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Simple Summary: Diagnosis and characterization of biliary strictures is challenging, even after the
introduction of digital single-operator cholangioscopy (D-SOC). The endoscopist’s visual impression
has a suboptimal accuracy and there is a significant interobserver variability. Artificial intelligence
tools for image analysis have presented important contributions in several fields of gastroenterology.
Convolutional neural networks are highly efficient multi-layered deep neural networks for image
analysis, with great results in several fields of medicine. Nevertheless, the role of these deep learning
models in digital cholangioscopy is still in a premature phase. With this bicentric international
study, the authors aimed to create a deep learning-based algorithm for digital cholangioscopy
capable of distinguishing benign from malignant biliary lesions. The present model accurately
detected malignant biliary lesions with an image processing rate that favors its clinical applicability.
The authors believe that the use of an AI-based model may change the landscape in the digital
cholangioscopy diagnostic yield.

Abstract: Digital single-operator cholangioscopy (D-SOC) has enhanced the ability to diagnose
indeterminate biliary strictures (BSs). Pilot studies using artificial intelligence (AI) models in D-SOC
demonstrated promising results. Our group aimed to develop a convolutional neural network (CNN)
for the identification and morphological characterization of malignant BSs in D-SOC. A total of
84,994 images from 129 D-SOC exams in two centers (Portugal and Spain) were used for developing
the CNN. Each image was categorized as either a normal/benign finding or as malignant lesion (the
latter dependent on histopathological results). Additionally, the CNN was evaluated for the detection
of morphologic features, including tumor vessels and papillary projections. The complete dataset
was divided into training and validation datasets. The model was evaluated through its sensitivity,
specificity, positive and negative predictive values, accuracy and area under the receiver-operating
characteristic and precision-recall curves (AUROC and AUPRC, respectively). The model achieved a
82.9% overall accuracy, 83.5% sensitivity and 82.4% specificity, with an AUROC and AUPRC of 0.92
and 0.93, respectively. The developed CNN successfully distinguished benign findings from malig-
nant BSs. The development and application of AI tools to D-SOC has the potential to significantly
augment the diagnostic yield of this exam for identifying malignant strictures.
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1. Introduction

Biliary strictures (BSs) are a concerning finding, often confronting patients with a poor
prognosis. The primary focus in the presence of a BS is to exclude malignancy, which
is responsible for the majority of BS cases. Malignant BSs typically result from primary
(cholangiocarcinoma) or secondary neoplasia with biliary tract extension (gallbladder,
pancreatic, hepatocellular carcinoma) [1,2]. On the other hand, around 30% of all BS cases
are benign, with the need to consider iatrogenic causes, biliary lithiasis, primary and
IgG4-related sclerosing cholangitis [2,3]. Therefore, it is crucial to differentiate between
benign and malign BSs, as the treatment and prognosis greatly differ between the different
etiologies [4,5].

Endoscopic retrograde cholangiopancreatography (ERCP) has historically been the
primary diagnostic modality in patients with biliary strictures. This technique allows
the observation of indirect signs that may suggest the malignant nature of BSs (surface
irregularity, stricture length), together with tissue sampling, either by brush cytology or
fluoroscopy-guided transpapillary biopsy. However, the diagnostic performance of ERCP
combined with brush cytology or biopsy is poor [6]. Indeed, a meta-analysis reported a
sensitivity of 45% for brush cytology and 48% for ERCP-guided biopsies. The combination
of both methods modestly increased the sensitivity for detection of malignant biliary
strictures [7].

Digital single-operator cholangioscopy (D-SOC) allows high-resolution inspection
of the bile duct, enabling its application for diagnostic and therapeutic purposes. Direct
visualization allows for more accurate morphologic characterization of BSs as well as
the possibility for targeted biopsies [8]. A recent multicentric randomized trial demon-
strated the higher sensitivity of D-SOC for the visual identification of malignant strictures,
compared to standard ERCP cholangiographic impression (96% vs. 67%, p = 0.02) [9].
Nonetheless, the specificity of the visual impression remains suboptimal (89%) [10]. In
fact, the accuracy is diminished when evaluating extrinsic BSs (most commonly pancreatic
adenocarcinoma or metastatic disease) [11]. Additionally, the presence of traumatic lesions
after stent removal or even the passage of the scope may be mistaken with malignant
lesions. Lastly, the presence of diseases associated with chronic biliary duct inflammation
(namely primary sclerosing cholangitis) is associated with a decreased diagnostic yield for
diagnosing malignant BSs.

