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Simple Summary: The MET gene encodes a receptor critical for cell growth and repair. It plays
diverse roles in processes like organ development, wound healing, and blood vessel formation.
Genetic alterations in MET contribute to cancer progression, enabling tumor spread and resistance to
treatment. Scientists are studying how to target MET to treat cancer. Despite progress, the complexity
of MET’s functions in cancer challenges our understanding. This review explores recent discoveries
about MET in cancer, its effects, potential therapies, and future directions.

Abstract: The MET proto-oncogene encodes a pivotal tyrosine kinase receptor, binding the hepatocyte
growth factor (HGF, also known as scatter factor, SF) and governing essential biological processes
such as organogenesis, tissue repair, and angiogenesis. The pleiotropic physiological functions of
MET explain its diverse role in cancer progression in a broad range of tumors; genetic/epigenetic
alterations of MET drive tumor cell dissemination, metastasis, and acquired resistance to conventional
and targeted therapies. Therefore, targeting MET emerged as a promising strategy, and many efforts
were devoted to identifying the optimal way of hampering MET signaling. Despite encouraging
results, however, the complexity of MET’s functions in oncogenesis yields intriguing observations,
fostering a humbler stance on our comprehension. This review explores recent discoveries concerning
MET alterations in cancer, elucidating their biological repercussions, discussing therapeutic avenues,
and outlining future directions. By contextualizing the research question and articulating the study’s
purpose, this work navigates MET biology’s intricacies in cancer, offering a comprehensive perspective.

Keywords: MET alterations; cancer progression; invasive growth; therapeutic targeting

1. Introduction

The human MET protooncogene encodes the tyrosine kinase receptor for the hepa-
tocyte growth factor/scatter factor (HGF/SF) [1–3]. It is expressed in a broad range of
epithelial cells, and the resulting receptor is a 170 kDa transmembrane protein organized in
two disulfide bond-linked α and β subunits of, respectively, 50 kDa and 145 kDa [4,5]. The
ligand, SF, is produced and secreted in physiologic conditions by mesenchymal cells close
to MET-expressing epithelial cells [6,7]. This paracrine effect leads to MET activation by au-
tophosphorylation of the cytoplasmic catalytic domain and recruitment of adaptor proteins,
promoting signal transduction. The mitogen-activated protein kinase (MAPK) pathway,
Phosphoinositide 3-kinase/Protein kinase B (PI3K/AKT) signaling, and Signal Transducer
and Activator of Transcription 3 (STAT3) constitute the primary signal transducers [8–10].
MET plays an essential role during embryogenesis (e.g., epithelial to mesenchymal transi-
tion, organ development) and the postnatal period (e.g., angiogenesis, organ regeneration,
and wound healing, as reviewed in [11]).

The broad range of critical biological responses induced by MET awards this oncogene
as a crucial oncogene in tumor progression, enabling cancer cells to survive and escape the
hostile primary tumor microenvironment and form distal metastases [12]. MET is altered
in multiple cancer types and behaves as a pivotal regulator of invasive growth, a complex
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and intertwined sequence of events including epithelial-to-mesenchymal transition (EMT),
scattering, migration, and growth [3,13–17]. Tumor cells harboring such alterations become
‘addicted’ to MET (described in [3]), therefore instituting a tumor cell-specific vulnerability
point and justifying targeted therapies. Accordingly, MET inhibition reduces tumor size
and impedes metastases in rodent models [12,18,19]. Recently, MET has been suggested as
one of the top five proteins to focus on in targeted cancer therapies [20].

However, it should be noted that the path to efficient MET-targeted therapy for patients
is long and covered with complications. Despite the presumed ‘addiction’ to MET, many
patients do not respond to therapy [12,21–23]. Moreover, acquired resistance to MET
inhibitors might arise [24–27].

This review reminds the overall structure of MET and summarizes the observed MET
alterations in cancer, their impact on invasive growth, and their therapeutic potential. The
lessons from the disappointing results of targeted therapies will be investigated to propose
more accurate strategies to extend disease-free survival time.

2. Structure and Function of the MET Kinase

MET is the receptor tyrosine kinase (RTK) for SF. The translated precursor protein
of 175kDa matures through proteolytic cleavage by FURIN protease in the Golgi appa-
ratus (Figure 1, left panel and [28]). The mature protein forms a heterodimer of an ex-
tracellular α subunit (50 kDa) linked via disulfide bonds to the 145 kDa transmembrane
β subunit. The extracellular portion of the β chain comprises a semaphorin (SEMA) domain,
a Plexin–Semaphorin–Integrin (PSI) homology domain, and four immunoglobulin-like
IPT domains [29,30]. SEMA and IPT domains are crucial for ligand binding and receptor
dimerization, while the PSI domain is essential for the proper maturation of the receptor
through its recently described disulfide isomerase activity [31]. The intracellular part of
MET is composed of a short juxtamembrane domain (JM), followed by the catalytic site
and the docking site for signal transducers.
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Figure 1. Biosynthesis (left, blue box) and degradation (right, pink box) of MET. ER: Endoplasmic
reticulum; SEMA: semaphorin domain; PSI: plexin–semaphoring–integrin homology domain; IPT:
immunoglobulin-like domain; JM: juxtamembrane domain; CS: catalytic site; DS: docking site.
Created with BioRender.com (accessed on 5 August 2023).

