use. For instance, sunitinib (TKI group) has become a
first-line option in MPPGLs, inducing decreased tumor size and improvement in hyperten-
sion [158,159], and has recently provided promising results in PFS at 12 months (ongoing
clinical trial FIRSTMAPP) [160]. Interferon alpha has also shown improved disease stabi-
lization [157]. Even if SSTa has a significant effect on hormone levels in GEP NETs [161,162]
with decreased symptoms of flushing and diarrhea, their use in PPGLs is currently not
being investigated. As most targeted agents are cytostatic, there is a need for image-based
criteria to assess tumor response. For example, perfusion CT’s ability to describe the change
in tumor density of hypervascular NETs is of interest [154,163]. This could also apply to
PPGLs since they are hypervascular slow-growing tumors; however, further comparative
studies are needed.

7.3. Immune Checkpoint Inhibitors

The use of immune checkpoint inhibitors (ICIs) for NETS is currently under investiga-
tion in clinical trials. For MPPGLs, pembrolizumab was recently reported to induce a 43%
nonprogression rate and a 75% clinical benefit rate (CBR) at 27 weeks [164]. Due to their
distinct effect on antitumor immunity, there are many well-documented immune-related
phenomena associated with ICIs use. Several new patterns of tumor response and progres-
sion (pseudoprogression, hyperprogression, abscopal effect), as well as adverse events are
widely described in the literature and are important for radiologists to know, because they
can lead to misdiagnoses [165–171]. In fact, detection of immune-related adverse events
(iRAE) in patients treated with ICIs is a crucial challenge for radiologists [172]. They can
occur at any site during patients’ treatment with ICIs, and mainly affect the endocrine
glands (hypophysitis, thyroiditis, hepatitis, pancreatitis), lung and mediastinal lymph
nodes, digestive tract (enterocolitis), and joints (arthralgia).

iRECIST introduces the concepts of immune unconfirmed progressive disease (iUPD),
which states that an increase in the size of a lesion or the appearance of new lesions should
be closely followed-up on by subsequent imaging. If on the next radiological examination
there is no change in the size or appearance of the tumor, then it remains as iUPD. However,
if the size increases, then it is classified as immune confirmed progressive disease (iCPD).
A decrease in size is classified as conclude response (iCR, iPR). Also developed for ICIs,
the iPERCIST (immune PET response criteria in solid tumors) criteria are a modified
classification system that takes into consideration a novel type of tumor response based
on a dual time point, called unconfirmed progressive metabolic disease (UPMD), which
helps to limit false interpretations. If confirmed at a repeat scan 3–4 weeks later, the tumor
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is classified as confirmed progressive metabolic disease (CPMD). In non-small-cell lung
cancer, one-third of UPMDs were later classified as SMD or PMR (stable or partial metabolic
response), thereby using iPERCIST to provide prognostic information [173].

8. Targeted Radionuclide Therapies in Palliative Treatments
8.1. Rationale

These molecular-imaging-based modalities take advantage of the fact that peptide-
linked radiotracers can target membrane-bound receptors. The two main purposes of these
include (1) confirming sufficient radiotracer affinity to the tumor, and (2) binding to the
specific membrane receptor, which allows internalization into the tumor and can emit
radiation that leads to DNA damage and apoptosis. Targeted radionuclide therapies (TRT)
have a low antigenicity, rapid tissue penetration, fast blood clearance, and a relatively easy
and less expensive method of synthesis compared to monoclonal antibodies. They have
become an effective alternative to chemotherapies, with fewer side effects. Their use is
mostly in patients with inoperable or metastatic NETs.

8.2. Iobenguane

Iobenguane or 131I-MIBG is reported to improve symptoms from catecholamine ex-
cess in over 40% of MPPGLs patients and induce a mean progression-free survival of
23.1–28.5 months for common and mild adverse events [174–176]. The expected radiologic
pattern of response is mainly stable disease (SD) or partial response (PR) on CT scan [174],
and a lower MIBG uptake (Figure 9). Therapy with higher delivered doses of 131I-MIBG
has been reported to have higher 5-year OS, but should be reserved for selected patients
because of increased adverse events (pulmonary toxicity, myelosuppression, myelodyspla-
sia, leukemia) [177]. Currently this tracer’s variable regional, national, and international
availability poses a problem for its widespread access. Recently, the FDA has approved the
novel high-specificity-activity (HDSA)-131I-MIBG therapy, which looks very promising but
is not yet available in most countries. More randomized studies could establish its place in
therapeutic management [175].