Several morphological features are associated with an increased malignancy risk [12,13].
The identification of papillary projections is associated with a seven-times increased risk of
malignancy in a multivariate analysis [14]. Nevertheless, a significant lack of interobserver
agreement in this morphologic feature identification was observed. On the other hand,
abnormal dilated tumor vessels are commonly visualized in malignant BSs [12]. These
vessels are developed during tumoral angiogenesis and are associated with an accurate
detection of malignant BSs [15]. However, chronic inflammation can diminish the diagnostic
accuracy of D-SOC for tumoral vessels. Therefore, classification systems for prediction of
BS malignancy have been tested, namely systems based on morphological features [14,16].
Sethi et al. developed the Monaco Classification System for indeterminate BSs, reporting
an overall accuracy of 70% for malignant BSs and relevant interobserver agreement for
papillary projection (k = 0.43) and abnormal vessels identification (k = 0.26) [14]. However,
there is no universally accepted classification system for D-SOC findings and interobserver
agreement between different endoscopists remains poor [17].

The development of artificial intelligence (AI) models suited for the analysis of large
image datasets is a matter of great scientific interest, specially using deep learning al-
gorithms. Convolutional neural networks (CNN) are a human visual cortex inspired
multilayered deep learning model suitable to increase the diagnostic yield in several med-
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ical fields [18–20]. Additionally, there are several published studies about the impact of
these models in the diagnostic performance of several endoscopic techniques [21–23].The
impact of AI for the evaluation of cholangioscopy images has recently started to be in-
vestigated. However, a tool providing categorization (i.e., discriminating malignant from
non-malignant strictures) as well as morphologic classification has scarcely been assessed.
Given the current limitations in the diagnostic approach to biliary strictures and the poten-
tial of AI to provide effective image analysis, our group aimed to develop and validate a
CNN model for automatic detection and differentiation between benign and malignant BSs
in D-SOC. Additionally, our group assessed the capacity of the CNN to provide accurate
identification of significant morphological features of malignant BSs.

2. Materials and Methods
2.1. Patient Population and Study Design

For the development of the study, our group included D-SOC exams performed
between August 2017 and November 2022 at two centers in Portugal (Centro Hospitalar
Universitário de São João (CHUSJ), Porto, Portugal) and Spain (Hospital Universitario
Puerta de Hierro Majadahonda (HUPHM), Madrid, Spain). A total of 124 patients (CHUSJ,
n = 106; HUPHM, n = 18), corresponding to 129 D-SOC exams (CHUSJ, n = 111; HUPHM,
n = 18), were enrolled. A total of 84,994 still-frame images were used for the development,
training and validation phases of the CNN for automatic differentiation between malignant
and benign BSs. The still-frame images were obtained during the exam, mainly through
decomposition of the procedure videos into frames, using a VLC media player (VideoLAN,
Paris, France).

The study was performed after approval by the ethics committee of Centro Hospi-
talar Universitário de São João/Faculdade de Medicina da Universidade do Porto (CE
41/2021) and Hospital Universitario Puerta de Hierro Majadahonda (PI 153/22). This was
a retrospective non-interventional study, performed with respect for the Declaration of
Helsinki. An adequate omission of potentially identifiable patient information was assured,
with each individual patient being assigned with a random number, guaranteeing data
anonymization. The non-traceability of the data and respect to the general data protection
regulation (GDPR) was assured by a team with a Data Protection Officer (DPO).