Upon SF binding, the catalytic domain of MET becomes auto-phosphorylated on Tyrosine
1234 and Tyrosine 1235 [32]. The activation of the catalytic site triggers the phosphorylation
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of two tyrosine on the docking site (Y1349 and Y1356), priming the interaction with Src
homology 2 (SH2) domain-containing proteins [10,33,34]. The MET docking site is mul-
tifunctional; Y1349 phosphorylation leads to the activation of the PI3K/AKT pathway
(migration/survival) while Y1356 phosphorylation activates the RAS/MAPK pathway
(proliferation/cell cycle progression) [8,10]. The STAT3 transcription factor is also acti-
vated by MET [9]. Like other RTKs, MET transmits the information from the extracellular
space to the cytoplasm, generating a multilayered network that activates various biological
processes, including migration, growth, and differentiation/stemness (Figure 2 and [35]).
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Figure 2. SF-dependent MET activation. Upon ligand binding (HGF/SF), MET heterodimer forms a
tetramer [5]. The extracellular signal is transmitted into the cytoplasm, leading to the recruitment of
adaptor proteins (GRB2 for MAPK pathway and p85/p110 for AKT) and signal transduction. Created
with BioRender.com (accessed on 5 August 2023).

SF/MET interaction induces the phosphorylation of Y1003 within the juxtamembrane
domain, allowing the recruitment of the E3 ubiquitin ligase casitas B-lineage lymphoma
(CBL), promoting MET monoubiquitylation [36], receptor internalization and lysosomal
degradation (Figure 1, right panel and [37]). Accordingly, experimental evidence has shown
that Y1003F mutation stabilizes the receptor [38]. The juxtamembrane domain is therefore
accepted as a negative regulator of the MET/SF axis [36,39–42].

Proteomics-based studies have been invaluable in understanding conventional RTKs
like EGFR, where signaling typically shows rapid activation and deactivation in response
to ligand binding [43]. In contrast, MET diverges from this pattern, making it an ‘uncon-
ventional RTK’. Unlike conventional RTKs, which generally experience transient phospho-
rylation followed by rapid deactivation, MET activation remains persistent after ligand
binding [44]. In the broader context of RTK signaling, conventional RTKs often follow a
swift sequence of activation events involving various cellular components such as MAPK,
adaptor proteins, and guanine nucleotide exchange factors [45]. This unique activation pro-
file of MET opens new avenues for future research, particularly to explore the implications
of its long-lasting response in both physiology and tumor biology [17].

3. MET Alterations in Tumors and Their Biological Significance

Recent advances in next-generation sequencing technologies allowed a significant
reduction in their cost, ultimately leading to an inflation of publicly available ‘OMICS’
data. Additionally, improvements in the standardization of data curation, analyses, and
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presentation offered researchers an unprecedented quantity of comprehensive information
regarding genetic alterations during cancer onset and progression. In line with this, we
developed an auto-updatable ‘MET observatory’ to catalogue genetic alterations of the
MET gene in cancer. Here, we present some of the features of this observatory; notably, the
catalog of alterations results from data collection from The Cancer Genome Atlas (TCGA),
Catalogue of Somatic Mutations in Cancer (COSMIC), and ClinVar datasets.

4. MET Amplification

An oncogene can be defined as an entity that can transform cells by conferring some
attributes of a cancer cell. MET is an excellent example of an oncogene because of its critical
involvement in cell migration, metastasis, and cell survival. Unsurprisingly, MET is altered
in many cancers, including but not limited to non-small cell lung cancer (NSCLC), lung
squamous carcinoma, gastric cancer, colorectal adenocarcinoma, melanoma, gliomas, and
renal cancer [46–51]. One of the most frequently observed molecular aberrations involving
MET is gene amplification, exhibiting a prevalence rate of approximately 4% across various
tumor types, as illustrated in Figure 3A and corroborated by multiple studies [52–57].
Notably, the incidence of MET amplification surges to nearly 20% in kidney papillary cell
carcinomas (KIRP), a data point presented in Figure 3B. Moreover, MET amplification has
been shown to confer resistance to therapies targeting the epidermal growth factor receptor
(EGFR) in malignancies such as NSCLC and colorectal cancer, underlining its role in both
cell survival and acquired resistance to EGFR-targeting therapies [56,58,59].