8.3. Peptide Receptor Radiotherapy

The key concept behind this therapeutic approach is that a radionuclide can bind a
peptide that specifically targets a cellular receptor [178–180]. Specific data in patients with
PPGLs are scarce, but an ongoing clinical trial is assessing peptide receptor radiotherapy
(PRRT) in inoperable PPGL, with results expected in 2023 (NCT03206060). 90Yttrium in
90Y-DOTATOC is also reportedly effective on response rate (morphological response in
10–40% of patients [181]), survival time, and symptomatic response in NETs, with limited
adverse events [182,183]. 177Lu-DOTATATE, considered a third-generation SSR-PRRT, has
the advantage of increased affinity for octreotate compared to octreotide on SSR-positive
tissues, allowing longer tumor residence [184] for a higher tumor-absorbed dose and
promising results in PFS for GEP-NETs [185]. As compared to 90Y, the main advantage of
177Lu is that it is not a pure beta-emitter, it also emits low-energy gamma rays, allowing for
post-therapy SPECT imaging and dosimetry. The NETTER-1 trial is also worth mentioning
here, even though it was performed in midgut NETs, because it is a randomized phase III
clinical study offering high-level evidence of efficacy with 177Lu-DOTATATE on PFS and
response rate [186]. In HaN PGLs, 177Lu-DOTATATE was also reported to be an adequate
alternative for achieving PR or SD in cases where surgery or radiation were contraindicated
due to local neurovascular structures [187]. With regard to NETs, a specific threshold of
intensity of uptake with 68Ga-SSTa has not been validated. A practical approach is mostly
used, applying the four-point scale of Rotterdam initially developed for the octreoscan with
at least an uptake equal to or higher than physiological liver uptake for PRRT eligibility.
Given the choice between both tracers, it will very likely depend on a pragmatic approach
based on the imaging results of MIBG and the SSA radiotracer, with priority given to
the agent with the highest uptake. Equivocal factors can be considered, like the toxicity
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profile, the risk factors, and, of course, the more practical aspects related to availability,
reimbursement, insurance, and experience [188].

Cancers 2023, 15, x FOR PEER REVIEW 16 of 33 
 

 

 
Figure 9. Metabolic imaging for local and systemic extension. Patient treated for a large left pheo-
chromocytoma by surgery is diagnosed nine years later with a local relapse on computed tomogra-
phy scan (A). MIBG imaging confirms local relapse (B) (orange arrow), but also subcutaneous and 
peritoneal metastases (orange circles). Debulking strategy would be too aggressive, so 131I-MIBG 
therapy is proposed. Post-therapy MIBG scintigraphy (D) shows a reduced size of the mass and 
peritoneal implants, and lower MIBG uptake compared to pretherapeutic MIBG scintigraphy (C). 

8.3. Peptide Receptor Radiotherapy  
The key concept behind this therapeutic approach is that a radionuclide can bind a 

peptide that specifically targets a cellular receptor [178–180]. Specific data in patients with 
PPGLs are scarce, but an ongoing clinical trial is assessing peptide receptor radiotherapy 
(PRRT) in inoperable PPGL, with results expected in 2023 (NCT03206060). 90Yttrium in 
90Y-DOTATOC is also reportedly effective on response rate (morphological response in 
10–40% of patients [181]), survival time, and symptomatic response in NETs, with limited 
adverse events [182,183]. 177Lu-DOTATATE, considered a third-generation SSR-PRRT, 
has the advantage of increased affinity for octreotate compared to octreotide on SSR-pos-
itive tissues, allowing longer tumor residence [184] for a higher tumor-absorbed dose and 
promising results in PFS for GEP-NETs [185]. As compared to 90Y, the main advantage of 
177Lu is that it is not a pure beta-emitter, it also emits low-energy gamma rays, allowing 
for post-therapy SPECT imaging and dosimetry. The NETTER-1 trial is also worth men-
tioning here, even though it was performed in midgut NETs, because it is a randomized 
phase III clinical study offering high-level evidence of efficacy with 177Lu-DOTATATE on 
PFS and response rate [186]. In HaN PGLs, 177Lu-DOTATATE was also reported to be an 
adequate alternative for achieving PR or SD in cases where surgery or radiation were con-
traindicated due to local neurovascular structures [187]. With regard to NETs, a specific 
threshold of intensity of uptake with 68Ga-SSTa has not been validated. A practical ap-
proach is mostly used, applying the four-point scale of Rotterdam initially developed for 