2.2. Digital-Single Operator Cholangioscopy Procedure and Definitions

All of the D-SOC exams included in the study were performed with the SpyGlass™
DS II system (Boston Scientific Corp., Marlborough, MA, USA). The procedures were per-
formed by expert gastroenterologists (P.P., F.V.B., M.G.-H., and B.A.G), each with experience
of more than 2000 ERCPs and 100 cholangioscopies prior to this study. For the performance
of the exams the Olympus TJF-160V or TFJ-Q180V duodenoscopes (Olympus Medical
Systems, Tokyo, Japan) were used. Additionally, the SpyBiteTM forceps (Boston Scientific
Corp., Marlborough, MA, USA) were utilized for obtaining the biopsy specimens with
direct visual guidance, assuring a minimum of 4 biopsies in all the study exams.

A total of 84,994 D-SOC biliary images were classified as benign or malignant. Benign
biliary findings typically included normal bile ducts, stone disease and benign BSs. A
benign BS-confirmed diagnosis implied a negative histopathology (biopsy or surgically
obtained) with absence of malignancy after 6 months of follow up. Stone disease was
diagnosed upon direct observation and in the absence of other findings. A malignant
diagnosis implied a malign histopathology, obtained either through D-SOC biopsy or other
tissue sampling exams (namely brush cytology, fluoroscopic or endoscopic ultrasound-
guided biopsy or even surgical specimen).

2.3. Development of the Convolutional Neural Network

We developed a deep learning-based CNN to automatically detect and differentiate
malignant biliary strictures from benign biliary conditions, the latter including benign
strictures, stone disease and normal bile ducts. A total of 84,994 frames were included:
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malignant strictures were seen in 44,743 images; whereas the remaining 40,521 showed
benign biliary conditions.

The total data was separated into two sets: training and validation. The first comprised
80% of the frames (n = 67,678), while the second used 20% of the remaining images
(n = 17,316) using a patient-split design, ensuring that no data from the same patient
overlapped in both the datasets. The validation dataset was used to assess the model’s
performance. A graphical flowchart of the study design is shown in Figure 1. Additionally,
in a subset of exams (n = 62) we evaluated the performance of the CNN for the detection of
morphologic features associated with bile duct malignancy (“tumor vessels” and “papillary
projections”). Tumor vessels were defined as abnormal, dilated, tortuous vessels associated
with bile duct malignancy (n = 18,388). Papillary projections (n = 18,388) were represented
as finger-like projections associated with bile duct malignancy.
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positive predictive value; TV—tumor vessels.

The Resnet model was used to build this CNN. ImageNet, a large-scale collection
of images used for object recognition software development, was used to train weights
between units. We preserved its convolutional layers to impart its learning to our model.
The final fully connected layers were deleted and replaced with new fully connected layers
according to the number of classes we used to categorize our endoscopic frames. There was
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an initial fully connected layer in each of the two blows that we used, followed by dropout
layers with a drop rate of 0.1. After that, we added a dense layer whose size defined the
number of classification groups (two: malignant strictures and benign biliary conditions).
The learning rate was 0.00015, the batch size was 128 and the number of epochs was 10.
PyTorch was used to prepare and run the model. Performance analyses was carried out
with a computer equipped with a 2.1 GHz Intel® Xeon® Gold 6130 processor (Intel, Santa
Clara, CA, USA) and a double NVIDIA Quadro® RTX™ 4000 graphic processing unit
(NVIDIA Corporate, Santa Clara, CA, USA).