While interpreting these findings, it is crucial to place MET amplification in the broader
context of common chromosomal aberrations in cancer, such as cellular aneuploidy. Specif-
ically, the trisomy of chromosome 7 is often observed across multiple cancer types and
serves as a pan-cancer genetic marker [60–62]. This trisomy could confound the assessment
of MET amplification because both are related, but have distinct genomic alterations affect-
ing cellular phenotype and treatment response. Unlike chromosome 7 trisomy, which is not
a primary cancer driver, MET amplification acts as a driver and represents a true biological
selection [3]. In vitro and preclinical studies suggest that a ‘threshold’ of five copies of the
MET gene drives addiction, thus justifying targeted therapies [63]. Although no clinical
consensus exists for such a cut-off, it is critical for effective patient stratification in MET-
targeted therapies. Fluorescence in situ hybridization (FISH) techniques can distinguish
between chromosome 7 polysomy and true MET amplification. In the case of polysomy,
the MET-to-centromere of the chromosome 7 ratio (MET/CEN7) remains constant, whereas
it increases for biologically selected true MET amplification, identifying a patient subgroup
that could benefit from targeted therapies. Current advances in next-generation sequencing
(NGS) techniques can also offer invaluable information for better patient stratification.
Indeed, recent studies have demonstrated the efficiency of MET inhibition when patients
were classified using either the MET/CEN7 ratio or NGS-based detection of the MET copy
number, as shown in Table 1 and supported by studies [64,65].
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Figure 3. The MET Observatory. (A) Copy number variation (CNV) in human tumors (TCGA pan
cancer atlas). Dashed lines correspond to a copy lumber variation equal to 2 in absolute values. (B) MET
CNV across tumor types. The dashed line corresponds to the average percentage of CNV in all types of
cancer using TCGA abbreviations: ACC (Adrenocortical carcinoma), BLCA (Bladder Urothelial Carci-
noma), BRCA (Breast invasive carcinoma), CESC (Cervical squamous cell carcinoma and endocervical
adenocarcinoma), CHOL (Cholangiocarcinoma), COAD (Colon adenocarcinoma), DLBC (Lymphoid
Neoplasm Diffuse Large B-cell Lymphoma), ESCA (Esophageal carcinoma), GBM (Glioblastoma mul-
tiforme), HNSC (Head and Neck squamous cell carcinoma), KICH (Kidney Chromophobe), KIRC
(Kidney renal clear cell carcinoma), KIRP (Kidney renal papillary cell carcinoma), LAML (Acute Myeloid
Leukemia), LGG (Brain Lower Grade Glioma), LIHC (Liver hepatocellular carcinoma), LUAD (Lung
adenocarcinoma), LUSC (Lung squamous cell carcinoma), MESO (Mesothelioma), OV (Ovarian serous
cystadenocarcinoma), PAAD (Pancreatic adenocarcinoma), PCPG (Pheochromocytoma and Paragan-
glioma), PRAD (Prostate adenocarcinoma), READ (Rectum adenocarcinoma), SARC (Sarcoma), SKCM
(Skin Cutaneous Melanoma), STAD (Stomach adenocarcinoma), TGCT (Testicular Germ Cell Tumors),
THCA (Thyroid carcinoma), THYM (Thymoma), UCEC (Uterine Corpus Endometrial Carcinoma),
UCS (Uterine Carcinosarcoma), UVM (Uveal Melanoma). (C) MET mutations in the protein-coding
region and distribution over the MET protein domains. (D) Comparison between the incidence of MET
amplification, mutations, and overexpression. (E) B-value of CpG methylation of the MET promoter
using the cg22116492 probe in cancer and in non-tumoral tissues. (F) Percentage of mutations affecting
protein-coding and regulatory regions of MET mRNA (ClinVar).
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Table 1. * As described in August 2022 in clinicaltrials.gov. Early phase I: exploratory trials before
phase I. NA: trials without FDA-defined phases. ** Advanced cancers of various origins; ADCC:
antibody-dependent cell-mediated cytotoxicity; AML: acute myeloid lymphoma; HCC: hepatocellular
carcinoma; NSCLC: non-small cell lung cancer; PRCC: papillary renal cell carcinoma; SCLC: small
cell lung cancer.

Drug Number of
Trials (Phase) * Cancer Types Principal Outcome Notes

Multitarget tyrosine kinase inhibitors

PF02341066 (Crizotinib) 51 (early I/I); 62 (II); 18 (III);
5 (IV); 7 (NA)

Breast cancer, renal clear cell
cancer, glioblastoma,
inflammatory myofibroblastic
tumors, lymphoma, papillary
renal cancers, MET+ gastric
adenocarcinoma, MET+ or
RON+ metastatic urothelial
cancer and NSCLC

Substantial antitumor activity in
patients with MET amplification
and/or MET∆14 [66–68].
Crizotinib overcomes resistance
to selpercatinib in RET-fusion
positive NSCLC patients [69].

• Targets: MET, ROS1, and
ALK

• Approved for treating
NSCLC with EML4–ALK
in 2011 and NSCLC with
CD74–ROS1 in 2016 [67].

XL184 (Cabozantinib) 54 (early I/I); 157 (II);
19 (III); 2 (IV); 7 (NA)

Breast cancer, glioblastoma,
HCC, kidney cancer,
medullary thyroid cancer,
melanoma, NSCLC, ovarian
cancer, and prostate cancer

Cabozantinib significantly
improved progression-free
survival in patients with
metastatic PRCC and melanoma
[70,71]. Complete response was
reported in one patient with
MET∆14 [72].

• Targets: MET, RET, and
others.

• Approved for the
treatment of medullary
thyroid cancer [73].

GSK1363089 (Foretinib) 6 (early I/I); 7 (II)

Mixed cancer, breast cancer,
gastric cancer, head and neck
cancer, liver cancer, NSCLC,
and PRCC

No activity in unselected
patients [74]. Targets: MET, RET, and others.

MGCD265 (Glesatinib) 4 (early I/I); 2 (II) Mixed cancer and NSCLC

Results are pending. The safety
profile is acceptable in
non-genetically selected
patients with advanced solid
tumors [75].

Targets: MET and AXL

MP470 (Amuvatinib) 2 (early I/I); 1 (II); 1 (NA)
Mixed cancer, gastric cancer,
glioblastoma, pancreatic
cancer, and SCLC

Results are pending. Targets: MET, RET, FLT3, and
PDGFRA

E7050 (Golvatinib) 8 (early I/I)
Mixed cancer, gastric cancer,
head and neck cancer, and
HCC

Results are pending. Targets: MET and VEGFR2

Specific MET inhibitors (small molecules)

ARQ197 (Tivantinib) 25 (early I/I); 21 (II); 4 (III)

Mixed cancer **, colorectal
cancer, HCC, liver cancer,
mesothelioma, NSCLC, SCLC,
and stomach cancer

Tivantinib treatment did not
demonstrate efficacy in a Phase
III trial for HCC patients with
high MET levels (based on
staining intensity) [76].