Figure 9. Metabolic imaging for local and systemic extension. Patient treated for a large left pheochro-
mocytoma by surgery is diagnosed nine years later with a local relapse on computed tomography
scan (A). MIBG imaging confirms local relapse (B) (orange arrow), but also subcutaneous and peri-
toneal metastases (orange circles). Debulking strategy would be too aggressive, so 131I-MIBG therapy
is proposed. Post-therapy MIBG scintigraphy (D) shows a reduced size of the mass and peritoneal
implants, and lower MIBG uptake compared to pretherapeutic MIBG scintigraphy (C).

9. Tumor Response Management: New Concepts and Pitfalls

MPPGLs are slow-growing and heterogeneous, which has important implications for
diagnosis and management.

First, baseline imaging is crucial in assessing disease extent, planning treatment, and
guiding further management in order to reduce long-term treatment side effects. Second,
RECIST 1.1 does not accurately assess early tumor response, and a more precise and
reliable set of guidelines is needed [189]. One potential alternative, computer science,
uses semiautomated measurements such as advanced segmentation, and can provide
quantitative analysis by recognizing and delineating a lesion, which provides an estimate of
tumor volume or can calculate tumor burden. Third, performing several imaging modalities
(by combining anatomical and molecular imaging) on a heterogeneous tumor can be useful
for follow-up. Fourth, if a new, highly sensitive imaging modality (i.e., new PET tracers)
that was not used at baseline shows new lesions, they should be considered "new baseline
lesions" for this imaging modality instead of disease progression. Finally, considering
that these tumors are slow-growing and most of their treatments are “noncytoreductive”,
disease nadir and baseline tumor burden should be incorporated into management.
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9.1. RECIST 1.1 Limitations

These quantitative size-based radiological criteria are used for therapy response assess-
ment with standardized choice and target lesions quantification [190]. Several situations
can lead to nonreproducible measures, including irregular lesions with complex shapes,
bone lesions, fibrosis or necrotic lesions with unprecise limits, variability of behavior of
lesions for a same patient, arbitrary selection of target lesion leading to imprecise thera-
peutic response evaluation, and slow-growing tumor. Additionally, some new classes of
treatment provide mechanisms and patterns of response that are not size-assessable. For
example, ICIs can induce an effective but delayed response, or behave like a progressive
lesion because of an initial immune-mediated flare in size. Antiangiogenic agents can also
induce hemorrhage, necrosis, and myxoid degeneration, with a possible early transitory
increase in size [191].

9.2. Molecular Imaging Reporting and Data System: The SSTR-RADS

SSTR-targeted radiotracers allow specific imaging of SSTR-avid structures with some
limitations (normal organs uptake, urinary excretion, inflammatory diseases, etc.) that
should be known by radiologists [179]. SSTR-RADS is the first PET classification system
based on tumor uptake, and it uses a reliable five-point scale that can assess treatment
response and identify ideal candidates for PRRT from poor responders [192,193]. This is
a promising system that, however, needs validation in large prospective studies, as other
response criteria, such as positron emission tomography response criteria in solid tumors
(PERCIST) and European organization for research and treatment of cancer (EORTC)
criteria, are currently only validated for response assessment with 18F-FDG PET/CT.

10. Current and Future Perspectives in the Era of Artificial Intelligence

As the aim of this review is to propose a pedagogical content, we truly believe that
an extensive knowledge of genetic background, screening strategies, diagnostic tools, and
treatment options has to be treated in this review, even if not recent. Moreover, many centers
do not have access to radiotracers, and still have to manage those patients with alternative
imaging techniques. For these reasons, we explain in this review that a key concept for arti-
ficial intelligence is to collect good-quality data, i.e., complete, highly informative imaging.
This point is, from our point of view, crucial, needing a perfect knowledge of these tumors
and their complete management. As with other NETs, PPGLs are highly heterogeneous
neoplasms, with many variations at the genetic, cellular, molecular, functional, clinical, and
histopathological levels.