2.4. Model Performance and Statistical Analysis

The assessment of CNN’s performance was performed using an independent valida-
tion dataset (20% of all the data). For each frame, the algorithm calculated the probability
of having a malignant stricture and the probability of being considered a benign biliary
condition (Figure 2). Since a higher probability translated into greater confidence of the
CNN prediction, the model selected the category with the highest probability as its final
classification. Then, the final classification of the CNN was compared with the correspond-
ing histopathological evaluation, which was regarded as the gold standard. Sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy in
distinguishing malign strictures from benign biliary conditions were our primary outcomes.
Additionally, we performed receiver operating characteristic (ROC) curves analysis and
calculated the area under the ROC curves (AUROC) to evaluate the discriminatory capacity
of our model. Moreover, the precision-recall (PR) curve and the area under the precision-
recall curve (AUPRC) were used to measure the performance of the model, accounting
for potential data imbalance. Finally, we evaluated the computational performance of the
algorithm by measuring the time required for the CNN to process and generate output for
all the frames included in the validation dataset. We performed statistical analysis using
Sci-Kit learn v0.22.2 [24].
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Figure 2. Output obtained during the training and development of the convolutional neural network.
The bars represent the probability estimated by the network. The finding with the highest probability
was output as the predicted classification. A blue bar represents a correct prediction. B—benign biliary
findings; M—malignant stricture; O—other; PP—papillary projections; PPV—positive predictive
value; TV—tumor vessels.

3. Results
3.1. Performance of the Convolutional Neural Network

In total, 129 D-SOC exams were performed in 124 patients, from August 2017 to
November 2022. In 73 patients, a diagnosis of malignancy was established. Benign findings
were established in 51 patients. We included 84,994 frames for development of this CNN, of
which 44 743 were malignant strictures. The remaining 40,521 images were benign biliary
conditions (benign strictures, stone disease and normal bile ducts).

The model was trained and developed using 80% of the total dataset (n = 67,678).
The remaining 20% (n = 17,316) was used to test the algorithm’s performance. Table 1
shows the confusion matrix between the CNN’s predictions in validation set versus the
histopathologic characterization. In terms of detecting and distinguishing malign strictures
from benign conditions, the CNN was associated with a sensitivity of 83.5%, a specificity of
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82.4% and an accuracy of 82.9%. PPV and NPV were, 79.6% and 85.8%, respectively. The
model’s AUROC and AUPRC for differentiating between the malignant lesions and benign
biliary conditions were 0.92 and 0.93, respectively, as shown in Figure 3.
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Table 1. Confusion matrix of the automatic detection versus final diagnosis, CNN—convolutional
neural network; Malignant—malignant biliary strictures; Benign—normal bile ducts or benign biliary
findings.

Final Diagnosis

Malignant Benign

CNN classification
Malignant 6527 1673

Benign 1293 7823

3.2. Detection of Morphological Characteristics Associated with Biliary Malignancy

The CNN’s performance for the detection of morphological features associated with
malignancy of the biliary tract (tumor vessels and papillary projections) were also assessed
on a subset of 62 D-SOC exams of patients with malignant biliary strictures. Two sets of
18,388 images were used for the constitution of the CNNs for the automatic detection of
TV and PP, respectively. Heatmap analysis was performed for the identification of features
contributing to the predictions of the CNN (Figure 4). Regarding tumor vessel detection,
the CNN sensitivity and specificity were 95.7% and 88.6%, respectively, with an accuracy
of 93.0%. In terms of papillary projection identification, the model’s sensitivity, specificity
and accuracy were 74.1%, 94.5% and 91.2%, respectively. The AUROC for the detection
and differentiation of tumor vessels and papillary projections by the CNN was 0.98 and
0.96, respectively (Figure 5).
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3.3. Computational Performance of the CNN

The CNN processed 4250 batches (each batch comprising of 128 frames) in 23 min and
16 s, which can be translated to an approximate reading rate of 390 frames per second.

4. Discussion

The utilization of AI tools in medical routines is experiencing rapid growth. Research
in the field of deep learning systems in the field of gastrointestinal endoscopy has primarily
concentrated on luminal endoscopy, while the research on hepatobiliary indications is sig-
nificantly less robust [25]. Obtaining a conclusive diagnosis in patients with indeterminate
bile duct strictures is crucial for tailoring treatments for each patient. Nonetheless, it is
often challenging to attain a specific diagnosis due to frequently inconclusive tissue sam-
pling. Recently, Gerges et al. demonstrated a higher sensitivity of D-SOC-guided biopsies
compared to those obtained during ERCP procedures [9]. The sensitivity of D-SOC-guided
biopsies was calculated at 74% in a recent meta-analysis [26]. Nevertheless, the introduction
of D-SOC brought about a remarkable improvement, particularly evident in the accuracy
of visually assessing significant biliary lesions. In a study conducted by Navaneethan et al.,
the estimated sensitivity for visual impression in diagnosing malignancy was reported to be
an impressive 90% [27]. However, the diagnosis of malignancy through visual impression
alone is hindered by suboptimal specificity and accuracy [14,28]. Currently, a universally
accepted classification system for visually diagnosing malignancy during single-operator
cholangioscopy is yet to be clinically established [12–14]. Furthermore, the utilization
of existing classification systems has been linked to inadequate interobserver agreement,
exacerbating the challenges in this field [14].