Specificity to MET is
controversial [77,78].

INCB28060 (Capmatinib) 18 (early I/I); 27 (II); 3 (III);
1 (IV)

Mixed cancer, colorectal
cancer, glioblastoma, head
and neck cancer, HCC,
NSCLC, and PRCC

Capmatinib showed substantial
antitumor activity in patients
with MET amplification or
MET∆14 [79–81]. Capmatinib
induces potentially similar
resistance mechanisms as
Crizotinib [82] but is a
promising option in
MET-amplified,
EGFR-inhibitor-resistant tumors
[80].

Approved to treat adult patients
with metastatic NSCLC with
MET∆14 [83].

AZD6094 (Savolitinib or
Volitinib) 7 (early I/I); 8 (II); 3 (III)

Mixed cancer, colorectal
cancer, gastric cancer, NSCLC,
kidney cancer, and PRCC

Encouraging results in
EGFR-mutated, MET-amplified
tumors [64,65].

NA

AMG337 3 (early I/I); 5 (II)
Mixed cancer, renal clear cell
cancer, esophageal cancer,
and stomach cancer

Results are pending. NA

MSC2156119J (Tepotinib) 5 (early I/I); 5 (II) Mixed cancer, lung cancer,
and NSCLC

Partial response in NSCLC
patients with MET∆14 [84].
Promising results in patients
with MET amplification [85,86].

NA

OMO-1 (JNJ-38877618) 1 (early I/I) Mixed cancer, lung cancer,
and NSCLC Results are pending. NA
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Table 1. Cont.

Drug Number of
Trials (Phase) * Cancer Types Principal Outcome Notes

MET antibodies

MetMab (Onartuzumab) 6 (early I/I); 8 (II); 5 (III)

Mixed cancer, breast cancer,
colorectal cancer,
glioblastoma, HER2- and
MET+ gastric cancer, HCC,
and MET+ NSCLC

Some clinical trials were
inconclusive due to poor patient
selection or the premature
termination of the study [87–89].
Other results are pending.

One-armed monoclonal
antibody [90].

LY2875358
(Emibetuzumab) 1 (early I/I); 2 (II) Mixed cancer, gastric cancer,

and NSCLC

Cytostatic antitumor activity
[91]. Significant increase in
median progression-free
survival for patients with the
highest MET expression [92]. It
cannot reverse acquired
resistance to Erlotinib, an EGFR
inhibitor [93].

Humanized IgG4 bivalent
monoclonal antibody [94].

ARGX-111 1 (early I/I)
Mixed cancer, gastric cancer,
glioblastoma, liver cancer,
and renal cancer

Results are pending.
Bivalent monoclonal antibody
with the property to activate
ADCC [95].

SAIT301 1 (early I/I) Mixed cancer
Phase I completed, and the
recommended dose for phase II
was established [96].

Bivalent monoclonal antibodies
targeted against the MET α
chain, inducing
CBL-independent degradation
of MET to circumvent the
detrimental agonist effect of
other bivalent antibodies
[97,98].

SF antibodies

AMG 102 (Rilotumumab) 6 (early I/I); 13 (II); 3 (III)

Mixed cancer, gastric cancer,
glioblastoma, lung cancer,
mesothelioma, and prostate
cancer

No improvement in the clinical
outcome in patients with MET+
gastric cancer [99]. Toxicity
issue [100].

Humanized IgG2 monoclonal
antibody [101].

AV-299 (Ficlatuzumab) 6 (early I/I); 4 (II); 3 (III) AML, head and neck cancer,
liver cancer, and NSCLC

Low benefit compared to other
drugs [102,103].

Humanized IgG1 monoclonal
antibody [104].

5. Exon14 ‘Skipping’, the Predominant MET Alteration

It was thus proposed that other mutations might drive ligand-independent activation of
MET. Surprisingly, for an RTK (e.g., EGFR, fibroblast growth factor receptor (FGFR), for review,
see [105]), very few patients exhibited MET mutations in the kinase domain or regulatory
regions (Figure 3C and [17,106]). Splice site mutations spanning the Exon14 were by far the
most common MET mutations. These mutations (complex or simple) are a consequence
of the loss of acceptor or donor sites, resulting in Exon14 ‘skipping’. Indeed, the latter was
described in a significant number of patients: 13% in pulmonary sarcomatoid carcinoma,
6% in adenosquamous carcinoma, 3% in lung adenocarcinomas, 2% in lung squamous cell
carcinomas, 0.4% in gliomas, and 0.4% in cancers of unknown primary origin (CUP) [16,107].
MET Exon14 encodes for the juxtamembrane domain. Because of the regulatory role of
the JM described above, it was thought that its loss would lead to increased receptors, and
the subsequent ligand-independent uncontrolled activation of MET, thus driving invasive
growth. Accordingly, the re-insertion of Exon14 into the oncogenic gene fusion (TPR)–MET,
which consists of the MET sequence downstream from the juxtamembrane domain fused to
the dimerization motif of TPR, resulted in decreased oncogenic potential [108]. Therefore,
targeted therapies against MET constituted appealing strategies for cancer patients carrying
MET Exon14 deletion (MET∆14) [21,23,72,79,84,109–115]. However, only half of the patients
harboring MET∆14 benefited from MET-targeted therapies, suggesting that the critical
aspects of MET∆14 remain to be elucidated [116,117]. Recently, two independent studies
demonstrated that the deletion of Exon14 does not result in constitutive activation of the
kinase. MET∆14 activity requires SF and drives a robust and selective AKT activation,
rendering cancer cells more prone to survival and migration [17,118]. Therefore, it is
proposed that cancer cells expressing MET∆14 choose the astute strategy to ‘fly’ the local
hostile micro milieu to form distal metastases instead of ‘fighting’ to proliferate locally. The
absence of SF in the tumor microenvironment or PI3K/AKT axis mutations may explain
the insensitivity to targeted therapies. Fittingly, PI3K/AKT activating mutations co-occur
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with MET Exon14 ‘skipping’ in 14% of cancer patients [119,120]. Based on these results, a
better stratification of patients might lead to a better response to MET-targeted therapies.