In order to create more tailored treatments, these different variables need to be under-
stood as a global interrelated system. The fact that there is such genetic and phenotypic
heterogeneity suggests that there is potential to develop personalized treatments. For
example, predictive biomarkers could be used to identify patients most likely to respond to
treatment, assess the effectiveness of PRRT in MPPGLs for protocol adjustment, or help
choose alternative/combined treatments with optimal cost/benefit [194,195].

10.1. Imaging, Radiomics, and Biomarkers as Predictors of Tumor Type and Progression

Recently, several dedicated mathematical models have been developed to improve
the characterization of undetermined adrenal mass, for example, to differentiate adreno-
cortical adenoma from carcinoma [196]. An other predictive calculation model based on
imaging characteristics on unenhanced CT, such as sharp-edged necrosis, unsharp necrosis,
ring sign, and spherical shape, also had good specificity and sensitivity (80%/95%) for
diagnosing PCCs [197]. Machine-learning-based quantitative texture analysis (QTA) could
also differentiate subclinical PCCs from lipid-poor adenomas [198,199] or be a useful tool
to early identify malignant PPCs subtypes from CE-CT scans [200]. Several anatomical
biomarkers have also been proposed to improve tumor monitoring, and others are still
being validated (Table S3, Supplementary Material) [201].
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Volume assessments for early detection of change also provide better interoperator
agreement compared to measuring the long tumor diameter according to RECIST, which
leads to better detection of early partial responders versus progressive disease [202]. Tu-
mor growth rate (TGR) in GEP-NETs was reportedly an early predictor of PFS [203,204]
because it revealed a large proportion of patients with active tumor growth despite classi-
fication as SD according to RECIST 1.0. This was especially true during early treatment
response evaluation.

SPECT and PET metabolic biomarkers mainly assess tumor burden based on vol-
umetric lesion segmentation, and also provide several parameters of prognostic value
such as SUV mean, SUV max, metabolic tumor volume (MTV), and total metabolic tumor
volume (TMTV). These are easily extracted biomarkers obtained using traditional visu-
alization software, reportedly associated with overall survival (OS), PFS, and response
prediction [205].

At the voxel level, textural features (TFs) such as entropy, homogeneity, and intensity
variation have been proven to correlate with tumor aggressiveness. They are also of interest
for risk stratification in NETs. In GEP-NET patients undergoing pretreatment, SSTR-PET
CT, entropy, and intensity may predict OS [206], and repeated SSTa PET/CT may also be
used for therapy monitoring for early prediction of response [207].

10.2. Metabolomics

Metabolomics, or metabolite profiling, is the comprehensive analysis of small-molecule
metabolites to assess phenotypic and genetic characteristics of a lesion. It links molecular
genetics concepts to imaging. Several new markers are described in the literature. Magnetic
resonance spectroscopy (MRS) for in vivo metabolomics is a highly promising field. For
instance, 1H-MRS SUCCES (SUCCinate Estimation by Spectroscopy) detects succinate
concentrations to noninvasively measure mutations in the biomarker SDHx. Succinate
concentration can be increased up to 100 times compared to non-SDHx-mutated PGLs,
which allows for detection of in vivo SDH deficiency in most PPGL patients. This technique
has limitations for those with a small tumor, hemorrhagic or necrotic spots, or respiratory
motion on imaging, and because there is no widespread availability or experience for this
technique. This modality could allow for early detection of SDH deficiency in routine
clinical practice, quicker than genetic tests, with a positive impact on management and
clinical outcomes. It could prompt a search for tumor SDHx mutations in cases of negative
germline genotyping with a positive succinate peak and detect them before surgery or
confirm a suspicious lesion as metastatic. Furthermore, in the setting of a suspected SDHx
mutation, a known predisposition to other tumors such as GIST could optimize CT/MRI
imaging analysis [208–211].