The primary objective in managing a biliary stricture is to effectively exclude malig-
nancy. The advent of D-SOC has notably improved the diagnostic accuracy for indeter-
minate biliary strictures. Nonetheless, a missing rate as high as 10% has been reported
for D-SOC with direct visualization or targeted biopsies [10], and a definite diagnosis of
malignancy imperatively requires histologic confirmation. Considering these constraints,
we firmly believe that integrating real-time AI technology into D-SOC has the potential to
bridge this gap and address these challenges effectively. A recent systematic review and
meta-analysis by Njei et al. suggested the application of AI systems as the most promising
solution for the distinction between malignant and benign BSs [29]. Recently, significant
interest has been devoted to AI algorithms for the identification of malignant biliary stric-
tures. Robles-Medranda et al. developed a CNN-based model for the identification of
biliary malignancy using pre-defined endoscopic classifications [30]. This algorithm has
been shown to be highly accurate in the detection of tumor vessels. Moreover, the CNN
outperformed non-expert endoscopists in the identification of malignant BSs. Nevertheless,
this study has not performed explainability analysis, thus not allowing the full assessment
of the predictions of the CNN. More recently, Zhang et al. have developed consecutive deep
learning algorithms for the selection of quality D-SOC images for subsequent development
of a CNN for the classification of biliary strictures [31]. Their deep learning algorithm
achieved a sensitivity of 92% and a specificity of 88% for the detection of malignant stric-
tures at a video level. This study simultaneously provided heatmap analysis to ascertain
suspicious areas, which allowed the identification of areas contributing significantly for
the predictions of the algorithm. The improvement in the accuracy of AI systems inte-
grated in real-time into D-SOC systems may enhance the evaluation of visual features of
biliary strictures. However, it is crucial to note that these systems are expected to assist
instead of replacing conventional tissue sampling. Integrating visual features linked to a
higher likelihood of malignancy (such as tumor vessels and papillary projections) into these
models can facilitate the precise identification of areas where suspected malignant lesions
are present. This, in turn, has the potential to enhance the diagnostic yield of existing
D-SOC-guided tissue sampling. Further development of these algorithms, combined with
ongoing efforts to improve staging and prognostication with the assistance of AI, will
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provide more personalized care to patients with suspected biliary malignancy, thus offering
the potential to improve the prognosis of these patients [32–35].

The algorithm developed in this study had a dual purpose: to categorize biliary stric-
tures as either malignant or benign and to identify the morphological features associated
with an increased risk of malignancy, such as tumor vessels and papillary projections. To
ensure a robust and diverse dataset, we included images from two large-volume centers, re-
sulting in a comprehensive collection of nearly 85,000 biliary stricture images. The findings
of our study revealed that this model demonstrated exceptional sensitivity, specificity and
accuracy. Overall, our network achieved an AUC of 0.92 in distinguishing malignant from
benign strictures. Additionally, our CNN exhibited outstanding performance in detecting
tumor vessels and papillary projections, with AUC values of 0.98 and 0.96, respectively.
Furthermore, our algorithm displayed remarkable image processing efficiency, with an
approximate reading rate of 390 frames per second. Our results are in line with a recent
study by Marya et al., which focused on the development of a CNN for the identification of
malignant BSs, which showed an adequate performance in differentiating malignant from
benign BSs, with an overall accuracy of 91% [36]. These results demonstrate the potential
of these systems in advancing the field of biliary stricture diagnosis and management.