6. Point Mutations within the MET Coding Sequence

As shown in Figure 3C, mutations affecting the catalytic site or regulatory sites of MET
are sporadic but do exist. The first activating mutations of MET were identified in hereditary
papillary renal carcinoma (HPRC), and the authors suggested that the mutations affecting
the kinase domain of MET (M1149T, V1206L, V1238I, D1246N, and Y1248C) were causal in
HPRC [121]. Similar MET mutations (D1246H, Y1228C, and M1268T) spanning the critical
Y1234 and Y1235 were described in the sporadic renal carcinoma [122]. Moreover, cytoge-
netic analyses showed non-random chromosome 7 trisomy, which affected the mutated
MET allele [123]. All these mutations have the common feature of inducing the constitutive
activation of the kinase [122,124,125], leading to oncogene ‘addiction’ [3]. Experiments in
transgenic murine demonstrated the oncogenic potential of these activating mutants.

Interestingly, tumors formed in mice were not restricted to the kidney; animals de-
veloped lymphomas, carcinomas, or aggressive mammary tumors [126,127]. Importantly,
these independent studies demonstrate that activating mutations affecting the MET catalytic
site drive tumorigenesis in multiple tissues. Researchers attempted to identify activating
mutations in other human cancers in the following years. Somatic or germline mutations
were described in hepatocellular carcinoma, head and neck cancers, oropharynx squa-
mous cell cancer, gastric cancer, cancers of unknown primary origin (CUP), and colorectal
cancer [128–134].

A growing number of point mutations were described in the SEMA domain (both
in α and β chains, Figure 3C) responsible for the ligand binding [135]. Six non-small cell
lung cancer patients out of 127 harbored mutations (L229F, N375S, E168D, N375S, S323G,
N375S) within the Exon2 encoding for the SEMA domain [136]. SEMA domain mutations
are not restricted to lung cancer. In an independent study, MET mutations were detected
in 9% of advanced breast cancer (8/88 patients). Six of eight MET mutations affected
the SEMA domain (N375S in five patients, M362T in one patient, [137]). Despite some
evidence showing that SEMA domain mutations are oncogenic [133,138], our knowledge
of the biological significance of MET mutations affecting the SEMA domain remains poor.
They likely affect the ligand-binding domain’s structure, promoting a constitutively active
or ligand-hypersensitive kinase. Accordingly, in CUP—owning the unique ability of
self-renewal in the absence of any exogenous growth factor [139]—MET mutations were
clustered within the SEMA domain; in a total of 23 CUP patients, five out of seven MET
alterations were localized in the SEMA domain (H150Y, Q142X, C385Y, and two patients
with E168D [133]).

Point mutations, although rare, should not be overlooked. With recent advancements
in genomic screening technologies, we might find a growing number of these mutations. By
combining in silico, in vitro, and in vivo findings, we aim to have a sharper picture of MET
alterations in cancer and their biological significance, opening new avenues for targeted
therapies.

For RTKs, it is generally accepted that gene amplification leads to a higher number of
receptors at the cell surface, priming kinase activation in the presence of small amounts of
ligands. MET challenges this concept; an overexpression of human MET in mouse liver
induces hepatocellular carcinomas [140]. Since human MET cannot interact with murine
SF [141], these results demonstrate the ligand-independent activation of the receptor when
overexpressed.

7. Fusion Partners of MET Drive Oncogene ‘Addiction’

For decades, the only known MET gene rearrangement in human tumors has been TPR-
MET, mostly occurring in gastric cancers [142]. Recently, the thorough analyses of the vast
TCGA tumor collection uncovered new hybrid proteins [143]: the MET intracellular domain
fused at the N-terminus with several partners, some of them encompass the dimerization
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‘coiled-coil’ (CC) motif (i.e., C8orf34, BAIAP2L1, TFG, and KIF5B). Consequently, the
chimeric MET dimerizes in a ligand-independent fashion, driving constitutive kinase
activity and tumorigenesis. Although occurring at low frequencies, these fusions have been
found in lung adenocarcinomas, hepatocellular carcinomas, papillary renal carcinomas,
and thyroid carcinomas; thus, they cannot be ignored [143].