10.3. Genomic and Methylomic

At the genome scale, DNA methylation is a major method of regulating gene tran-
scription and phenotype expression. Hypermethylation in promoted gene regions can
induce gene silencing, with possible pro-oncogenic shift of regulation pathways. Recent
findings indicate that methylome remodeling caused by SDHx mutations results in major
transcriptional abnormalities with significant impact on epigenetics features. This makes
methylome and transcriptome new biomarkers of interest directly linked to phenotypic
features such as metastatic or recurrence and various survival rates depending on methyla-
tion clusters [212]. In NETs, for example, the NETest is a 51-multigene assay performed by
four different prediction algorithms based on PCR analysis of a peripheral blood sample of
specific NET circulating transcripts. This reflects real-time tumor activity and is reportedly
of predictive value since it was associated with response type to SSA-PRRT [213] or diagnos-
ing progression of disease one year earlier than image-based evidence [214]. Preliminary
studies have shown a high accuracy of this test for PPGLs. However, this test is expensive,
the exact mechanism is not known, it is not reimbursed, and it needs to be validated in
prospective randomized studies [215,216]. In PPGLs, specifically, integrated bioinformatics
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analysis based on microarrays identified in PCCs has also found disease-causing genes
of diagnostic, prognostic, and therapeutic value (good prognosis for KCNH2, KCNQ2,
KCNQ1; poor prognosis for SCN2A) [217,218].

MiRNAs physiologically regulate gene expression by targeting mRNAs to induce their
degradation and/or repression. In PPGLs, miRNome datasets identified alterations and
miRNA signatures of prognostic value. Six miRNAs (miR-21-3p, miR-183-5p, miR-182-5p,
miR-96-5p, miR-551b-3p, and miR-202-5p) were predictive of shorter time to progression
and were associated with metastatic risk in PPGLs [219].

11. Conclusions

Pheochromocytomas and paragangliomas are rare neural-crest-derived tumors with
variable prognosis. This comprehensive analysis of recent imaging modalities and ter-
minology is crucial to understand the current step-by-step approach from diagnosis to
treatment of these tumors (Figure A1). The main aim of this nonsystematic pedagogical
review of the literature is to familiarize physicians with all the aspects of these tumors.
A tumor’s genetic and inherent phenotypic background has a major impact on several
aspects of the disease, such as functional status, metastatic potential, and risk of recurrence.
Tailored diagnostic and treatment strategies including surgery, image-guided procedures,
chemotherapies, immunotherapies, and radionuclide therapies require specific medical
imaging modality-based approaches (Figure A2). Metabolic imaging management and
modalities, with specific imaging reporting systems, have improved follow-up and selection
of therapeutic options.

However, several challenges remain, such as clinical relevance of imaging biomarkers
and artificial intelligence value to identify new parameters. Further multicentric studies are
needed, as well as data aggregation, to improve overall patient management. To this end,
considering all these aspects is crucial in order to achieve high-quality patient management
and good-quality data to apply artificial intelligence at a large scale.
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ASII adrenal signal intensity index
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CgA plasma chromogranin A
CSI chemical shift imaging
DCE dynamic contrast enhanced
DOPA dihydroxyphenylalanine
DOTATOC DOTA0-Phe1-Tyr3 octreotide
DWI diffusion-weighted imaging
ECL enterochromaffin-like
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18F-FDG 18Fluoro-Fluorodeoxyglucose
68Ga 68Gallium
GEP gastroenteropancreatic
GLP-1 Glucagon-like peptide 1
HaN PGL head and neck paraganglioma
IACIG intra-arterial injection of calcium
Ifα Interferon α

IOUS intra operative ultrasound examination
177Lu 177Lutetium
MEN2A multiple endocrine neoplasia type 2
M/NM metanephrine/normetanephrine
MRI magnetic resonance imaging
NANETS North American Neuroendocrine Tumor Society
NETs neuroendocrine tumors
NF1 neurofibromatosis type 1
OS overall survival
PCC pheochromocytoma
PD-L1 Programmed death-ligand 1
PET positron emission tomography
PERCIST PET Response Criteria in Solid Tumors
PFS progression-free survival
pNET pancreatic neuroendocrine tumor
PPGLs pheochromocytomas and paragangliomas, if metastatic: MPPGLS
PR partial response
PRRT peptide receptor radionuclide therapy
RECIST Response Evaluation Criteria in Solid Tumors
SD stable disease
SDHx Succinate DeHydrogenase genetic alterations
SPECT single photon emission computed tomography
SSA somatostatin analogs
SSTR somatostatin receptor
SSTR-PET somatostatin receptor PET
SSTR scintigraphy somatostatin receptor scintigraphy
SUV standardized uptake value
T1-w or T2-w T1-weighted or T2-weighted (MRI sequence)
TACE transarterial chemo-embolization
TAE transarterial embolization
US ultrasound examination
WHO World Health Organization
90Y 90Yttrium
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