This study has several points of merit. First, the development of this deep learning
algorithm included a large volume and variety of images obtained from D-SOC exams
performed at two European high-volume referral centers. Second, we included a robust
dataset of almost 85,000 images of patients with BSs, for whom the diagnosis of biliary
malignancy required unequivocal histological proof. Third, we have built upon previously
published work on the application of AI systems to D-SOC. In this study, we have expanded
the evidence on the application of these algorithms for the detection of morphological
features associated with an increased risk of biliary malignancy. Indeed, our system
detected tumor vessels and papillary projections with an AUC of 0.98 and 0.96. The
detection of these morphologic features is of paramount importance as they have been
demonstrated to predict the presence of malignant BSs. Indeed, Robles-Medranda and
coworkers have shown that the identification of tumor vessels predicted the presence of
a malignant biliary stricture with a sensitivity of 94% and an overall accuracy of 86%.
Nevertheless, the specificity of this finding was suboptimal (63%) [15]. The introduction
of AI models may provide a solution in decreasing the problematic issues of both false
negative and false positive results, which lead to inadequate treatments and morbidity.
Indeed, our network achieved a sensitivity of 96% and a specificity of 87%. This is in
line with previously published studies on the detection of tumor vessels in malignant
BSs [30,37]. Besides the importance of classifying a BS as malignant or benign, real-time AI
models accurately identifying the morphologic features associated with biliary malignancy
may provide guidance to D-SOC-oriented tissue sampling, therefore increasing its yield.

This study has several limitations to be acknowledged. First, despite the large dataset
for the context of a proof-of-concept study, clinical validation of this algorithm will require a
much larger volume of data. Secondly, our deep learning model was developed and tested
exclusively on a single D-SOC platform, which limits the generalizability of the algorithm
to other cholangioscopy systems. Third, at this stage, we did not assess the use of deep
learning with prior knowledge for the enhancement of the performance of our algorithm.
Moreover, distinct deep learning models other than convolutional neural networks have
been shown to be more efficient than CNNs [38], and their use should be assessed in further
studies. Interoperability remains a significant concern in the development and application
of AI technologies in the medical field, as the ability to generalize a given technology
across multiple devices is a crucial requirement for its clinical applicability. Therefore,
it is essential to develop and validate this deep learning model across different D-SOC
devices. Thirdly, while efforts were made to mitigate the risk of overfitting, it cannot be
eliminated. As other systems designed for pancreatobiliary endoscopy, the technological
maturity of our algorithm remains unfit for clinical practice. Subsequent development
of these algorithms on an adequate environment, as well as prototype validation in a
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real-life clinical setting should follow suite. Therefore, while the performance marks of this
algorithm on a preclinical stage suggest that it would provide accurate predictions in a real-
life setting, these results should be interpreted considering the stage of development of the
algorithm. Subsequent development of these algorithms should include: the development
of international multicentric studies, with the aim of increasing datasets, both in quantity
as well as in variability; engaging with practitioners for the development of user-friendly
prototypes, combining an increase in the accuracy provided by these software with the
current standards of practice of expert centers, alerting the endoscopists for meaningful
findings and preventing “noisy” overpredictions; finally, the ultimate application of these
algorithms in clinical practice should be strictly regulated by competent agencies, and
effective polices should be enforced to ensure the quality of these systems as well as their
clinical benefit.

5. Conclusions

The influence of AI in everyday clinical practice is expected to continue growing in the
near future. The potential impact of deep learning algorithms on the care of patients with
suspected biliary malignancy is significant. This study aimed to evaluate the performance
of a CNN in detecting and distinguishing between malignant and benign biliary disorders,
utilizing a large dataset of D-SOC images from two experienced centers in this field. The
favorable performance demonstrated by this model establishes a solid groundwork for
further investigation of AI technologies in this specific patient subset, with the ultimate goal
of enhancing the clinical outcomes for individuals suspected of having biliary malignancy.
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