Another recurrent gene rearrangement involves MET and the PTPRZ1 gene, encod-
ing a tyrosine phosphatase [144]. PTPRZ1–MET fusions include almost the entire MET
sequence fused at its 5′ end with a variable number of exons of the PTPRZ1 gene [145]. PT-
PRZ1-MET fusions have been found in brain tumors, such as low-grade gliomas, secondary
glioblastomas arising in adults from the progression of lower-grade gliomas, and pediatric
glioblastomas at a remarkably high frequency (~10%, [145]). Notably, the chromosomal
rearrangement between PTPRZ1 and MET leads to fusion protein overexpression and
enhanced kinase activation [146]. The mechanism explaining enhanced MET activity in
tumors expressing the fusion protein remains to be determined; the highly active PTPRZ1
promoter fused to the MET gene [145] and the coiled-coil domain of PTPRZ1 fused to
MET [147] are two mutually non-exclusive hypotheses.

Experiments show that MET fusion proteins respond to anti-MET monotherapy:
PTPRZ1-MET in a pediatric glioma [145] and KIF5B-MET in lung cancers [148]. MET gene
fusions also happen in melanomas, where six different N-terminal partners fused in-frame
with the intracellular MET domain have been described [23].

Different MET genetic alterations can induce either ligand-independent (or hypersen-
sitive) or SF-dependent (MET∆14) activation of the kinase (Figure 4). They have a common
denominator for driving invasive growth. Tumor cells thus become addicted to MET and
become vulnerable to targeted therapies.
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8. Genetic Alterations of MET: The Peak of the Iceberg?

MET-amplified tumors represent 4%, where MET overexpression is observed in more
than 50% of cancers (Figure 3D). The discrepancy is too large and deserves the attention of
the scientific community. It should be noted that a large dataset often restricts their analy-
ses to protein-coding regions, overlooking important regulatory regions crucial for gene
expression. The inducible nature of the MET promoter was previously described and its
importance in tumor biology was established [149–151]. Thus, alterations affecting the MET
promoter should not be disregarded: re-analyses of TCGA dataset showed a remarkable
decrease in promoter methylation in cancer patients, a synonym for transcription activation
and MET overexpression (Figure 3E). This observation suggests that central regulatory
mechanisms remain to be elucidated. Gene expression is not only regulated at the transcrip-
tion level. Post-transcription control mechanisms affecting the translation efficiency and the
messenger’s stability are hubs for deregulations observed in cancer. Indeed, we observed a
small but significant fraction of patients harboring mutations within untranslated regions
of the mRNA (Figure 3F). However, despite their biological significance being unknown,
their exploration might reveal an unsuspected ‘dark energy’ for tumor cells. Additionally,
we have recently revealed MET translational regulation by the PI3K/AKT/mTOR axis and
its relevance in therapy resistance. This aspect is detailed below.

9. MET-Targeted Therapies

Several MET-targeting agents have been developed in line with the statements above
(summarized in Table 1). As with other targeted therapies, several questions must be
addressed before trying to quench MET signaling and tumor growth in patients. We
can encapsulate these matters in three main topics: (1) how to quench MET signaling
in patients; (2) who should benefit from MET-targeting agents; and (3) how to face the
inevitable problem in the targeted therapy: drug resistance.

10. Different MET-Blocking Agents: Advantages and Pitfalls

Three main strategies were employed to extinguish the MET signaling (schematized
in Figure 5). Firstly, small kinase inhibitors and monoclonal antibodies targeting SF or
its receptor [3,12,152]. Small kinase inhibitors are chemical compounds that pass through
the plasma membrane and interact with the receptor kinase domain. They can target
a large panel of receptors (multitarget tyrosine kinase inhibitors), specifically MET. The
latter has the advantage of reducing off-target effects. On the other hand, because of the
crosstalk of receptors [44,153–155], targeting a broader number of RTKs might induce a
better clinical outcome. Tyrosine kinase inhibitors act as ATP mimetics, hampering receptor
phosphorylation and subsequent kinase activity [156]. However, as discussed in the first
chapter, MET phosphorylation is indispensable for its degradation [36,37]. In the chronic
treatment setting, small molecules can thus potentially increase the number of receptors at
the cell surface, suffocating the treatment efficacy. Additionally, an acquired, or existing
mutation in the ATP binding pocket can engender resistance, as previously observed for
small molecule inhibitors of EGFR, KIT, and BCR-ABL [157–160].

Secondly, an alternative approach is to target the extracellular moiety of MET using an-
tibodies. They are more specific by nature than chemical inhibitors. Importantly, antibodies
are insensitive to multidrug resistance, a feature of aggressive cancer cells that augments the
drug efflux, reduces its influx, or increases the drug catabolism [56,161–164]. Furthermore,
antibodies recognize MET, even if the intracellular part is mutated in cancer cells (MET∆14
or activating mutations in the catalytic site). However, antibodies can induce receptor
dimerization and activation. Different strategies have been employed to circumvent this
issue. One-armed monoclonal antibodies (MetMab, also known as Onartuzumab, [90]) and
antibodies inducing CBL-independent degradation of MET (SAIT301, [97,98]) have been
developed and tested in clinics (Table 1).
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antibodies or MET antibodies. Some MET antibodies can induce receptor degradation in CBL-
independent manner (SAIT301) or by shedding (DN30). Additionally, in the case of DN30, the
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Lastly, another innovative strategy is taking advantage of the shedding of the plasma
membrane to maintain homeostasis [165]; DN30 antibodies interact with the IPT domain
of MET with subnanomolar affinities and induce shedding through the cleavage of the
extracellular moiety of MET [166–168]. The proteasome subsequently degrades the intracel-
lular moiety [169,170]. Additionally, since the extracellular part of MET is trimmed, it can
potentially sequestrate the circulating SF, further hampering the SF/MET axis. Furthermore,
based on the straightforward elimination of MET from the cell surface, independently of
receptor activation (phosphorylated vs. unphosphorylated state), DN30 has a substantial
advantage over other MET antibodies, as it is effective in the full spectrum of MET activa-
tion mechanisms, whether SF-dependent or independent (that is, induced by mutations,
gene fusions, or amplification). Multiple studies demonstrated its remarkable potential;
DN30 hampers cell growth and induces apoptosis in multiple MET-addicted cell lines
in vitro, and induces an impressive reduction of tumor mass in vivo [168,171]. Impor-
tantly, DN30 displayed a favorable pharmacokinetics and safety profile in non-human
primates [171], encouraging the design of a clinical trial in MET-addicted cancer patients.

Targeting the ligand is an alternative option to impede MET signaling. The benefit of
the SF antibodies AMG 102 (Rilotumumab, [101]) and AV-299 (Ficlatuzumab) was assessed
in many clinical trials with disappointing results (Table 1). In one clinical trial, SF antibodies
significantly increased mortality, causing the premature ending of the study [99]. As dis-
cussed previously, MET alterations in tumors typically promote ligand-independent kinase
activity (gene amplification, activating mutations, fusion proteins), partially explaining
these frustrating results. Nevertheless, targeting SF should not be dismissed; their ability
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to sequestrate the ligand could be exploited to inhibit SF-dependent invasion and survival
in tumors without MET amplification (e.g., MET∆14). Furthermore, it should be reminded
that SF acts on the tumor micro milieu on cancer-associated fibroblasts and macrophages to
foster angiogenesis [172–175]; therefore, a strategy is valid only if employed toward the
right target.

11. Patient Stratification: A Key for Success in Targeted Therapies

Identifying the target population for treatment might look self-evident, but it is labori-
ous and critical for setting the scene for success in a clinical trial. More than three decades
of basic research guided drawing an overall picture of patients that can benefit from MET
inhibition. Studies using cell lines or patient-derived xenografts have shown that only tu-
mors harboring MET alterations (mostly amplification) respond to the MET blockade. The
cell cycle is arrested, and/or apoptosis is induced in vitro [176], and complete inhibition of
tumor growth (and even tumor shrinkage) is observed in vivo [59]. MET alterations must
be assessed in patients before assigning them to the group receiving targeted therapies.
This is indeed a golden rule to follow, as targeted therapies can only benefit patients pre-
senting MET alterations. Nevertheless, their unambiguous identification is challenging.
In many clinical trials, MET levels were assessed by immunohistochemistry [83,92], a
strategy being far from objective and hardly reproducible. Moreover, the increased protein
intensity is not necessarily a synonym for MET amplification and ‘addiction’. Because
of the inducible nature of the MET promoter [149–151], high-MET-protein levels may be
transient due to changes in the tumor microenvironment (e.g., hypoxia, ionizing radiation,
cytotoxic reagents, described as ‘expedience’ in [3]). Indeed, post hoc analyses of some
clinical trials illustrate this issue; patients with a gene copy number gain of MET > 4 exhib-
ited the uppermost progression-free survival [92]. Another study testing the efficiency of
MetMab failed to demonstrate any benefit of the treatment, although 88% of patients were
MET-negative [87], demonstrating abruptly the validity of the golden rule stated above.

For tumors expressing wt MET (the vast majority of patients), a priori ineligible for
MET-targeted therapies, it should be noted that hampering the MET signaling reduces
migration and metastatic dissemination drastically without affecting the growth of cancer
cells [63,177,178]. Using MET-targeted therapy might constitute a promising adjuvant ther-
apy after tumor resection with curative intent, an ideal setting to eradicate the persistence
and dissemination of subclinical tumor foci.

With the progress in next-generation sequencing technologies (lesser quantity of mate-
rial required for acceptable coverage), genomic interrogations of liquid biopsies (circulating
tumor DNA and circulating tumor cells) are largely feasible [179,180] to adequately and
objectively stratify patients. Ideally, MET alterations must be assessed before the initiation
of the clinical trial. Liquid biopsies also enable longitudinal evaluation of tumor evolu-
tion in a non-invasive manner, crucial for understanding mechanisms hidebound to drug
resistance, the major challenge in targeted therapy.

12. Understanding and Overcoming Drug Resistance

Targeted therapies were a breakthrough in cancer research, emphasizing our cutting-
edge understanding of cancer cells’ vulnerabilities. The design of appropriate treatment
strategies was thus achievable. However, they suffer a significant limitation: resistance
frequently occurs [181–183] after an initial response. Understanding how cancer cells evade
targeted therapies constitutes a substantial challenge in the clinic.

Tumors can be defined as pseudo-organs constituted of heterogeneous clones present-
ing highly diverse genotypes and phenotypes. Some might prosper while others regress
depending on their ability to face microenvironmental selection pressures [183]. MET
genetic alterations might dominate the majority of tumor cells and dictate drug sensitiv-
ity; however, minor subclones harboring other mutations that confer resistance to MET
blockade may coexist and be positively selected under drug pressure. Resistant subclones
must be promptly detected (e.g., liquid biopsies at regular intervals). In line with this idea,
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many efforts have been made to characterize the molecular profile of emerging resistant
clones [184–186]. These forerunner studies have undeniable value for discovering new
targetable biomarkers in persistent clones that limit their propagation with proper and
timely therapeutic interventions.

13. The Flare Effect: mTOR Pathway Comes to Scene

In current clinical practice, the line of treatment is dismissed when resistance arises.
In many patients, discontinuation of kinase inhibitors results in rapid tumor regrowth: this
phenomenon is known as disease ‘flare’ or tumor ‘rebound’ [187–190], characterized by an
unknown incidence and a cumbersome prognosis [191]. The occurrence of tumor ‘rebound’
complicates disease management and has led to the idea of continuing the therapy beyond
the progression [191]. Notably, treatment with a MET therapeutic antibody that induces
‘shedding’ (proteolytic cleavage of the receptor at the cell surface) substantially prevents
this effect, providing a rationale to combine, or alternate, MET-targeted drugs with different
mechanisms of action [192].

We recently presented a mechanistic elucidation of the ‘flare’ effect [193]. Within
MET-amplified cells, halting the administration of the small molecule JNJ-38877618 (MET
inhibitor) triggered activation within the protein kinase B/mechanistic target of the ra-
pamycin (AKT/mTOR) pathway. Notably, mTOR orchestrates cell growth by governing
mRNA translation, ribosome biogenesis, and metabolic processes [194–197]. Noteworthy
transformations have been observed due to the overexpression of mTOR’s target, eIF4E, in
rodent fibroblasts [198], consequently prompting extensive investigations into mTOR’s role
in cancer [194]. Efforts towards inhibiting mTOR with rapalogs (including rapamycin and
analogs) have been pursued in cancer therapeutics; however, the exclusive utilization of
rapalogs displayed suboptimal efficacy [199].

A captivating observation emerged as mTOR swiftly augmented MET translation
upon MET inhibitor withdrawal [193], uncovering a novel aspect of the AKT/mTOR axis in
conferring resistance against therapies. Beyond de novo protein synthesis, the influence of
the AKT/mTOR pathway on MET extends further. This pathway’s Ser/Thr kinase activity
phosphorylates and incapacitates the protein phosphatase PTP1B, resulting in elevated
phosphorylated (active) MET at the cell surface [193]. Consequently, the AKT/mTOR
pathway emerges as a promising candidate for targeted interventions due to its paramount
role in driving tumor rebound. These mechanistic insights hold the potential to guide the
formulation of metronomic treatment strategies, incorporating alternating MET inhibitors
and mTOR inhibitors with minimal washout periods.

In a broader context, the intricate interplay between the mTOR axis and MET biology
underscores the pivotal role of translational regulation in governing MET expression within
the realm of cancer. Translational control, distinct from the transcriptional regulations,
operates on pre-existing mRNA, facilitating swift adaptability to the dynamic shifts within
the tumor microenvironment. While a comprehensive evaluation of the relevance of MET’s
translational control in the context of cancer demands further exploration, it might provide
insight into the apparent paradox between sporadic MET amplifications (accounting for
3–5% of cases) and the nearly ubiquitous MET overexpression observed in cancer [200–203].

14. Conclusions

MET is a potent oncogene driving invasive growth [3,13–17]. Decades of fundamental
research led to understanding MET’s different roles in human tumors. New studies
are ongoing to fine-tune our understanding of the role of varying MET mutations in
cancer [17,118,138]. The biological knowledge of MET needs to be translated into clinical
applications. Recent failures of clinical trials can be primarily explained by the lack of
consideration of MET genetic alterations before patient selection. On the contrary, when
patient stratification was appropriately performed a priori or during post hoc analyses, a
general picture of the target patients’ genomic profile can be pictured: MET alterations are
an absolute prerequisite for the success of targeted therapies.
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These lessons bear witness to crucial importance of the functional preclinical insights in
guiding clinical practice. Indeed, it was already clear from studies in cell lines and animal
models that substantial reduction of cancer cell viability in vitro and tumor shrinkage
in vivo occur only in settings where stable and heritable genetic alterations of MET sustain
oncogene ‘addiction’. For the large majority of cancer patients, where MET is not mutated,
preclinical comprehension of the role of MET can be directly translated to the clinic: MET
has anti-apoptotic and pro-invasive functions [177,178]. Adjuvant treatment with MET
inhibitors after tumor resection with curative intent could be a viable strategy.

Another unexplained phenomenon is the relatively poor frequency of MET-amplified
tumors [16,52–57,107], compared to many MET-overexpressing tumors [200–203]. This appar-
ent paradox can be partially explained by the inducible nature of the MET promoter: ionizing
radiations, hypoxia, and cytotoxic reagents enhance MET expression [149–151], previously de-
scribed as oncogene-mediated ‘expedience’ [3]. Translational control mechanisms (e.g., mTOR)
might add another layer of regulation of the receptor expression [193]. Another possibility is
the existence of other mutations, either in the coding sequence or regulatory regions of the
MET gene. The number of previously unidentified MET mutations is constantly increasing
thanks to the advances in next-generation sequencing techniques and comprehensive publicly
available databases (TCGA, cBioPortal, ClinVar). Thus, efforts aiming at the identification
of new variants in cancer must be encouraged. The primary task should be to functionally
characterize these mutations to broaden the panel of MET ‘addicted’ tumors and increase the
number of patients eligible for next-generation precision medicine.
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